首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The heart-body of the marine worm Amphitrite, located within the supraesophageal dorsal vessel, is in the form of a cylinder the thin wall of which is deeply corrugated by luminal projections and folds along its entire length. It is anchored in places to the luminal surface of the dorsal vessel by an extracellular matrix containing collagen fibers. The luminal surfaces of both the heart-body and the dorsal vessel are covered by a basement membrane-like vascular lamina which in turn supports a discontinuous pseudoendothelium of littoral hemocytes. The cells of the heart-body constitute a pseudostratified, high columnar epithelium. They possess extensive rough endoplasmic reticulum (RER), a well developed Golgi zone, ferritin particles and granules, and several types of membrane-bound inclusions. Hemoglobin molecules identical to those in the circulation lie within cytoplasmic, membrane-bound vesicles. Analysis of our electron micrographs suggests the following sequence of hemoglobin production and secretion: Large quantities of a moderately dense flocculent material, probably globin, are synthesized in RER and move to the Golgi zone within partly rough- and partly smooth-surfaced transitional cisternae; small transport vesicles, formed from Golgi cisternae that have fused with transitional cisternae, convey the flocculent material from the convex to the concave face of the Golgi complex; a similar flocculent material and an amorphous, highly dense material are processed in the Golgi complex and are transferred to condensing vacuoles in which clearly identifiable hemoglobin molecules are first observed. Mature secretory vesicles containing only hemoglobin migrate to the cell periphery and discharge their contents by exocytosis. Hemoglobin molecules then cross the vascular lamina to reach the circulation.  相似文献   

2.
We describe three distinct types of cells among Biomphalaria glabrata hemocytes: large cells with a tubulo-vesicular compartment, a component of the endocytic system, and with numerous mitochondria and large aggregates of glycogen particles; medium-size cells poor in organelles and glycogen; and small cells with organelles and few secretory granules. Other small hemocytes can be interpreted as juvenile cells. B. glabrata hemocytes contain few enzymes and do not show specific secretory granules, except for a subpopulation of large cells richer in acid phosphatase vesicles. Hemocytes have different aspects corresponding to different physiological states and their transitions: in quiescent hemocytes, the cell cortex is narrow and organelles are scattered in the cytoplasm, both in circulating cells characterized by thin-folded filopods and large macropinocytic vacuoles and in sedentary cells in which extended filopods connect to the extracellular matrix. In stress-activated hemocytes, the cortical region is thickened by polymerization of actin, and organelles are gathered around the nucleus. Fixed phagocytes are components of the connective tissue; the presence of numerous lysosomes and residual bodies and of acid phosphatase and peroxidase activities suggests a high phagocytic activity.  相似文献   

3.
Hemocytes constitute the key element of innate immunity in bivalves, being responsible for secretion of antimicrobial peptides and release of zymogens from the prophenoloxidase system within the hemolymph compartment, reactive oxygen species production and phagocytosis. Hemocytes are found (and collected) as cells in suspension in circulating hemolymph. Hemocytes are adherent cells as well, infiltrating tissues and migrating to infected areas. In the present study, we applied an approach based on fluorescent staining and nuclei-tracking to determine migration velocity of hemocytes from the blue mussel, Mytilus edulis, in culture. Freshly collected hemocytes attached to substrate and start to move spontaneously in few minutes. Two main hemocyte morphologies can be observed: small star-shaped cells which were less motile and spread granular cells with faster migrations. Cell-tracking was combined to MTT mitochondria metabolic rate measurements in order to monitor global cell population activity over 4 days of culture. A transient peak of cell activity was recorded after 24–48 h of culture, corresponding to a speed up of cell migration. Videomicroscopy and cell tracking techniques provide new tools to characterize activity of mussel immunocytes in culture. Our analysis of hemocyte migration reveals that motility is very sensitive to cell environmental factors.  相似文献   

4.
Hemocytes (blood cells) are motile cells that move throughout the extracellular space and that exist in all clades of the animal kingdom. Hemocytes play an important role in shaping the extracellular environment and in the immune response. Developmentally, hemocytes are closely related to the epithelial cells lining the vascular system (endothelia) and the body cavity (mesothelia). In vertebrates and insects, common progenitors, called hemangioblasts, give rise to the endothelia and blood cells. In the adult animal, many differentiated hemocytes seem to retain the ability to proliferate; however, in most cases investigated closely, the bulk of hemocyte proliferation takes place in specialized hematopoietic organs. Hematopoietic organs provide an environment where undifferentiated blood stem cells are able to self-renew, and at the same time generate offspring that differentiate into different blood cell types. Hematopoiesis in vertebrates, taking place in the bone marrow, has been subject to intensive research by immunologists and stem cell biologists. Much less is known about blood cell formation in invertebrate animals. In this review, we will survey structural and functional properties of invertebrate hematopoietic organs, with a main focus on insects and other arthropod taxa. We will then discuss similarities, at the molecular and structural level, that are apparent when comparing the development of blood cells in hematopoietic organs of vertebrates and arthropods. Our comparative review is intended to elucidate aspects of the biology of blood stem cells that are more easily missed when focusing on one or a few model species.  相似文献   

5.
The architecture and fine structure of the epigastric hematopoietic nodules of the ridgeback prawn, Sicyonia ingentis, are described. The nodules consist of a highly branched series of tubules that contain the maturing hemocytes within a connective tissue stroma. Hemocytes can exit the hematopoietic nodules by penetrating through fenestrations in the endothelial cell layer into the central hemal space or by migrating through the outer later of capsular cells and associated collagen fibrils. Four hemocyte categories were observed: agranular, small granule with cytoplasmic deposits, small granule without cytoplasmic deposits, and large granule hemocytes. This classification was based upon the presence, size, and type of cytoplasmic granules and the presence of cytoplasmic deposits. Only agranular cells and small granule hemocytes without cytoplasmic deposits appeared capable of division. Intermediate stages were observed between agranular hemocytes and small granule hemocytes with deposits and between small granule hemocytes without deposits and large granule hemocytes, suggesting existence of two distinct hemocyte lines.  相似文献   

6.
Hemocytes are circulating blood cells that play a crucial function in amphipods and other crustacean immune systems. The hemocytes of the marine tropical amphipod Parhyale hawaiensis have been used for the evaluation of DNA damage and micronuclei, but they have not been characterized in the scientific literature. The aim of this study was to describe the hemolymph cells of P. hawaiensis and study their phagocytotic activity. Basic dyes were used to differentiate the cell types and the presence of lipids. The total hemocyte counts (THCs) and the proportion and sizes of the hemocyte types were determined. Hemolymph was exposed to Escherichia coli for verification of the presence of phagocytosis. Three cell types, all containing lipids, were identified in P. hawaiensis: granulocytes (oval shape, 13.4 × 7.6 μm), semi-granulocytes (oval shape, 14.1 × 7.2 μm), and hyalinocytes (round shape, 9.6 × 7.2 μm). Those three cell types were found in different percentages in males (64.8%, 31.1%, and 4.2%) and females (70.1%, 28.2%, and 1.7%). THCs for males were 9007 ± 3800 cells per individual and 4695 ± 1892 cells per individual for females. The cells of E. coli were phagocytized by the hemocytes. Our findings increased the knowledge of hemocytes in P. hawaiensis and is a step forward in using hemocyte-based immune responses as an endpoint in ecotoxicology.  相似文献   

7.
Hemocytes of the soft shell clam, Mya arenaria, based on appearance after Romanowsky-type staining, can be shown to be either granulocytes or agranulocytes comprising 76.5 and 23.5% of the total cell population, respectively. Cytoplasmic granules are basophilic, eosinophilic, or refractile. Cytochemical studies indicate that these cells are markedly heterogeneous with respect to certain hydrolytic lysosomal enzymes and in cytoplasmic glycogen and lipofuscin. The overall activities of these enzymes in clam hemocytes, as estimated by the number of reactive sites, were unrelated to one another. Using consecutive double-staining techniques, individual cells were also found to vary in their enzyme content. These findings emphasize the biochemical individuality of circulating hemocytes and the variations noted probably reflect differences in number and composition of lysosomes.  相似文献   

8.
Lithobius forficatus (Myriapoda, Chilopoda, Lithobiidae) is a widespread species of centipede that is common across Europe. Its midgut epithelial cells are an important line of defense against toxic substances that originate in food, such as pathogens and metals. Despite this important role, the biology of the midgut epithelium is not well known. Here we describe the ultrastructure of the midgut epithelium, as well as the replacement of degenerated midgut epithelial cells. The midgut epithelium of L. forficatus is composed of digestive, secretory, and regenerative cells. The cytoplasm of digestive cells shows regionalization in organelle distribution, which is consistent with the role of these cells in secretion of enzymes, absorption of nutrients, and accumulation of lipids and glycogen. Secretory cells, which do not reach the luminal surface of the midgut epithelium, possess numerous electron‐dense and electron‐lucent granules and may have an endocrine function. Hemidesmosomes anchor secretory cells to the basal lamina. Regenerative cells play the role of midgut stem cells, as they are able to proliferate and differentiate. Their proliferation occurs in a continuous manner, and their progeny differentiate only into digestive cells. The regeneration of secretory cells was not observed. Mitotic divisions of regenerative cells were confirmed using immunolabeling against BrdU and phosphohistone H3. Hemocytes associate with the midgut epithelium, accumulating between the visceral muscles and beneath the basal lamina of the midgut epithelium. Hemocytes also occur among the digestive cells of the midgut epithelium in animals infected with Rickettsia‐like microorganisms. These hemocytes presumably have an immunoprotective function in the midgut.  相似文献   

9.
Early cellular and vascular changes in response to invasion of lamina propria byEntamoeba histolytica were studied sequentially, at the ultrastructural level, in germfree guinea pigs inoculated intracecally with amebae and enteric flora derived from patients with acute amebic colitis. Approximately one week post-inoculation the animals developed acute colitis with mucosal invasion by trophic amebae. Although epithelial cells at the sites of amebic invasion showed progressive cytoplasmic changes and desquamation resulting in microerosions, most mesenchymal elements in the lamina propria appeared normal without cytopathic changes even when in direct contact with invading amebae. Only the polymorpho-nuclear leukocytes (PMN) apposed or topographically close to amebae exhibited degenerative changes which were characterized by condensation of nucleoplasm and cytoplasm, extracellular release of cytoplasmic components including granules, and, finally, lysis of cell membranes. Capillaries and venules in the lamina propria showed a variety of changes such as swelling and gap formation at the intercellular endothelial junctions and more rarely at the fenestrae. Blood vessels physically close to amebae showed formation of endothelial cytoplasmic blebs which pinched off into the vascular or extravascular space. Platelet and fibrin thromboses were common in the more severely damaged capillaries and venules. Fragments or clumps of fibrin-like material were found also in the extracellular spaces. Amebic invasion of the lamina propria, then, is accompanied by continued epithelial shedding, PMN degeneration, and changes in both capillaries and venules consisting of endothelial damage and occlusive thrombosis. The vascular changes appeared to be closely related to PMN degeneration resulting from interaction of PMN with invading amebae.  相似文献   

10.
Electron microscopical studies indicate that midgut alterations observed in larval Amphimallon majalis during Bacillus popilliae invasion were due to infection of epithelium, wound repair, and hemocytic encapsulation. Hemocytes bearing angular cytoplasmic granules formed the capsule which adhered to the basal lamina subjacent to the mesenteronic lesion. Exocytosis of hemocyte granules into bacilli-containing endocytic invaginations of plasma membranes and vacuoles was observed. These hemocytes as well as mesenteronic cells exhibited bactericidal capabilities.  相似文献   

11.
Blood vessels in Nereis japonica were studied by electron microscopy. It was found that blood vessels regardless of location were similar in the basic organization of the basal lamina and the usual presence of collagen fibrils on the vessel wall. Differences arise, depending on whether the outside of the basal lamina is covered by peritoneal cells, by gut epithelium, or by epidermis. These relate to the location of the vessels in mesenteries, gut or epidermis, but do not reflect basic structural differences in the vessels themselves. Furthermore, it was concluded that true endothelial cells do not exist in the circulatory system of Nereis japonica and that, in this respect, the system is essentially different from that of vertebrates, in which endothelial cells line the vessels of a closed circulatory system. These considerations lead to the further conclusion that the vascular lumen in Nereis is essentially interstitial space and that the system, which has been known as a typical “closed” circulatory system in annelids, is actually an open circulatory system. Peritoneal cells covering the walls of internal vessels show various degrees of muscular differentiation and those possessing myofilaments may be called “myomesothelial cells.”  相似文献   

12.
In order to clarify the morphology of the circulatory system of amphioxus the blood vessels were investigated using modern techniques of light and electron microscopy. The pattern of circulation in amphioxus is forward ventrally and backwards dorsally. In addition, circulating corpuscles, usually associated with the blood of higher chordates, are absent. The circulatory system of amphioxus consists of well defined contractile vessels and vascular spaces or sinuses within a connective tissue matrix. The contractile vessels have a discontinuous endothelial lining resting on a basal lamina and are enclosed by a simple layer of contractile myoepithelial cells. Discontinuous endothelial linings occur throughout the vascular tree, including major and minor afferent and efferent vessels and blood sinuses. This is in contrast to higher animals where the endothelium forms a more or less continuous lining along the inner surface of the boundary layer. It is suggested that the endothelial cells of amphioxus, like the endothelial cells in capillaries of higher chordates, most likely play a role in the physiology of the circulatory system by removing residues of filtration from the basal lamina, thereby facilitating an exchange of materials to and from the surrounding tissues.  相似文献   

13.
Nardi JB  Miklasz SD 《Tissue & cell》1989,21(4):559-567
Monoclonal antibodies (MAbs) raised against wing tissues of Manduca sexta recognize epitopes shared by both hemocytes and basal laminae. During the last larval stadium, the basal lamina of moth wing epithelium forms after hemocytes have migrated into the space adjacent to basal surfaces of epithelial cells. As adult development commences, hemocytes participate in phagocytosis of the same basal lamina; and as dissolution of the basal lamina proceeds (day 2-day 5 post-pupation), wing epithelial cells send forth long basal processes and rearrange within the plane of the epithelium. During this period of cell rearrangement, the immunoreactivity of the basal lamina decreases in concert with an increase in immunoreactive vesicles within hemocytes; and at the ultrastructural level, hemocytes have been observed to engulf fragments of basal lamina. The distribution of immunolabel in the developing moth wing suggests that hemocytes contribute not only to the formation of the wing's basal lamina but also to its breakdown. Since basal laminae are probably important determinants of epithelial form and pattern, hemocytes also contribute to the shaping of epithelial populations.  相似文献   

14.
The harmful dinoflagellate Prorocentrum minimum has different effects upon various species of grazing bivalves, and these effects also vary with life-history stage. Possible effects of this dinoflagellate upon mussels have not been reported; therefore, experiments exposing adult blue mussels, Mytilus edulis, to P. minimum were conducted. Mussels were exposed to cultures of toxic P. minimum or benign Rhodomonas sp. in glass aquaria. After a short period of acclimation, samples were collected on day 0 (before the exposure) and after 3, 6, and 9 days of continuous-exposure experiment. Hemolymph was extracted for flow-cytometric analyses of hemocyte, immune-response functions, and soft tissues were excised for histopathology. Mussels responded to P. minimum exposure with diapedesis of hemocytes into the intestine, presumably to isolate P. minimum cells within the gut, thereby minimizing damage to other tissues. This immune response appeared to have been sustained throughout the 9-day exposure period, as circulating hemocytes retained hematological and functional properties. Bacteria proliferated in the intestines of the P. minimum-exposed mussels. Hemocytes within the intestine appeared to be either overwhelmed by the large number of bacteria or fully occupied in the encapsulating response to P. minimum cells; when hemocytes reached the intestine lumina, they underwent apoptosis and bacterial degradation. This experiment demonstrated that M. edulis is affected by ingestion of toxic P. minimum; however, the specific responses observed in the blue mussel differed from those reported for other bivalve species. This finding highlights the need to study effects of HABs on different bivalve species, rather than inferring that results from one species reflect the exposure responses of all bivalves.  相似文献   

15.
Disseminated neoplasia (DN) is a disorder referred to as hemic neoplasia (HN) in the soft-shell clam Mya arenaria. Traditionally, diagnosis is performed by hematocytology or histology. The intensity of the disease is generally given as the percentage of transformed neoplastic cells out of total number of hemocytes. Flow cytometry techniques have found a field of application in diagnosis of HN with analysis of ploidy. Hemocytes of the soft-shell clams with HN display tetraploid DNA content, as shown by propidium iodide staining. This feature makes difficult HN diagnosis in the soft-shell clam, especially for early stages of the condition, since the percentage of normal circulating cells undergoing mitosis, which also are tetraploid, remains unknown in molluscs. Use of specific monoclonal antibodies in a flow cytometry assay was foreseen as a way to overcome the difficulty. The purpose of this study was to develop a double staining protocol using propidium iodide for hemocyte cycle analysis and the MAb 1E10 for staining of HN cells. Our results showed a correlation between tetraploid and MAb 1E10-stained hemocytes in a single clam with moderate HN. This protocol offers some potential for further investigation of this cell disorder. However, a validation step will be necessary to confirm our preliminary results.  相似文献   

16.
Summary The fine structure of vascular channels and amebocytes associated with the sheath of the infraesophageal ganglion of Helix aspersa, is described. The extracellular stroma of the sheath, together with the hemocoel and blood vessels, forms an interconnected system of pathways which appears to be involved in the transport of metabolites, amebocytes, hemocyanin and experimentally introduced opaque tracers. The hemocoel, blood capillaries and precapillaries are lined by a discontinuous layer of single muscle cells whose luminal aspect is covered by a lamina of extracellular material named the vascular coat. This coat consists of a ground substance that forms a basement membrane and filamentous elements some of which are collagenous. Gaps in the blood vessel wall seem to provide the main routes for the movement of cells and large molecules to the hemocoel. Tracer experiments have given support to the idea that a diffusion barrier may be absent at the sheath-ganglion junction. Amebocytes have phagocytic properties; they appear associated in groups or scattered singly within the extracellular space of the sheath and the lumen of blood vessels. Single amebocytes have features of mobile cells and may function in the transport of hemocyanin as well as other proteins.This work has been supported by the Rockefeller Foundation and grants NB 06662 (from the U.S. Public Health Service) and N-105 (from Conicyt, Santiago, Chile). The continuous advice and encouragement of Drs. R. W. Guillery and D. B. Slautterback are gratefully acknowledged.  相似文献   

17.
This study attempts to investigate the relationship between the hemocytes in the two compartments: circulating peripheral lymph and the connective tissues. The hemocytes are compared with the vertebrate macrophages and constitute the principal line of defense against external aggression. The hemocytes were counted in circulating hemolymph and their phagocytic capability was evaluated in Schistosoma mansoni-infected Biomphalaria glabrata and the results were compared with those obtained from normal intact control snails. Although the number of circulating hemocytes revealed a mild increase in snails at the 6th week of infection, the overall findings were similar and pointed out that the cells in the two compartments are not functionally connected. However, the hemocytes found within the connective tissues of infected snails showed definite ultrastructural differences in the number and disposition of cytoplasmic prolongations and organelles in comparison with the hemocytes from non-infected snails. Histochemically, the staining for acid phosphatase activity served as a marker to hemocytes, sometimes being found in extracellular material at the foci of parasite-hemocyte interactions.  相似文献   

18.
The fate of Schistosoma mansoni (Trematoda) sporocysts in its molluscan host Biomphalaria glabrata (Gastropoda) is determined by circulating phagocytes (hemocytes). When the parasite invades a resistant snail, it is attacked and destroyed by hemocytes, whereas in a susceptible host it remains unaffected. We used 3 inbred strains of B. glabrata: 13-16-R1 and 10-R2, which are resistant to the PR-1 strain of S. mansoni, and M-line Oregon (MO), which is susceptible to PR-1. In an in vitro killing assay using plasma-free hemocytes from these strains, the rate of parasite killing corresponded closely to the rate by which S. mansoni sporocysts are killed in vivo. Hemocytes from resistant snails killed more than 80% of S. mansoni sporocysts within 48 hr, whereas sporocyst mortality in the presence of hemocytes from susceptible snails was <10%. Using this in vitro assay, we assessed the involvement of reactive oxygen species (ROS) produced by resistant hemocytes, during killing of S. mansoni sporocysts. Inhibition of NADPH oxidase significantly reduced sporocyst killing by 13-16-R1 hemocytes, indicating that ROS play an important role in normal killing. Reduction of hydrogen peroxide (H2O2) by including catalase in the killing assay increased parasite viability. Reduction of superoxide (O2-), however, by addition of superoxide dismutase or scavenging of hydroxyl radicals (*OH) and hypochlorous acid (HOCl) by addition of hypotaurine did not alter the rate of sporocyst killing by resistant hemocytes. We conclude that H2O2 is the ROS mainly responsible for killing.  相似文献   

19.
Insects counter infection with innate immune responses that rely on cells called hemocytes. Hemocytes exist in association with the insect''s open circulatory system and this mode of existence has likely influenced the organization and control of anti-pathogen immune responses. Previous studies reported that pathogens in the mosquito body cavity (hemocoel) accumulate on the surface of the heart. Using novel cell staining, microdissection and intravital imaging techniques, we investigated the mechanism of pathogen accumulation in the pericardium of the malaria mosquito, Anopheles gambiae, and discovered a novel insect immune tissue, herein named periostial hemocytes, that sequesters pathogens as they flow with the hemolymph. Specifically, we show that there are two types of endocytic cells that flank the heart: periostial hemocytes and pericardial cells. Resident periostial hemocytes engage in the rapid phagocytosis of pathogens, and during the course of a bacterial or Plasmodium infection, circulating hemocytes migrate to the periostial regions where they bind the cardiac musculature and each other, and continue the phagocytosis of invaders. Periostial hemocyte aggregation occurs in a time- and infection dose-dependent manner, and once this immune process is triggered, the number of periostial hemocytes remains elevated for the lifetime of the mosquito. Finally, the soluble immune elicitors peptidoglycan and β-1,3-glucan also induce periostial hemocyte aggregation, indicating that this is a generalized and basal immune response that is induced by diverse immune stimuli. These data describe a novel insect cellular immune response that fundamentally relies on the physiological interaction between the insect circulatory and immune systems.  相似文献   

20.
The phagocytic activity of hemocytes from 6-8-mm M-line Biomphalaria glabrata snails was studied in an in vitro assay using glutaraldehyde-fixed sheep erythrocytes (SRBC) as target cells. For individual snails, the percentage of hemocytes ingesting SRBC during a 1-hr interval, termed the phagocytic activity index (PAI), was determined. Hemocytes from snails infected for 1 day with Echinostoma paraensei had a slightly elevated PAI, but at both 8 and 30 days postexposure (DPE), hemocytes from infected snails had a significantly lower PAI than controls. Hemocytes taken from snails at 8 DPE also had a low PAI using rabbit erythrocytes and yeast as target cells. The low PAI at 8 DPE is attributed to the presence of large numbers of poorly spreading hemocytes with low phagocytic activity. Hemocytes from snails with 30-day infections were well spread but nonetheless had a low PAI. The presence of plasma from 8-day infected snails did not alter the PAI of hemocytes from control snails, nor was the PAI of hemocytes from infected snails changed by plasma from control snails. SRBC preincubated for 60 min in plasma from various groups of M-line snails did not elicit an increase in PAI when presented to hemocytes from control snails; in some cases, as with plasma from 6-8-mm control snails, such preincubation significantly reduced the PAI below levels obtained using SRBC preincubated in culture medium. As compared to hemocytes from snails with normally developing, 8-day-old intraventricular sporocysts (IS), hemocytes from snails exposed to infection but subsequently lacking IS had a significantly higher PAI.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号