首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mangrove forests are highly productive and have large carbon sinks while also providing numerous goods and ecosystem services. However, effective management and conservation of the mangrove forests are often dependent on spatially explicit assessments of the resource. Given the remote and highly dispersed nature of mangroves, estimation of biomass and carbon in mangroves through routine field-based inventories represents a challenging task which is impractical for large-scale planning and assessment. Alternative approaches based on geospatial technologies are needed to support this estimation in large areas. However, spatial data processing and analysis approaches used in this estimation of mangrove biomass and carbon have not been adequately investigated. In this study, we present a spatially explicit analytical framework that integrate remotely sensed data and spatial analyses approaches to support the estimation of mangrove biomass and carbon stock and their spatial patterns in West Africa. Forest canopy height derived from SRTM and ICESat/GLAS data was used to estimate mangrove biomass and carbon in nine West African countries. We developed a geospatial software toolkit that implemented the proposed framework. The spatial analysis framework and software toolkit provide solid support for the estimation and relative comparisons of mangrove-related metrics. While the mean canopy height of mangroves in our study area is 10.2 m, the total biomass and carbon were estimated as 272.56 and 136.28 Tg. Nigeria has the highest total mangrove biomass and carbon in the nine countries, but Cameroon is the country with the largest mean biomass and carbon density. The resulting spatially explicit distributions of mangrove biomass and carbon hold great potential in guiding the strategic planning of large-scale field-based assessment of mangrove forests. This study demonstrates the utility of online geospatial data and spatial analysis as a feasible solution for estimating the distribution of mangrove biomass and carbon at larger or smaller scales.  相似文献   

2.
Material and energy balances for continuous-culture processes are described based on the facts that the heat of reaction per electron transferred to oxygen for a wide variety of organic molecules, the number of available electrons per carbon atom in biomass, and the weight fraction carbon in biomass are relatively constant. Energy requirements for growth and maintenance are investigated and related to the biomass energetic yield. The consistency of experimental data is examined using material and energy balances and the regularities identified above. When extracellular products are absent, the consistency of yield models containing separate terms for growth and maintenance may be investigated using organic substrate consumption, biomass production, oxygen consumption (or heat evolution), and carbon dioxide evolution rate data for a series of dilution rates. The consistency of continuous-culture data in the published literature is examined.  相似文献   

3.
We assessed the impact of species composition and stand structure on the spatial variation of forest carbon density using data collected from a 4-ha plot in a subtropical forest in southern China. We found that 1) forest biomass carbon density significantly differed among communities, reflecting a significant effect of community structure and species composition on carbon accumulation; 2) soil organic carbon density increased whereas stand biomass carbon density decreased across communities, indicating that different mechanisms might account for the accumulation of stand biomass carbon and soil organic carbon in the subtropical forest; and 3) a small number of tree individuals of the medium- and large-diameter class contributed predominantly to biomass carbon accumulation in the community, whereas a large number of seedlings and saplings were responsible for a small proportion of the total forest carbon stock. These findings demonstrate that both biomass carbon and soil carbon density in the subtropical forest are sensitive to species composition and community structure, and that heterogeneity in species composition and stand structure should be taken into account to ensure accurate forest carbon accounting.  相似文献   

4.
遥感在森林地上生物量估算中的应用   总被引:5,自引:1,他引:4  
生物量是地表C循环研究的重要组成部分,生物量研究有助于深入认识区域乃至全球的C平衡。森林作为地球最重要的陆地生态系统,区域乃至全球尺度的森林地上生物量估算一直是生态学研究的难点之一。在大的空间尺度上,遥感技术是估算森林地上生物量的有效手段。TM、AVHRR、SAR等数据以及多源数据的融合在森林生物量估算方面广泛应用,并取得了显著效果。运用遥感技术进行森林生物量估算时,所采用的数据源不同,分析方法也不相同,主要分析方法有:相关分析、多元回归分析、神经网络和数学模型模拟等。随着测定不同空间、时间和波谱分辨率的各种传感器的广泛使用,以及生物量遥感估算模型的进一步发展和完善,大尺度森林生物量的遥感估算研究必将向前迈进一大步。  相似文献   

5.
A complete carbon and redox balance for Saccharomyces cerevisiae grown in batch culture with ethanol as the limiting carbon and energy source is reported. A novel method, which allowed the determination of carbon dioxide contained in the culture medium and biomass, is described and revealed amounts considerably in excess of what was expected from equilibrium data. Furthermore, elemental composition of the biomass was used to calculate the amount of oxygen required for biosynthetic reactions. When these corrections are applied to experimentally measured gas metabolism data, apparently anomalous results are shown to be consistent with the overall metabolism of bakers' yeast. These findings have wide implications to the quantitative study of the metabolism and energetics of facultative aerobes.  相似文献   

6.
7.
Although forest biomass energy was long assumed to be carbon neutral, many studies show delays between forest biomass carbon emissions and sequestration, with biomass carbon causing climate change damage in the interim. While some models suggest that these primary biomass carbon effects may be mitigated by induced market effects, for example, from landowner decisions to increase afforestation due to higher biomass prices, the delayed carbon sequestration of biomass energy systems still creates considerable scientific debate (i.e., how to assess effects) and policy debate (i.e., how to act given these effects). Forests can be carbon sinks, but their carbon absorption capacity is finite. Filling the sink with fossil fuel carbon thus has a cost, and conversely, harvesting a forest for biomass energy – which depletes the carbon sink – creates potential benefits from carbon sequestration. These values of forest carbon sinks have not generally been considered. Using data from the 2010 Manomet Center for Conservation Sciences ‘Biomass sustainability and carbon policy study’ and a model of forest biomass carbon system dynamics, we investigate how discounting future carbon flows affects the comparison of biomass energy to fossil fuels in Massachusetts, USA. Drawing from established financial valuation metrics, we calculate internal rates of return (IRR) as explicit estimates of the temporal values of forest biomass carbon emissions. Comparing these IRR to typical private discount rates, we find forest biomass energy to be preferred to fossil fuel energy in some applications. We discuss possible rationales for zero and near‐zero social discount rates with respect to carbon emissions, showing that social discount rates depend in part on expectations about how climate change affects future economic growth. With near‐zero discount rates, forest biomass energy is preferred to fossil fuels in all applications studied. Higher IRR biomass energy uses (e.g., thermal applications) are preferred to lower IRR uses (e.g., electricity generation without heat recovery).  相似文献   

8.
Aboveground Forest Biomass and the Global Carbon Balance   总被引:24,自引:1,他引:24  
The long‐term net flux of carbon between terrestrial ecosystems and the atmosphere has been dominated by two factors: changes in the area of forests and per hectare changes in forest biomass resulting from management and regrowth. While these factors are reasonably well documented in countries of the northern mid‐latitudes as a result of systematic forest inventories, they are uncertain in the tropics. Recent estimates of carbon emissions from tropical deforestation have focused on the uncertainty in rates of deforestation. By using the same data for biomass, however, these studies have underestimated the total uncertainty of tropical emissions and may have biased the estimates. In particular, regional and country‐specific estimates of forest biomass reported by three successive assessments of tropical forest resources by the FAO indicate systematic changes in biomass that have not been taken into account in recent estimates of tropical carbon emissions. The ‘changes’ more likely represent improved information than real on‐the‐ground changes in carbon storage. In either case, however, the data have a significant effect on current estimates of carbon emissions from the tropics and, hence, on understanding the global carbon balance.  相似文献   

9.
A mechanistic understanding of microbial assimilation of soil organic carbon is important to improve Earth system models’ ability to simulate carbon‐climate feedbacks. A simple modelling framework was developed to investigate how substrate quality and environmental controls over microbial activity regulate microbial assimilation of soil organic carbon and on the size of the microbial biomass. Substrate quality has a positive effect on microbial assimilation of soil organic carbon: higher substrate quality leads to higher ratio of microbial carbon to soil organic carbon. Microbial biomass carbon peaks and then declines as cumulative activity increases. The simulated ratios of soil microbial biomass to soil organic carbon are reasonably consistent with a recently compiled global data set at the biome level. The modelling framework developed in this study offers a simple approach to incorporate microbial contributions to the carbon cycling into Earth system models to simulate carbon‐climate feedbacks and explain global patterns of microbial biomass.  相似文献   

10.
内蒙古森林以其面积大、活立木总蓄积高成为全国森林的重要组成部分.本文以文献为基础,分析了近年来内蒙古森林及其组成部分的碳储量、碳密度、固碳速率和潜力.大部分研究以第六次森林清查数据为基础,利用材积与生物量之间的线性关系,得出内蒙古森林碳储量约为920 Tg C,占同期国家森林资源总碳储量的12%,年均增长率约为1.5%,平均碳密度约为43 t·hm-2.森林碳储量和碳密度呈逐年增加趋势,其中,针阔叶混交林、樟子松林和白桦林固碳能力最高.间伐和皆伐等人类活动使森林碳储量明显降低.已有的碳汇特征研究很少涉及土壤部分,仅有少数研究指出土壤碳密度随林龄的增加而增加.关于森林生态系统固碳潜力的研究不够深入.建议今后在计算内蒙古森林生态系统碳储量时,加入土壤碳储量部分;利用异速生长方程计算碳储量时,将树种器官碳含量设为45%;建立更多优势树种的、包含根系生物量的异速生长方程;加强气候变化与生态系统固碳速率和潜力关系的研究.  相似文献   

11.
Accurate estimation of forest biomass size and regional distribution is a prerequisite in answering a long-standing debate on the role of forest vegetation in the regional and global carbon cycle. Appropriate biomass estimation methods and available forest data sources are two key factors for this purpose. Among the estimation methods, the continuous Biomass Expansion Factor (BEF; defined as the ratio of all stand biomass to stem volume or biomass) method is considered to be the best. We applied the continuous BEF to forest inventory data of China and estimated a biomass carbon of 4.6 PgC and a biomass carbon density of 38.4 Mg ha–1. A review of recent literature shows that forest carbon density in major temperate and boreal forest regions in the Northern Hemisphere has a narrow variance ranging from 29 Mg ha–1 to 50 Mg ha–1, with a global mean of 36.9 Mg ha–1. This suggests that the forest biomass density in China is closely coincident with the global mean.  相似文献   

12.
评价竹林的固碳潜力,需要对竹林生物量和净初级生产力(NPP)进行准确的估算。然而,在东亚和印度以外的地区对减缓气候变化很重要的相关数据收集的很少。关于NPP及其组分季节模式的信息将有助于量化影响竹林碳平衡的因素。在本研究中,我们使用了超过12个月的每月数据,对老挝北部5个主要竹林植物的地上生物量(AGB)和地上NPP进行了量化。对四种合轴分枝的竹品种Bambusa tulda, Cephalostachyum virgatum, Dendrocalamus membranaceus和Gigantochloa sp.,每个物种随机选取30个群丛;对单轴分枝的Indosasa sinica,我们建立了10个2 m × 2 m的样方,对群丛和样方内的所有植株进行编号并测量胸径。我们为每个物种设置了10或20个凋落物收集器来收集凋落物。在12个月的时间里,每月对死亡和新生的群丛进行一次调查。I. sinica的地上生物量(AGB)最大(59.87 Mg ha-1),而C. virgatum的AGB最小(11.54 Mg ha-1),并且大多都低于全球竹子AGB的范围(32-256 Mg ha-1)。研究区多个竹种的同域分布可能抑制了本文所研究的五种竹种中的四种的AGB。地上的NPP估计值在3.43到14.25 Mg ha-1 yr-1之间;这个值在D. membranaceus (8.20 Mg ha-1 yr-1)和I. sinica (14.25 Mg ha-1 yr-1)中,分别与温带常绿森林(8.78 Mg ha-1 yr-1)和热带湿润森林(10.56 Mg ha-1 yr-1)的全球平均估计值相当。较高的群丛新生率(15.20-23.39% yr-1)是地上NPP估计值的主要贡献因素。新竹丛的物候特征对地上NPP的季节模式影响很大。在四种合轴分枝的竹子中,随着持续降雨的开始,新的竹丛开始出现,主要在7月和8月。然而,在单轴分枝的I. sinica中,新竹丛随着温度的上升开始萌芽,主要在3月和4月。因此,我们的结果表明,竹子在老挝北部具有相当大的固碳潜力,但这种潜力可能受到气候变化的影响。  相似文献   

13.
The amount of carbon released to the atmosphere as a result of deforestation is determined, in part, by the amount of carbon held in the biomass of the forests converted to other uses. Uncertainty in forest biomass is responsible for much of the uncertainty in current estimates of the flux of carbon from land‐use change. In the present contribution several estimates of forest biomass are compared for the Brazilian Amazon, based on spatial interpolations of direct measurements, relationships to climatic variables, and remote sensing data. Three questions were posed: First, do the methods yield similar estimates? Second, do they yield similar spatial patterns of distribution of biomass? And, third, what factors need most attention if we are to predict more accurately the distribution of forest biomass over large areas? The answer to the first two questions is that estimates of biomass for Brazil's Amazonian forests (including dead and belowground biomass) vary by more than a factor of two, from a low of 39 PgC to a high of 93 PgC. Furthermore, the estimates disagree as to the regions of high and low biomass. The lack of agreement among estimates confirms the need for reliable determination of aboveground biomass over large areas. Potential methods include direct measurement of biomass through forest inventories with improved allometric regression equations, dynamic modelling of forest recovery following observed stand‐replacing disturbances, and estimation of aboveground biomass from airborne or satellite‐based instruments sensitive to the vertical structure plant canopies.  相似文献   

14.
 Science杂志于2001年发表了方精云等人关于中国森林植被碳库及其变化的论文(Fang et al., 2001, 291: 2320~2322)。该文利用大量的生物量实测数据,结合使用中国50年来的森林资源清查资料及相关的统计资料,基于生物量换算因子连续函数法,研究了中国森林植被碳库及其时空变化。这是一个大时空尺度的工作,涉及一些大尺度生态学研究的原理、方法以及尺度转换问题。由于篇幅所限,论文并未详细说明这些问题。为了帮助理解大尺度生态学研究的方法和思路,本文给出了论文中涉及生物量计算的理论基础,对  相似文献   

15.
Biofumigation potential of brassicas   总被引:22,自引:0,他引:22  
Kirkegaard  J.A.  Sarwar  M. 《Plant and Soil》1998,200(1):71-89
The relationship of global climate change to plant growth and the role of forests as sites of carbon sequestration have encouraged the refinement of the estimates of root biomass and production. However, tremendous controversy exists in the literature as to which is the best method to determine fine root biomass and production. This lack of consensus makes it difficult for researchers to determine which methods are most appropriate for their system. The sequential root coring method was the most commonly used method to collect root biomass data in the past and is still commonly used. But within the last decade the use of minirhizotrons has become a favorite method of many researchers. In addition, due to the high labor-intensive requirements of many of the direct approaches to determine root biomass, there has been a shift to develop indirect methods that would allow fine root biomass and production to be predicted using data on easily monitored variables that are highly correlated to root dynamics. Discussions occur as to which method should be used but without gathering data from the same site using different methods, these discussions can be futile. This paper discusses and compares the results of the most commonly used direct and indirect methods of determining root biomass and production: sequential root coring, ingrowth cores, minirhizotrons, carbon fluxes approach, nitrogen budget approach and correlations with abiotic resources. No consistent relationships were apparent when comparing several sites where at least one of the indirect and direct methods were used on the same site. Until the different root methods can be compared to some independently derived root biomass value obtained from total carbon budgets for systems, one root method cannot be stated to be the best and the method of choice will be determined from researcher's personal preference, experiences, equipment, and/or finances.  相似文献   

16.
2004-2013年山东省森林碳储量及其碳汇经济价值   总被引:3,自引:0,他引:3  
森林作为陆地生态系统的主体,其林分碳储量及其碳汇经济价值的估算是全球碳循环研究的热点和重要内容。基于2004-2008年和2009-2013年山东省森林资源清查数据以及实测样地数据改进的生物量蓄积量转换参数,利用生物量转换因子连续函数法,估算2004-2013年山东省森林碳储量及其碳汇经济价值动态。研究结果表明,2004-2013年山东省森林面积、碳储量和碳密度分别从2004-2008年的156.12×104hm2、34.75Tg C和22.26Mg C/hm2增加到2009-2013年161.44×104hm2、43.98Tg C和27.24Mg C/hm2。人工林是森林面积、碳储量和碳密度增加的主要贡献者,人工林和天然林对森林生物量碳汇的贡献分别为97.3%和2.7%。两次森林清查期间,杨树和硬阔软阔类森林的碳储量之和分别占全省总量的70.2%和69.6%,杨树的碳储量和碳密度增加最为显著。各龄组森林碳储量由大到小依次为:幼龄林 > 中龄林 > 成熟林 > 近熟林 > 过熟林。森林碳汇经济价值从2004-2008年的243.37亿元增长到2009-2013年的253.42亿元,年均增长2.01亿元,杨树的碳汇经济价值占全省所有森林类型的60%,赤松单位面积碳汇经济价值最强为2.08万元/ha。  相似文献   

17.
Sweet orange has great socioeconomic value in India and other parts of the world for their important role in human diet and other properties like sweet flavour, sweet aroma, source of vitamin C etc. Despite its numerous commercial values, and large acreages under cultivation little has been studied on the role of sweet orange orchards in carbon management and environmental sustainability. Therefore, the present study was conducted to (1) develop appropriate models for estimation of sweet orange tree biomass, and (2) assess biomass and ecosystem carbon stock for sweet orange orchards in North East India. Allometric models for biomass estimation were developed using data from 58 harvested orange trees. The height-diameter relationships and allometric scaling between above-ground biomass (AGB), culm height (H) and diameter at breast height (D) were examined using various models. Total biomass carbon and soil organic carbon stock of the sweet orange orchard were estimated at 7.69 and 100.2 Mg C ha?1 respectively. Our finding on biomass carbon stock of the sweet orange orchard was comparable with other fruit orchards across the world. However, the age of the orchard and management systems are two major determinants for carbon sink potential of such systems. We recommend upscaling of sweet orange based agroforestry for restoration of degraded shifting cultivated lands in North East India for environmental sustainability and socioeconomic upliftment of the farmers.  相似文献   

18.
东北林区不同尺度森林的含碳率   总被引:6,自引:0,他引:6  
准确估算森林生态系统碳储量对整个陆地生态系统碳循环及全球变化研究具有至关重要的作用.本研究利用2007、2008年东北林区(大兴安岭林区、小兴安岭林区、张广才岭和长白山林区)标准地调查数据及同一时期的一类样地清查数据,采用地面乔、灌、草生物量模型及实验室Multi N/C 3000分析仪测定的林木含碳率,计算不同尺度上森林生物量及碳储量,分析不同尺度森林含碳率的变化及稳定性.结果表明: 东北林区林木不同器官的含碳率差异明显,其平均含碳率为树叶(0.4448)>树枝(0.4422)>树皮(0.4398)>树干(0.4351).张广才岭和长白山林区针叶林的含碳率高于阔叶林,而大、小兴安岭林区阔叶林的含碳率高于针叶林.研究区域森林的含碳率相对稳定,东北林区森林总含碳率为0.44.  相似文献   

19.
黄麟  邵全琴  刘纪远 《生态学杂志》2010,21(9):2241-2248
1950—2008年间江西省年均发生森林火灾762次、年均过火面积1.578×10.4 hm2.本文利用江西省森林火灾统计数据,结合气象、森林分布和历次森林清查数据,分析了该省林火的特征,估算历年的林火碳释放量和碳转移量.结果表明: 1950—2008年江西省森林火灾导致的森林生物量总损失约61.155 Tg,活生物量碳库损失约30.993 Tg C,占全省植被碳库的15.92%.20世纪70年代以前林火生物量碳损失率约占1950—2008年生物量总碳损失的74.3%;90年代以后,年均林火生物量碳损失小于0.097 Tg C.森林火灾释放的CO2、CH4和CO气体分别为5.408 Tg、0.047 Tg和0.486 Tg,有22.436 Tg C活生物量碳进入土壤碳库.2008年初雨雪冰冻灾害引发的高频率次生林火灾害导致森林活生物量碳损失(0.463 Tg C)是前5年平均值(0.181 Tg C)的2.56倍.  相似文献   

20.
Tropical forests are carbon-dense and highly productive ecosystems. Consequently, they play an important role in the global carbon cycle. In the present study we used an individual-based forest model (FORMIND) to analyze the carbon balances of a tropical forest. The main processes of this model are tree growth, mortality, regeneration, and competition. Model parameters were calibrated using forest inventory data from a tropical forest at Mt. Kilimanjaro. The simulation results showed that the model successfully reproduces important characteristics of tropical forests (aboveground biomass, stem size distribution and leaf area index). The estimated aboveground biomass (385 t/ha) is comparable to biomass values in the Amazon and other tropical forests in Africa. The simulated forest reveals a gross primary production of 24 tcha-1yr-1. Modeling above- and belowground carbon stocks, we analyzed the carbon balance of the investigated tropical forest. The simulated carbon balance of this old-growth forest is zero on average. This study provides an example of how forest models can be used in combination with forest inventory data to investigate forest structure and local carbon balances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号