首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have examined the respective roles played by guaiacol and scopoletin in NADPH oxidation catalyzed by the peroxidase/H2O2 system. It was shown that NADPH was not oxidized by either the horseradish or lactoperoxidase/H2O2 systems alone; oxidation occurred immediately after the addition of guaiacol or scopoletin. In both cases, the oxidation product was enzymatically active NADP+. Differences were observed in the NADPH oxidation mechanism depending on whether guaiacol or scopoletin was the mediator molecule. In guaiacol-mediated NADPH oxidation, the stoichiometry between H2O2 and oxidized NADPH was about 1; superoxide dismutase did not affect the oxidation rate. In scopoletin-mediated oxidation, the stoichiometry was much higher (1:14 in the present experiments); superoxide dismutase considerably increased the oxidation rate. It is concluded that catalysis of NADPH oxidation by the horse radish peroxidase/H2O2 system requires the presence of a mediator molecule. The NADPH oxidation mechanism depends on the intermediary oxidation state of this molecule.  相似文献   

2.
N-Hydroxy-N-2-fluorenylacetamide, a proximate carcinogenic metabolite of N-2-fluorenylacetamide, is oxidized largely to 2-nitrosofluorene by lactoperoxidase or extract of peroxidative activity of rat uterus in an H2O2- and Br- -dependent reaction. Evidence is presented that the oxidizing species includes OBr- (HOBr). This novel oxidation may be involved in carcinogenesis by N-arylhydroxamic acids.  相似文献   

3.
Summary Oxytocin and vasopressin are oxidized by horseradish peroxidase and by lactoperoxidase, in the presence of hydrogen peroxide. Spectrophotometric measurements are indicative of the formation of dityrosine. Kinetic parameters indicate that the affinity of horseradish peroxidase is slightly higher for oxytocin with respect to vasopressin and that the two hormones are better substrates for both peroxidases than free tyrosine.  相似文献   

4.
The monooxygenese activity of cytochrome P450 is successfully introduced into myoglobin by rational design of its active site. Introduction of an aromatic ring, tryptophan, near the heme by site-directed mutagenesis resulted in the hydroxylation of tryptophan at the C6 position by using an almost stoichiometric amount of H(2)O(2). We also altered the substrate specificity of H(2)O(2)-dependent P450 by employing a simple substrate trick. Although P450(BSβ) exclusively catalyzes peroxygenation of long-alkyl-chain fatty acids, oxidation of non-natural substrates such as styrene, ethylbenzene, and 1-methoxynaphthalen are catalyzed by P450(BSβ) in the presence of decoy molecules having a carboxyl group. Advantageously, the substrate specificity of P450(BSβ) can be altered by simply adding the decoy molecule without replacing any amino acid residues. Moreover, the stereoselectivity can be controlled by changing the structure of the decoy molecule. The crystal structure analysis of the decoy molecule bound-form of P450(BSβ) shows that P450(BSβ) accepts the decoy molecule, whose carboxylate is located at the same position to that of long-alkyl-chain fatty acid.  相似文献   

5.
6.
Addition of NADH inhibited the peroxidative loss of scopoletin in presence of horseradish and H2O2 and decreased the ratio of scopoletin (consumed):H2O2 (added). Concomitantly NADH was oxidized and oxygen was consumed with a stoichiometry of NADH:O2 of 2:1. On step-wise addition of a small concentration of H2O2 a high rate of NADH oxidation was obtained for a progressively decreasing time period followed by termination of the reaction with NADH:H2O2 ratio decreasing from about 40 to 10. The rate of NADH oxidation increased linearly with increase in scopoletin concentration. Other phenolic compounds including p-coumarate also supported this reaction to a variable degree. A 418-nm absorbing compound accumulated during oxidation of NADH. The effectiveness of a small concentration of H2O2 in supporting NADH oxidation increased in presence of SOD and decreased in presence of cytochrome c, but the reaction terminated even in their presence. The results indicate that the peroxidase is not continuously generating H2O2 during scopoletin-mediated NADH oxidation and that both peroxidase and oxidase reactions occur simultaneously competing for an active form of the enzyme.  相似文献   

7.
We have studied the oxidation of microperoxidase-8 (MP-8) by H2O2 and the subsequent reaction of the intermediates with substrate by stopped-flow experiments. Oxidation of MP-8 by H2O2 gives two intermediates, I and II. The observed rate constant for the formation of I is linearly dependent on [H2O2] and exhibits a bell-shaped dependence on pH with pKa values of 8.90 and 10.60, which are attributed to the deprotonation of MP-bound H2O2 and H2O, respectively. The observed rate constant for the conversion of I to II is independent of [H2O2], but increases sharply at pH>9.0. The predominant forms of the intermediate at pH 7.0 and 10.7 are I and II, respectively. Addition of substrate to the intermediates at pH 9.0 gives rise to three distinct stages, corresponding to the three steps (in decreasing order of rate): I-->II*, II-->MP, and II*-->MP. The rates of these steps are all linearly dependent on the substrate concentration and each individual rate constant has been determined. Substrate reactivity at pH 10.7 covers over two orders of magnitude, ranging from 1.36 x 10(7) M(-1) s(-1) for 1-naphthol to 4.03 x 10(4) M(-1) s(-1) for ferrocyanide. The substrate reactivity is linearly correlated with its reduction potential, indicating that an electron transfer process is involved in the rate-limiting step.  相似文献   

8.
Evidence for singlet oxygen formation has been obtained for the lactoperoxidase, H2O2 and bromide system by monitoring 2,3-diphenylfuran and diphenylisobenzofuran oxidation, O2 evolution, and chemiluminescence. This could provide an explanation for the cytotoxic and microbicidal activity of peroxidases and polymorphonuclear leukocytes. Evidence for singlet oxygen formation included the following. (a) Chemiluminescence accompanying the enzymic reaction was doubled in a deuterated buffer and inhibited by singlet oxygen traps. (b) The singlet oxygen traps, diphenylfuran and diphenylisobenzofuran, were oxidized to their known singlet oxygen oxidation products in the presence of lactoperoxidase, hydrogen peroxide and bromide. (c) The rate of oxidation of diphenylfuran and diphenylisobenzofuran was inhibited when monitored in the presence of known singlet oxygen traps or quenchers. (d) Oxygen evolution from the enzymic reaction was inhibited by singlet oxygen traps but not by singlet oxygen quenchers. (e) The traps or quenchers which were effective inhibitors in the experiments above did not inhibit peroxidase activity, were not competitive peroxidase substrates and did not react with the hypobromite intermediate since they did not inhibit hydrogen peroxide consumption by the enzyme. Using these criteria, various biological molecules were tested for their reactivity with singlet oxygen. Furthermore, by studying their effect on oxygen release by the enzymic reaction, it could be ascertained whether they were acting as singlet oxygen traps or quenchers.  相似文献   

9.
10.
Oxidized low-density lipoproteins (LDL) accumulate in the vascular wall and promote a local inflammatory process contributing to the progression of atheromatous plaque. The key role of myeloperoxidase (MPO) in this process has been documented and the enzyme has been involved in the oxidative modification of apolipoprotein B-100 in the intima and at the surface of endothelial cells. As the inhibition of this last phenomenon could be of relevance in pharmacological interventions, thiol-containing molecules such as glutathione, captopril, and N-acetylcysteine (NAC) and its lysinate salt (NAL) were tested in this system and their properties were compared with those of flufenamic acid (control). This last compound already demonstrated an inhibition of the production of HOCl by MPO and a more intense inhibition of MPO activity than glutathione, NAC, NAL, and captopril. However, NAC and NAL inhibited the oxidative modification of LDL more intensively than captopril and glutathione whereas flufenamic acid had no comparable inhibiting effect. This could be related to the presence of LDL close to the catalytic site of the enzyme. NAC and NAL therefore appeared as the most efficient inhibitors probably as a consequence of their relatively small size. The relevance of such effects has to be documented by in vivo studies.  相似文献   

11.
We optimized the conditions for oxidation of luminol by hydrogen peroxide in the presence of peroxidase (EC 1.11.1.7) from royal palm leaves (Roystonea regia). The pH range (8.3–8.6) corresponding to maximum chemiluminescence was similar for palm tree peroxidase and horseradish peroxidase. Variations in the concentration of the Tris buffer were accompanied by changes in chemiluminescence. Note that maximum chemiluminescence was observed in the 30 mM Tris solution. The detection limit of the enzyme assay during luminol oxidation by hydrogen peroxide was 1 pM. The specific feature of palm tree peroxidase was the generation of a long-term chemiluminescent signal. In combination with the data on the high stability of palm tree peroxidase, our results indicate that this enzyme is promising for its use in analytical studies.  相似文献   

12.
NADPH oxidation catalyzed by horseradish peroxidase is considerably increased by scopoletin and superoxide dismutase. These effects were used to develop a method for measuring H2O2 in a horseradish peroxidase, superoxide dismutase, and scopoletin system by measuring the NADPH oxidation rate. The optimal concentration of each reactant was determined. H2O2 could be detected and measured when it was present free in the medium or when it was produced by an H2O2-generating system, such as glucose-glucose oxidase or NADPH oxidase from thyroid plasma membranes. H2O2 was measured either by taking aliquots of the incubation medium or by placing NADPH directly in the medium and following the kinetics of NADPH oxidation. This latter approach required smaller amounts of biological material. In contrast to other methods, the H2O2 which is measured is regenerated. This method is 10 times more sensitive than the standard scopoletin method for H2O2 measurement and will detect a H2O2 production rate as low as 0.2 nmol per hour. The method is particularly suitable for biological systems in which small quantities of biological material are available.  相似文献   

13.
C Miyazaki  H Takahashi 《FEBS letters》2001,509(1):111-114
The manganese peroxidase produced by Phanerochaete chrysosporium, which catalyzes the oxidation of Mn(2+) to Mn(3+), is easily inactivated by the hydrogen peroxide (H2O2) presented in the reaction. We attempted to increase H2O2 resistance by the conformational stabilization around the H2O2-binding pocket. Based on its structural model, engineering of oxidizable Met273 located near the pocket to a non-oxidizable Leu showed a great improvement. Furthermore, after treatment at 1 mM H2O2 where the wild-type is completely inactivated, full activity can be retained by engineering the Asn81, which might have conformational changes due to the environment of the pocket, to a non-bulky and non-oxidizable Ser.  相似文献   

14.
The kinetics of iodination and oxidation of hog thyroglobulin were studied with purified hog thyroid peroxidase and the results were compared with the reactions of free tyrosine. From Lineweaver-Burk plots and on the basis of a value of 0.83 for delta epsilon mM at 289 nm/iodine atom incorporated, the rate constant for transfer of an assumed enzyme-bound iodinium cation to thyroglobulin was estimated to be 6.7 X 10(7) and 2.3 X 10(7) M-1 s-1 in native (iodine content = 1.0%) and more iodinated (iodine content = 1.2%) thyroglobulins, respectively. This iodine-transferring reaction was stimulated by iodothyronines, similarly as observed in the reaction with free tyrosine. The iodination of thyroglobulin was inhibited by GSH, the inhibition being competitive with thyroglobulin. Thyroglobulin was oxidized in the presence of a thyroid peroxidase system without giving any appreciable change in absorbance around 300 nm. From stopped flow data, the oxidation was concluded to occur by way of two-electron transfer and the rate constant for the reaction of thyroid peroxidase Compound I with thyroglobulin was estimated to be 1.0 X 10(7) M-1 s-1. The stopped flow kinetic pattern was similar to that observed on the reaction with free tyrosine and monoiodotyrosine. About 6 mol of hydrogen peroxide were consumed per mol of thyroglobulin. Thyroid peroxidase catalyzed thyroglobulin-mediated oxidation of GSH, but lactoperoxidase did not.  相似文献   

15.
The drug 4-nitroquinoline 1-oxide (4NQO) is a potent inhibitor of Dictyostelium discoideum spore germination. This inexpensive, water soluble drug is active at a concentration of 5 micrograms/ml (26 microM) and permeates the spore at all stages in germination. Spores subjected to 4NQO treatment exhibit an irreversible blockage of myxamoebae emergence, but spore activation, post-activation lag, and swelling are not affected. Swollen 4NQO-treated spores lose the outer two spore walls but lack the ability to degrade the innermost wall. The drug does not affect oxygen uptake during post-activation lag or swelling, and only a stage specific depression in O2 uptake is observed when control spores begin to release myxamoebae. When added early in germination, 4NQO blocks the incorporation of [3H] uracil into a cold trichloroacetic acid (TCA) insoluble fraction by 98%. However, when the drug is added midway through germination and followed by a pulse labelling period of 1 h, only 65% inhibition of RNA synthesis is observed. This lack of complete inhibition may occur because the drug requires metabolic activation; thus, new rounds of RNA synthesis may have initiated before the drug became fully activated. 4NQO also blocks the de novo expression of beta-glucosidase activity when added early in germination. Additionally, we observe that vegetative cellular slime mold cells are 100 times more resistant than spores to 4NQO-induced damage. Taken together, our results support the observation that RNA synthesis is only required for the emergence stage of germination and that dormant D. discoideum spores may lack efficient excision repair mechanisms.  相似文献   

16.
Aqueous solutions of cyanide react with hydrogen peroxide/horseradish peroxidase and form the cyanyl radical, which can be trapped by 2-methyl-2-nitrosopropane (t-nitrosobutane, tNB) at pH 9.8. At lower pH a variety of radical adducts are formed; at higher pH, the main product was the spin adduct of the formamide radical with tNB. The use of deuterated tNB and 15N-labeled potassium cyanide allowed the observation of the very small nitrogen coupling of this radical adduct. Experiments using 3,5-dibromo-4-nitrosobenzenesulfonic acid (DBNBS) as the spin trap yielded only the formamide radical adduct, which was identified by an independent synthesis starting from formamide. Both hydrogen splittings of its amino group could be resolved using deuterated DBNBS as the spin trap.  相似文献   

17.
The cyanyl radical was formed during the oxidation of potassium or sodium cyanide by horseradish peroxidase, lactoperoxidase, chloroperoxidase, NADH peroxidase, or methemoglobin in the presence of hydrogen peroxide. The spin adducts of the cyanyl radical with 5,5-dimethyl-1-pyrroline-N-oxide and N-tert-butyl-alpha-phenylnitrone were quite stable at neutral pH. The identity of these spin adducts could be demonstrated using 13C-labeled cyanide and by comparison with the spin adducts of the formamide radical, a hydrolysis product of the cyanyl radical adduct. The enzymatic conversion of cyanide to cyanyl radical by peroxidases should be considered in addition to its well-known role as a metal ligand. Furthermore, since cyanide is used routinely as an inhibitor of peroxidases, some consideration should be given to the biochemical consequences of this formation of the cyanyl radical by the catalytic activity of these enzymes.  相似文献   

18.
Horseradish peroxidase (HRP) (EC 1.11.1.7) catalyzes the oxidation of reduced glutathione. This reaction is accompanied by light emission, which is attributed to the generation of singlet oxygen. The chemiluminescence is directly related to thiyl radical formation, as deduced from the correlation between the time course of HRP-compound II formation and light emission in the presence of different amounts of H2O2. Superoxide dismutase has an inhibitory effect on the chemiluminescence without affecting the HRP-compound II formation. This indicates the direct involvement of superoxide radicals in the production of photoemissive species. Replacement of HRP by hemin is also accompanied by chemiluminescence.  相似文献   

19.
20.
The lactoperoxidase-catalyzed oxidation of glutathione (GSH) and thiocyanate (SCN-) was studied. Oxidation of SCN- was recorded by ultraviolet spectroscopy and by electron spin resonance (ESR). Consumption of GSH was measured by amperometric titration. One or two moles of GSH was oxidized per mole of H2O2 added, depending on the reaction conditions. Omission of SCN- prevented the oxidation of GSH. The oxidation of GSH required only catalytic amounts of SCN-, which was therefore recycled. Iodide (I-) could replace SCN-, while chloride or bromide were ineffective. The apparent Michaelis constant for SCN- was 17 microM. Oxidation of SCN- gave rise to two reactive intermediates, one stable and one unstable. The stable intermediate (-OSC. = N-(?)) decayed by a second-order reaction with a rate constant of 1.1 M-1 s-1. The decay of the unstable radical was very fast. The data (a) explain the short- and long-term antibacterial effects of lactoperoxidase-halide-H2O2 system, (b) point to possible deleterious effects due to glutathione depletion, (c) are of relevance for free radical diseases involving sulphur-centered free radicals, and (d) support previous observations on lipid peroxidation/halogenation in biological membranes, liposomes, and unsaturated fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号