首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interconversion pathways in the ring distortion of β-d-glucopyranose were investigated using density functional calculations. We examined the energies of several conformers of β-d-glucopyranose and tried to obtain the transition-state conformation and determine the pathway between a 4C1 chair and some distorted ring conformers. The results showed that two E3/2H3 conformations and one E3/4H3 conformation were transition states in such ring puckering. The transition state with the lowest energy conformation is the E3/2H3 ring conformation with the side-chain conformation of r-ggG+. Intrinsic reaction coordinate calculations indicated that the E3/2H3 conformation with the lowest conformational energy is a transition state of the ring interconversion path between the conformations of 4C1 and 2SO/B3,O. The energy barrier of this interconversion was 6.13 kcal/mol. As far as we know, this is the first example of finding pathways for an interconversion of glucopyranose ring puckering at the level of a quantum chemical calculation.  相似文献   

2.
Molecular dynamics (MD) simulations of the conformation of the iduronate ring in a methyl glycoside and as the central residue in a trisaccharide have been carried out. Separate simulations were carried out with initial 1C4, 2S0, and 4C1 iduronate ring conformations. Simulations were followed by observing the time development of the Cremer–Pople ring puckering parameters θ,?2. Starting with chair geometries gave trajectories showing only ring oscillations close to the initial geometry. Simulations were performed with a 2S0 starting geometry using explicit water and in vacuum with dielectric constants (ε) of 1 and 80, as well as with distance-dependent dielectric functions of 2r and 4r. In both the explicit water simulation and the vacuum (ε = 80) simulations, extensive pseudorotational motion was observed in which boat and twist-boat ring conformers interconvert. The overall range of ?22 variation in the trisaccharide was about half of that observed in the methyl glycoside. The Haasnoot procedure for calculating H-H coupling constants in saccharides was applied to structures obtained from MD trajectories. Using MD time averaged couplings along with experimental data allowed the relative fractions of chair and boat/twist-boat forms to be derived. © 1993 John Wiley & Sons, Inc.  相似文献   

3.
The preferred conformations of N-acetyl-N′-methyl amides of some dialkylglycines have been determined by empirical conformational-energy calculations; minimum-energy conformations were located by minimizing the energy with respect to all the dihedral angles of the molecules. The conformational space of these compounds is sterically restricted, and low-energy conformations are found only in the regions of fully extended and helical structures. Increasing the bulkiness of the substituents on the Cα, the fully extended conformation becomes gradually more stable than the helical structure preferred in the cases of dimethylglycine. This trend is, however, strongly dependent on the bond angles between the substituents on the Cα atom: In particular, helical structures are favored by standard values (111°) of the N-Cα-C′ angle, while fully extended conformations are favored by smaller values of the same angle, as experimentally observed, for instance, in the case of α,α-di-n-propylglycine.  相似文献   

4.
Pivaloyl-L -Pro-Aib-N-methylamide has been shown to possess one intramolecular hydrogen bond in (CD3)2SO solution, by 1H-nmr methods, suggesting the existence of β-turns, with Pro-Aib as the corner residues. Theoretical conformational analysis suggests that Type II β-turn conformations are about 2 kcal mol?1 more stable than Type III structures. A crystallographic study has established the Type II β-turn in the solid state. The molecule crystallizes in the space group P21 with a = 5.865 Å, b = 11.421 Å, c = 12.966 Å, β = 97.55°, and Z = 2. The structure has been refined to a final R value of 0.061. The Type II β-turn conformation is stabilized by an intramolecular 4 → 1 hydrogen bond between the methylamide NH and the pivaloyl CO group. The conformational angles are ?Pro = ?57.8°, ψPro = 139.3°, ?Aib = 61.4°, and ψAib = 25.1°. The Type II β-turn conformation for Pro-Aib in this peptide is compared with the Type III structures observed for the same segment in larger peptides.  相似文献   

5.
The interpretation of 220- and 300-MHz P.M.R. spectra and the accurate chemical shifts and coupling constants of a number of per-O-trimethylsilyl-(TMS-) D-fructose derivatives and TMS-oligosaccharides containing β-D-fructofuranose residues are presented. On the basis of calculations with an adapted Karplus equation it is concluded that TMS-α- and -β-D-fructopyranose occur in the 2C5(D) chair conformation whereas the D-glucopyranose rings in the oligosaccharides adopt the usual 4C1(D) chair conformation. The structure of the latter units is very similar to that of TMS-α-D-glucopyranose. The 4E(D) envelope and 4T5(D) twist are the principal conformations of the D-fructofuranose rings. The conformation of the furanose ring depends on the number and kind of monosaccharide units attached thereto. The calculated, preferred conformation of the C-5-CH2OTMS group of the D-fructofuranose moieties correlates with the time-averaged displacement of C-4 above the plane of C-2, C-3, and O-5.  相似文献   

6.
The molecular and crystal structures of one derivative and three homopeptides (from the di-to the tetrapeptide level) of the chiral, Cα, α-disubstituted glycine Cα-methyl, Cα-benzylglycine [(αMe)Phe], have been determined by x-ray diffraction. The derivative is mClAc-D -(αMe)Phe-OH, and the peptides are pBrBz-[D -(αMe)Phe]2-NHMe, pBrBz-[D -(αMe)Phe]3-OH hemihydrate, and pBrBz-[D -(αMe)Phe]4-OtBu sesquihydrate. All (αMe)Phe residues prefer ?,ψ torsion angles in the helical region of the conformational map. The dipeptide methylamide and the tripeptide carboxylic acid adopt a β-turn conformation with a 1 ← 4 C?O…?H? N intramolecular H bond. The structure of the tripeptide carboxylic acid is further stabilized by a 1 ← 4 C?O…?H? O intramolecular H bond, forming an “oxy-analogue” of a β-turn. The tetrapeptide ester is folded in a regular (incipient) 310-helix. In general, the relationship between (αMe)Phe chirality and helix screw sense is opposite to that exhibited by protein amino acids. A comparison is made with the conclusions extracted from published work on homopeptides from other Cα-methylated α-amino acids. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
A series of N4X (X = O, S, Se) compounds have been examined with ab initio and density functional theory (DFT) methods. To our knowledge, these compounds, except for the C2v ring and the C3v towerlike isomers of N4O, are first reported here. The ring structures are the most energetically favored for N4X (X = O and S) systems. For N4Se, the cagelike structure is the most energetically favored. Several decomposition and isomerization pathways for the N4X species have been investigated. The dissociation of C2v ring N4O and N4S structures via ring breaking and the barrier height are only 1.1 and −0.2 kcal mol−1 at the CCSD(T)/6-311+G*//MP2/6-311+G* level of theory. The dissociation of the cagelike N4X species is at a cost of 12.1–16.2 kcal mol−1. As for the towerlike and triangle bipyramidal isomers, their decomposition or isomerization barrier heights are all lower than 10.0 kcal mol−1. Although the CS cagelike N4S isomer has a moderate isomerization barrier (18.3–29.1 kcal mol−1), the low dissociation barrier (−1.0 kcal mol−1) indicates that it will disappear when going to the higher CCSD(T) level. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
The crystal and molecular structures of two α-aminoisobutyric acid (Aib)-containing diketopiperazines, cyclo(Aib-Aib) 1 and cyclo(Aib-L -Ile) 2 , are reported. Cyclo(Aib-Aib) crystallizes in the space group P1 with a = 5.649(3), b = 5.865(2), c = 8.363(1), α = 69.89(6), β = 113.04(8), γ = 116.0(3), and Z = 1, while 2 occurs in the space group P212121 with a = 6.177(1), b = 10.791(1), c = 16.676(1), and Z = 4. The structures of 1 and 2 have been refined to final R factors of 0.085 and 0.086, respectively. In both structures the diketopiperazine ring shows small but significant deviation from planarity. A very flat chair conformation is adopted by 1, in which the Cα atoms are displaced by 0.07 Å on each side of the mean plane, passing through the other four atoms of the ring. Cyclo(Aib-Ile) favors a slight boat conformation, with Aib Cα and Ile Cα atoms displaced by 0.11 and 0.05 Å on the same side of the mean plane formed by the other ring atoms. Structural features in these two molecules are compared with other related diketopiperazines.  相似文献   

9.
The present work is devoted to the synthesis, conformational analysis, and stereodynamic study of aza‐β3‐cyclodipeptides. This pseudopeptidic ring shows E/Z hydrazide bond isomerism, eight‐membered ring conformation, and chirotopic nitrogen atoms, all of which are elements that are prone to modulate the ring shape. The (E,E) twist boat conformation observed in the solid state by X‐ray diffraction is also the ground conformation in solution, and emerges as the lowest in energy when using quantum chemical calculations. The relative configuration associated with ring chirality and with the two nitrogen chiral centers is governed by steric crowding and adopts the (P)SNSN/(M)RNRN combination which projects side chains in equatorial position. The nitrogen pyramidal inversion (NPI) at the two chiral centers is correlated with the ring reversal. The process is significantly hindered as was shown by VT‐NMR experiments run in C2D2Cl4, which did not make it possible to determine the barrier to inversion. Finally, these findings make it conceivable to resolve enantiomers of aza‐β3‐cyclodipeptides by modulating the backbone decoration appropriately. Chirality 25:341–349, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
The crystal structures of three fully protected tripeptides containing the Dϕg residue (Cα,α-diphenylglycine) in the central position are reported, namely Z-Gly-Dϕg-Gly-OMe ( a ), Z-Gly-Dϕg-Aib-OMe ( b ) and Z-Aib-Dϕg-Aib-OMe ( c ). The molecular conformations are quite unusual because the Dϕg residue adopts a folded conformation in the 310-helical region when the following residue adopts a folded conformation of opposite handedness (peptides b and c ). In contrast, the Dϕg residue adopts the more frequently observed fully extended conformation when the following residue adopts a semi-extended conformation (peptide a ). These findings are in agreement with the theoretical calculations on Ac-Dϕg-Aib-NHCH3 and Ac-Aib-Dϕg-NHCH3 also reported in this work. © 1998 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
The crystal structure of the title compound, a model for the glycosyl linkage between the asparagine side chain and N-acetyl glucosamine in glycoproteins, has been determined and compared to other model structures. The pyranose ring in the crystal is in the 4C1 chair conformation and the amide functions at C1 and at C2 are both oriented such that the amide protons are nearly trans to their respective sugar-ring protons. Coupling constants determined from the fully assigned proton nmr spectrum in aqueous solution are consistent with the conformation in the crystal.  相似文献   

12.
The solid‐state conformations of two αγ hybrid peptides Boc‐[Aib‐γ4(R)Ile]4‐OMe 1 and Boc‐[Aib‐γ4(R)Ile]5‐OMe 2 are described. Peptides 1 and 2 adopt C12‐helical conformations in crystals. The structure of octapeptide 1 is stabilized by six intramolecular 4 → 1 hydrogen bonds, forming 12 atom C12 motifs. The structure of peptide 2 reveals the formation of eight successive C12 hydrogen‐bonded turns. Average backbone dihedral angles for αγ C12 helices are peptide 1 , Aib; φ (°) = ?57.2 ± 0.8, ψ (°) = ?44.5 ± 4.7; γ4(R)Ile; φ (°) = ?127.3 ± 7.3, θ1 (°) = 58.5 ± 12.1, θ2 (°) = 67.6 ± 10.1, ψ (°) = ?126.2 ± 16.1; peptide 2 , Aib; φ (°) = ?58.8 ± 5.1, ψ (°) = ?40.3 ± 5.5; ψ4(R)Ile; φ (°) = ?123.9 ± 2.7, θ1 (°) = 53.3 θ 4.9, θ 2 (°) = 61.2 ± 1.6, ψ (°) = ?121.8 ± 5.1. The tendency of γ4‐substituted residues to adopt gauche–gauche conformations about the Cα–Cβ and Cβ–Cγ bonds facilitates helical folding. The αγ C12 helix is a backbone expanded analog of α peptide 310 helix. The hydrogen bond parameters for α peptide 310 and α‐helices are compared with those for αγ hybrid C12 helix. Copyright © 2016 European Peptide Society and John Wiley & Sons.  相似文献   

13.
The 1H-nmr studies were extensively carried out to elucidate preferred conformations of dipeptides CH3C*O—X—NHCH3, with X = Abu, nVal, and Val in various solvents. The vicinal 1H—1H coupling constants for the NH—CαH moiety and those around the Cα—Cβ bond in the articulated side chain provided the information regarding the average conformation of these molecules. The results indicate that transformation of skeletal conformations takes place in solution among conformers having similar dihedral angles, θ, in the Karplus expression.  相似文献   

14.
A uniform notation and convention is suggested to describe the torsional angles in nucleic acids and their derivatives. The torsional angle χ, relating the stereochemistry of the base with respect to the sugar, shows more variation for the β-purine glycosides than for the β-pyrimidine glycosides. This variation is attributed to the fact that the β-purine derivatives may form intramolecular O(5′)-H…N(3) hydrogen bonding. The χ values for the α-purine and α-pyrimidine glycosides show preference for the –syn-clinal (or anti) conformation. The mode of puckering of the sugar also influences the χ value. The various possible conformations for the furanose ring are described by the torsional angles τ0 τ1, τ2, τ3, τ4, about the five ring bonds. From an analysis of the torsional angles (ω, ?, ψ, ψ′, ?′, ω′) about the sugar phosphate bonds in the x-ray structures of the known nucleosides, nucleotides, phosphodiesters, nucleic acids, and related compounds, and from a consideration of molecular models, it is found that the possible conformations for the backbone of helical nucleic acids is strikingly limited. Most importantly, the preferred conformation of the nucleotide unit in poly nucleotides and nucleic acids turns out to be the same as that found for the nucleotide in the crystal structure. It is observed that base “stacking” is a consequence of the restricted backbone conformation. The torsional angles are illustrated in the form of conformational “wheels”. Interrelation between the torsion angles about successive pairs of sugar-phosphate bonds are presented in the form of conformational maps: ω,?; ?,ψ; ψ.ψ′; ψ′,?′; ?′,ω′; ω′,ω. The ω′,ω map shows the perferred conformations about the inter-nucleotide bonds of right- and left-handed helices and the possible conformations of phosphodiesters. The preferred conformation of the pyrophosphate and triphosphate is that in which the phosphate oxygens display a staggered arrangement when viewed along the P–P axis. A plausible structure and conformation for the ATPM2? backbound complex is presented. This structure differs from that proposed by SzentGyorgi in that the metal (only transition metals are considered here) is not bound to the NH2 nitrogen of adenine, but rather is simultaneously bound to N(7) of the ring and three phosphates (α, β, γ), or N(7) of the ring and two phosphates (β, γ). The remaining metal coordination may be satisfied by solvent–metal or enzyme–metal bonds.  相似文献   

15.
A molecular mechanics study (grid search and energy minimization) of the highly δ receptor-selective δ opioid antagonist H-Tyr-Tic-Phe-OH (TIP; Tic: tetrahydroisoquinoline-3-car-boxylic acid) resulted in four low energy conformers with energies within 2 kcal/mol of that of the lowest energy structure. These four conformers contain trans peptide bonds only and represent compact structures showing various patterns of aromatic ring stacking. The centrally located Tic residue imposes several conformational constraints on the N-terminal dipeptide segment; however, the results of molecular dynamics simulations indicated that this tripeptide still shows some structural flexibility, particularly at the Phe3 residue. Analogous studies performed with the structurally related μ receptor-selective μ agonist H-Tyr-D -Tic-Phe-NH2 resulted in low energy structures that were also compact but showed patterns of ring stacking different from those obtained with TIP. Superim-position of low energy conformers of TIP and H-Tyr-D -Tic-Phe-NH2 revealed that the Phe3 residues of the L -Tic- and the D -Tic peptide were always located on opposite sides of the plane defined by the Tic residue, thus providing an explanation for the distinct activity profiles of the two compounds in structural terms. Attempts to demonstrate spatial overlap between the pharmacophoric moieties of low energy conformers of TIP and the nonpeptide δ antagonist naltrindole were made by superimposing either the Tyr1 and Tic2 aromatic rings and the N-terminal amino group or the Tyr1 and Phe3 aromatic rings and the N-terminal amino group of the peptide with the corresponding aromatic rings and nitrogen atom in the alkaloid structure. In each case a low energy structure of TIP was found that showed good spatial overlap of all three specified pharmacophoric groups. These two conformers may represent candidate structures for the δ receptor-bound conformation of TIP. © 1994 John Wiley & Sons, Inc.  相似文献   

16.
Cyclic tetradepsipeptides, AM-toxin I and II, are the host-specific phytotoxins of Alternaria mali. In order to elucidate conformation-toxicity relationships, we analyzed the 270-MHz proton nmr spectra of AM-toxins and hydrogenated analogs, (D -Ala2)AM-toxin I (toxic) and (L -Ala2)AM-toxin I (not toxic), in (C2H3)2SO. These cyclic tetradepsipeptides do not contain N-substituted amino acid residues, and all the peptide and ester groups have been found to be transoid. Two conformers with very unequal populations have been found for AM-toxin I and II; the Cβ?Cα? C?O conformations of the Dha2 residues are nonplanar S-trans in the major conformer and nonplanar S-cis in the minor conformer. Only one ring conformation has been found for each of (L -Ala2) and (D -Ala2)AM-toxin I. (L -Ala2)AM-toxin I takes a C4-type ring conformation; all the C?O groups and Cα-H bonds are oriented to the same side of the ring. (D -Ala2)AM-toxin I takes a new ring conformation; the side chain and C?O group of the L -Amp1 residue are oriented to the same side of the ring. This new conformation is also found for the major conformers of AM-toxin I and II and thus appears to be required for the toxicity. The ring conformations of Tyr(OCH3)1-bearing analog tetradepsipeptides have been found to be much the same as those of Amp1-bearing depsipeptides. Furthermore, on the basis of the two distinct conformations of (D -Ala2) and (L -Ala2)AM-toxin I, an empirical rule is proposed for the stable ring conformations of cyclic tetra-D ,L -peptides, not containing N-substituted amino acid residues.  相似文献   

17.
Ammonium 2,6-anhydro-3-deoy- -glycero- -talo-octonate (1), a potent inhibitor of the enzyme CMP-KDO synthetase, its C-2 epimer 2, and the methyl β-(3) and α-glycoside (4) of KDO were studied by 1H- and 13C-n.m.r. spectroscopy. Compound 1 was also analysed by X-ray crystallography. Each compound adopted a 5C2 chair conformation with the side chain equatorial. The preponderant side-chain conformation of 1 in solution was the same as that in the crystal and was stabilised by an intramolecular hydrogen bond from HO-8 to the carboxylate group. This hydrogen bond appeared to be present also in 3. However, the side-chain conformation of 2 and 4 was different from that in 1 and 3. The metal-ion-binding properties, determined on the basis of the line-broadening effects of Mn2+ on the 13C-n.m.r. signals, showed that the carboxylate group was involved in the binding with O-8 in 1 and 3 and with O-6 and O-8 in 2 and 4.  相似文献   

18.
Ab initio RHF/4–31G molecular-orbital calculations have been conducted on methoxymethyl formate and methoxymethyl acetate as models for examining the anomeric effect and stereochemistry of 1-O-acetylglycopyranoses. The results indicate that, as with the methyl glycopyranosides, the α-4C1(D) configurations are more stable than the β-4C1(D), except that the energy difference is more dependent on the disposition about the glycosidic bond. The lowest-energy conformations occur with glycosidic torsion-angles of ?  180°, where the anomeric energy is about 4 kcal/mol. There is a secondary energy-minimum at ?  90°, for which the anomeric energy is less, about 2 kcal/mol. This orientation corresponds to the conformation most commonly observed in the crystal structures of peracetylated glycopyranoses. Small differences in the CO single-bond lengths, which are observed experimentally in both the α and β anomers, are reproduced by the theoretical calculations.  相似文献   

19.
The conformational preference of Cα,α-diphenylglycinc (Døg) and Cα,α-dibenzylglycine (Dbz) residues was assessed in selected derivatives and small peptides by conformational energy computations, ir absorption, 1H-nmr, and x-ray diffraction. Conformational energy computations on the two monopeptides strongly support the view that these Cα,α-symmetrically disubstituted glycines are conformationally restricted and that their minimum energy conformation falls in the fully extended (C5) region. The results of the theoretical analyses appear to be in agreement with the solution and crystal-state structural propensities of three derivatives and seven di-and tripeptides.  相似文献   

20.
The crystal state conformations of three peptides containing the α,α-dialkylated residues. α,α-di-n-propylglycine (Dpg) and α,α-di-n-butylglycine (Dbg), have been established by x-ray diffraction. Boc-Ala-Dpg-Alu-OMe (I) and Boc-Ala-Dbg-Ala-OMe (III) adopt distorted type II β-turn conformations with Ala (1) and Dpg/Dbg (2) as the corner residues. In both peptides the conformational angles at the Dxg residue (I: ? = 66.2°, ψ = 19.3°; III: ? = 66.5°. ψ = 21.1°) deviate appreciably from ideal values for the i + 2 residue in a type II β-turn. In both peptides the observed (N…O) distances between the Boc CO and Ala (3) NH groups are far too long (1: 3.44 Å: III: 3.63 Å) for an intramolecular 4 → 1 hydrogen bond. Boc-Ala-Dpg-Ata-NHMe (II) crystallizes with two independent molecules in the asymmetric unit. Both molecules HA and HB adopt consecutive β-turn (type III-III in HA and type III-I in IIB) or incipient 310-helical structures, stabilized by two intramolecular 4 → 1 hydrogen bonds. In all four molecules the bond angle N-Cα-C′ (τ) at the Dxg residues are ≥ 110°. The observation of conformational angles in the helical region of ?,ψ space at these residues is consistent with theoretical predictions. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号