首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adenylate cyclase in liver membranes was solubilized with Lubrol PX and partially purified by gel filtration. The partially purified enzyme was susceptible to activation by guanyl-5'-yl imidodiphosphate (Gpp(NH)p). Studies on the binding of [3H]Gpp(NH)p to various fractions eluted from the gels revealed that an upper limit of 1% of the Gpp(NH)p binding sites is associated with adenylate cyclase activity stimulated by the nucleotide. The glucagon receptor, pretagged with 125I-glucagon in the membranes, solubilized with Lubrol PX, and fractionated on the same gel columns, eluted in a peak fraction that overlaps with, but is separate from, adenylate cyclase in its Gpp(NH)p-stimulated form. Addition of GTP to the solubilized glucagon-receptor complex caused complete dissociation of the complex, as has been shown with the membrane-bound form of the complex. Since the GTP-sensitive form of the glucagon receptor complex separates from the Gpp(NH)p-sensitive form of adenylate cyclase, it is concluded that the receptor and the enzyme are separate molecules, each associated with a distinct nucleotide regulatory site or component. These findings are discussed in terms of the possible structure of the hormone-sensitive state of adenylate cyclase.  相似文献   

2.
Adenylate cyclase from rabbit ventricle was solubilized in 30 to 50% yield by the nonionic detergent Lubrol PX. The detergent, when present in the assay at concentrations above 0.05%, rapidly inactivated the enzyme in assays conducted above 26 °C; assays were valid only when conducted below this temperature. The solubilized enzyme was eluted from diethylaminoethyl (DEAE)-Bio-Gel A (DEAE-agarose) with 100 mm NaCl in a yield of 25% and was free of detergent. Several properties of the solubilized detergent-free enzyme were similar to properties of the native membrane-bound species. The Km for substrate was 0.1 mm, the Ka for Mg2+ was 2.5 mm, and ATP in excess of Mg2+ was inhibitory. The enzyme was activated by F? and guanyl-5′-yl imidodiphosphate [Gpp(NH)p] in a time- and temperature-dependent manner, and activation by the latter was persistent. Activation by F? and Gpp(NH)p reduced the Ka for Mg2+. Activation by Gpp(NH)p was increased by Mg2+; the apparent Ka for activation was 0.1 μm. Multiple binding sites for Gpp(NH)p were present: one class with a Kd value of 0.11 μm was probably associated with activation of the enzyme. The soluble enzyme was insensitive to catecholamines, in both the presence and the absence of Gpp(NH)p. Sensitivity to catecholamines was not restored by the addition of phospholipids, particularly phosphatidyl inositol, in either the presence or the absence of Gpp(NH)p, and this phospholipid did not increase the sensitivity of the membrane-bound enzyme to epinephrine. Catecholamine binding sites were present, and their association with adenylate cyclase was seemingly not affected by phospholipids.  相似文献   

3.
We have solubilized adenylate cyclase in a relatively stable form from rat adrenal membranes. The solubilized enzyme elutes on a column of Sepharose 4BR as a distinct peak with a higher molecular weight than the soluble fractions which bind 125I-ACTH. Both the soluble and membrane bound enzymes are activated by NaF and Gpp(NH)p, and both have similar affinities for MgATP. While the membrane bound enzyme is activated similarly by either Mg2+ or Mn2+, the soluble enzyme is more fully activated by Mn2+. Pretreatment of adrenal membranes with NaF or Gpp(NH)p before the addition of detergent enhances recovery of soluble enzyme activity, while recovery of activity in the unsolubilized membrane pellet is unchanged. In contrast, addition of ACTH prevents solubilization of the enzyme and greatly increases its recovery in the pellet. This observation is consistent with the theory that action of the hormone on a receptor subunit leads to an association between the receptor and a catalytic subunit. Such an association might make it more difficult to remove the enzyme from the surrounding lipid matrix of the membrane.  相似文献   

4.
Progesterone treatment induces the meiotic maturation of Xenopus laevis oocytes. Previous evidence indicates that this hormonal effect may be due to inhibition of oocyte adenylate cyclase. The present work studies several aspects of the mechanism of adenylate cyclase inhibition by this hormone. Forskolin greatly stimulates oocyte adenylate cyclase in the absence of guanine nucleotides and this activity is not sensitive to progesterone inhibition. In addition the forskolin-activated enzyme is not inhibited by a wide range of guanine nucleotide, in the presence or absence of hormone. The time course of cAMP synthesis catalyzed by oocyte adenylate cyclase in the presence of guanyl-5′l-imidodiphosphate (Gpp(NH)p) shows an initial lag period that does not depend on the concentration of Gpp(NH)p. Progesterone causes a very significant increase in the hysteresis of the reaction, at least doubling the half-time of enzyme activation. The hormonal effect on the lag cannot be reversed by saturating concentrations of Gpp(NH)p. Progesterone also decreases the steady-state rates of the reaction. This effect, however, depends on the concentration of Gpp(NH)p. High concentrations of Gpp(NH)p almost completely reverse the inhibition of the steady-state rates. Progesterone does not inhibit if it is added to the reaction after the initial lag period. Guanosine-5′-O-(2-thiodiphosphate) (GDP-β-S) is an efficient competitive inhibitor of Gpp(NH)p activation of adenylate cyclase. Progesterone inhibition is observed at all concentrations of GDP-β-S and is potentiated at high ratios of GDP-β-S to Gpp(NH)p. These data indicate that progesterone inhibits by interfering with the activation of the Ns subunit of the enzyme by guanine nucleotides, rather than through a mechanism involving a separate Ni subunit.  相似文献   

5.
Adenylate cyclase was solubilized from washed particulate fraction of rabbit cerebral cortex with the nonionic detergent Lubrol 12A9 and subjected to either gel filtration on Ultrogel AcA 34 or chromatography on DEAE Bio-Gel A. By both procedures the enzyme was resolved into two components, one insensitive to guanyl 5'-yl imidodiphosphate [Gpp(NH)p] and NaF but stimulated by Ca2+ and calmodulin, and another that was sensitive to Gpp(NH)p and NaF but relatively insensitive to Ca2+ and calmodulin. The data support the possibility that two independent forms of adenylate cyclase exist in cerebral cortex, one regulated by guanine nucleotide regulatory protein and another by Ca2+-calmodulin. Fractions containing the guanylnucleotide-sensitive activity were found to contain a factor that inhibited basal and Ca2+-stimulated adenylate cyclase in the Ca2+-sensitive fraction. The inhibitor was inactivated by heating at 60 degrees C and by incubation with trypsin. Inhibition was not time-dependent, and it was not due to destruction of cAMP by phosphodiesterase or of ATP by ATPase. Inhibitory action was not reversed by calmodulin and therefore it does not appear to be a calmodulin binding protein. Sucrose density gradient sedimentation indicated a sedimentation coefficient of 4S for the inhibitor; by this technique it co-sedimented with the adenylate cyclase sensitive to Gpp(NH)p and NaF.  相似文献   

6.
Forskolin-induced change of the size of adenylate cyclase   总被引:3,自引:0,他引:3  
Forskolin, a potent activator of cyclic AMP generating systems, has been proposed to act directly on the catalytic unit of adenylate cyclase. Nevertheless, some arguments indicate a possible role of the guanosine triphosphate-binding regulatory protein in forskolin action on adenylate cyclase. In this study, we have observed an increase in the apparent sedimentation coefficient of solubilized adenylate cyclase, elicited by forskolin, both in rat liver (from 6.4 +/- 0.1 to 7.2 +/- 0.1 S) and rat striatum (from 6.7 +/- 0.1 to 7.6 +/- 0.1 S). On both systems, a similar increase in the sedimentation coefficient was observed after preactivation of the enzyme with guanosine 5'-(beta, gamma-imido)triphosphate (Gpp(NH)p). In contrast to the Gpp(NH)p effect, the forskolin action was found to be reversible. Simultaneous pretreatments of adenylate cyclase with forskolin and Gpp(NH)p did not induce additive increases of the apparent sedimentation coefficient of adenylate cyclase. The modification of the size of solubilized adenylate cyclase was corroborated by gel filtration studies. In rat liver membranes, the Stokes radius of the solubilized enzyme increased from 59 +/- 1 A for basal state to 65 +/- 1 A for forskolin preactivated state. A possible explanation of our findings is that forskolin may stabilize the complex between the GTP-binding regulatory protein and the catalytic unit of adenylate cyclase in a reversible manner.  相似文献   

7.
Isoproterenol plus guanylyl imidodiphosphate (Gpp(NH)p) activate frog erythrocyte adenylate cyclase to a level much higher than the sum of the activities produced by the catecholamine and the synthetic nucleotide tested separately. Propranolol, the beta-receptor blocking agent, failed to inhibit activity when added after the enzyme system had been preincubated with both isoproterenol and Gpp(NH)p. However, if propranolol was added after only one of the two components had been added, it inhibited the effect of isoproterenol. Production of the propranolol-resistant state by treatment with isoproterenol and Gpp(NH)p did not require the presence of the productive substrate (MgATP). The activated propranolol-resistant state persisted following various treatments of the enzyme preparation including extensive washings of the membranes; considerable activity was retained even after sonication or treatment with the detergent Lubrol-PX, treatments which caused inactivation of the native enzyme. Extensive dilution of the membranes following pretreatment with isoproterenol and Gpp(NH)p did not significantly reduce to the activity of the enzyme. Readdition of isoproterenol after dilution caused some inhibition of adenylate cyclase activity, indicating apparently that the beta-receptor has not become inaccessible. In contrast, preincubation with isoproterenol alone failed to render the enzyme system refractive to propranolol, and dilution readily reduced the activity to negligibly low values. Preincubation with Gpp(NH)p alone also produced a persistent active state but the activity was much lower than that obtained throught the combined action of isoproterenol and Gpp(NH)p. The findings suggest that the hormone may be required only to facilitate the initial interaction of the enzyme with Gpp(NH)p. The differences, in this respect, between Gpp(NH)p and the more labile natural nucleotide, GTP, are discussed.  相似文献   

8.
In an attempt to study the mechanisms of action of membrane-bound adenylate cyclase, we have applied to rat brain synaptosomal membranes antibodies raised against purified bovine transducin (T) beta gamma subunits. The antibodies recognized one 36-kDa protein in Western blots of the membranes. Adenylate cyclase activation by GTP non-hydrolyzable analogues was greatly decreased in immune, as compared to preimmune, antibody-treated membranes, whereas the enzyme basal activity was unaffected by both types of antibodies. The inhibition of forskolin-stimulated adenylate cyclase by guanine 5'-(beta, gamma-imino)triphosphate (Gpp-(NH)p) was decreased in membranes preincubated with immune, but not preimmune, antibodies. Anti-T beta antibodies moderately decreased the extent of subsequent adenylate cyclase activation by forskolin, while not affecting activation by Al3+/F-. The enzyme activation by Gpp(NH)p in untreated membranes remained the same upon further incubation in the presence of either type of antibodies. Such results were consistent with the decreased exchange of guanine nucleotides which occurred in membrane treated with immune, but not preimmune antibodies, upon addition of GTP. The blockade of the regulation of adenylate cyclase by Gpp(NH)p observed in membranes pretreated by anti-T beta antibodies thus appears to be caused by the impairment of the guanine nucleotide exchange occurring on Gs alpha subunits. The G beta subunits in the adenylate cyclase complex seem to be instrumental in the guanine nucleotide exchange on G alpha subunits, just as T beta subunits are in the transducin complex.  相似文献   

9.
Adenylate cyclase can be resolved into at least two proteins, a thermolabile, N-ethylmaleimide-sensitive component and a second protein (or proteins) that is more stable to either of these treatments. Neither component by itself catalyzes the formation of cyclic AMP using MgATP as substrate. However, mixture of the two reconstitutes MgATP-dependent fluoride- and guanyl-5'-yl imidodiphosphate (Gpp(NH)p)-stimulatable adenylate cyclase activity. The more stable component can be resolved from the first in various tissues or cultured cells by treatment of membrnes or detergent extracts with heat or N-ethylmaleimide. The two proteins have also been resolved genetically in two clonal cell lines that are deficient in adenylate cyclase activity. An adenylate cyclase-deficient variant of the S49 lymphoma cell (AC-) contains only the thermolabile activity, while the activity of the more stable protein is found in a complementary hepatoma cell line (HC-1). In addition, AC-S49 cell plasma membranes contain MnATP-dependent adenylate cyclase activity. The protein that catalyzes this reaction appears to be the same as that which can combine with the thermostable component to reconstitute Mg2+-dependent enzyme activity because both activities co-fractionate by gel exclusion chromatography and sucrose density gradient centrifugation, both activities have identical denaturation kinetics at 30 degrees C, and both activities are stabilized at 30 degrees C and labilized at 0 degree C by various nucleotides and divalent cations with similar specificity. It is thus hypothesized that the thermolabile factor is the catalytic subunit of the physiological adenylate cyclase and that the Mn2+-dependent activity is a nonphysiological expression of the catalytic protein. The thermostable moiety of the enzyme, which is proposed to serve a regulatory function, appears to consist of two functional components, based upon differential thermal lability of its ability to reconstitute hormone-, NaF-, or Gpp(NH)p-stimulated adenylate cyclase activity. These components have not, however, been physically separated. The thermolabile and thermostable components can interact in detergent solution or in a suitable membrane. Mixing of the detergent-solubilized regulatory component with AC-membranes that contain only the catalytic protein and beta-adrenergic receptors reconstitutes catecholamine-stimulatable adenylate cyclase activity; however, addition of the catalytic protein to membranes that contain receptor and the regulatory component yields MgATP-dependent enzymatic activity that is unresponsive to hormone.  相似文献   

10.
Abstract: Adenylate cyclase was solubilized from washed paniculate fraction of rabbit cerebral cortex with the nonionic detergent Lubrol 12A9 and subjected to either gel filtration on Ultrogel AcA 34 or chromatography on DEAE Bio-Gel A. By both procedures the enzyme was resolved into two components, one insensitive to guanyl 5'-yl imidodiphosphate [Gpp(NH)p] and NaF but stimulated by Ca2+ and calmodulin, and another that was sensitive to Gpp(NH)p and NaF but relatively insensitive to Ca2+ and calmodulin. The data support the possibility that two independent forms of adenylate cyclase exist in cerebral cortex, one regulated by guanine nucleotide regulatory protein and another by Ca2+-calmodulin. Fractions containing the guanylnucleotide-sensitive activity were found to contain a factor that inhibited basal and Ca2+-stimulated adenylate cyclase in the Ca2+-sensitive fraction. The inhibitor was inactivated by heating at 60°C and by incubation with trypsin. Inhibition was not time-dependent, and it was not due to destruction of cAMP by phosphodiesterase or of ATP by ATPase. Inhibitory action was not reversed by calmodulin and therefore it does not appear to be a calmodulin binding protein. Sucrose density gradient sedimentation indicated a sedimentation coefficient of 4S for the inhibitor; by this technique it co-sedimented with the adenylate cyclase sensitive to Gpp(NH)p and NaF.  相似文献   

11.
Adenylate cyclase in the membrane fractions of bovine and rat brains, but not in rat liver plasma membranes, was solubilized by treatment with Fe2+ (10 μM) plus dithiothreitol (5 mM). Solubilization of the enzyme by these agents was completely prevented by simultaneous addition of N,N′-diphenyl-p-phenylenediamine (DPPD), an inhibitor of lipid peroxidation. Ascorbic acid also solubilized the enzyme from the brain membranes. Lipid peroxidation of the brain membranes was characterized by a selective loss of phosphatidylethanolamine. Solubilization of membrane-bound enzymes by Fe2+ plus dithiothreitol was not specific for adenylate cyclase, because phosphodiesterase, thiaminediphosphatase and many other proteins were also solubilized. Solubilized adenylate cyclase had a high specific activity and was not activated by either NaF, 5′-guanylyl imidodiphosphate (Gpp[NH]p) or calmodulin. These results suggested that lipid peroxidation of the brain membranes significantly solubilized adenylate cyclase of high specific activity.  相似文献   

12.
Epinephrine, histamine and prostaglandin E1 stimulated adenylate cyclase activity in lung membranes and their stimulation of the enzyme activity was completely blocked by propranolol, metiamide and indomethacin, respectively. A partially-purified activator from the adult rat lung also enhanced adenylate cyclase activity in membranes. However, stimulation of adenylate cyclase by the rat lung activator was not abolished by the above receptor antagonists. Further, epinephrine, NaF and Gpp(NH)p stimulated adenylate cyclase activity rather readily, whereas stimulation of the enzyme activity by the lung activator was evident after an initial lag phase of 10 min. Also, the lung activator produced additive activation of adenylate cyclase with epinephrine, NaF and Gpp(NH)p. These results indicate that the lung activator potentiates adenylate cyclase activity in membranes by a mechanism independent from those known for epinephrine, NaF and Gpp(NH)p. Incubation of lung membranes for 30 min at 40°C resulted in a loss of adenylate cyclase activation by NaF and Gpp(NH)p. Addition of the released proteins to the heat-treated membranes did not restore the enzyme response to these agonists. However, heat treatment of lung membranes in the presence of 2-mercaptoethanol or dithiothreitol prevented the loss of adenylate cyclase response to NaF and Gpp (NH)p. N-ethylmaleimide abolished adenylate cyclase activation by epinephrine, NaF, Gpp(NH)p and the lung activator. These results indicate that the sulfhydryl groups are important for adenylate cyclase function in rat lung membranes.Abbreviations Gpp(NH)p 5-Guanylimidodiphosphate  相似文献   

13.
Molybdate activation of rat liver plasma membrane adenylate cyclase has been examined and compared with the effect of glucagon, Gpp(NG)p and fluoride. Glucagon does not stimulate the detergent solubilized enzyme, though molybdate, fluoride, and Gpp(NH)p are effective in this regard. The stimulatory effects of either fluoride or molybdate are additive with those of GTP and do not require guanyl nucleotide to evoke their activation. Neither fluoride nor molybdate can substitute for GTP when glucagon is the activator of rat liver adenylate cyclase. The stimulatory effects of either ion on adenylate cyclase are additive with that produced by glucagon. Activation of adenylate cyclase by either molybdate or fluoride occurs by a mechanism distinct from that of glucagon or guanyl nucleotide. The data presented here suggest that fluoride and molybdate may act via a similar mechanism of action. Neither ion displays a lag in activation of adenylate cyclase. The pH profiles of fluoride and molybdate-stimulated adenylate cyclase activity are similar, and distinct from guanyl nucleotide-stimulated activity. Cholera toxin treatment of adenylate cyclase blocks fluoride and molybdate stimulation of the enzyme to the same extent, while enhancing the activation obtained with GTP and hormones.  相似文献   

14.
Partially purified rat liver plasma membranes were enriched to yield a more glucagon-sensitive membrane fraction which was solubilized with Lubrol-PX. The supernate obtained after centrifugation at 165,000g was subjected to O-diethylaminoethyl anion exchange chromatography. An adenylate cyclase fraction was eluted and purified further by chromatography on agarose-hexane-GTP. The enzyme adsorbed to the affinity resin and was eluted with 0.5 m Tris-HCl. The protein isolated by chromatography on the affinity resin was homogenous by conventional acrylamide gel electrophoresis; one band was observed in sodium dodecyl sulfate. The purified enzyme was free of nucleotide phosphohydrolases found in the parent solubilized membrane preparation. The anion exchange product was not sensitive to glucagon; Lubrol-PX and 5′-guanylylimidodiphosphate [Gpp(NH)p] decreased the activity of this fraction. In the presence of detergent or guanyl nucleotide, glucagon, at 10?6m, increased enzyme activity by 30 and 21%, respectively, to a statistically significant degree, but not above basal levels. Adenylate cyclase was also purified by subjecting the 165,000g supernate directly to agarose-hexane-GTP; agarose-hexane-ATP or agarose-hexane was not effective. The affinity-derived material was associated with 85 nmol of Lubrol-PX/mg of protein. When calculated on the basis of a molecular weight of 150,000 for detergent-free protein after gel filtration on Bio-Gel A-0.5 m, there was 13 mol of detergent/mol of the enzyme obtained by chromatography on the affinity resin. The direct affinity product was insensitive to glucagon and Gpp(NH)p; enzyme activity varied as a function of Lubrol concentration.  相似文献   

15.
The isoproterenol- and glucagon-stimulated adenylate cyclase activities in the myocardial membranes of hypertensive rat were consistantly lower as compared with normal controls. Addition of cytosolic fraction (100,000 xg supernatant) to the particulate preparation had an additive effect for glucagon and Gpp(NH)p stimulated enzyme activity and a synergistic effect for isoproterenol stimulation. Cytosolic fraction of normal control animals did not bring the adenylate cyclase activity in SHR equivalent to the control values. The basal and F?-stimulated enzyme activity of solubilized adenylate cyclase was reduced by about 30% in SHR as compared with WKY, which could be due to a decrease in the actual amount of adenylate cyclase in the myocardium of SHR.  相似文献   

16.
Abstract: Stimulation of rat striatal adenylate cyclase by guanyl nucleotides was examined utilizing either MgATP or magnesium 5′-adenylylimidodiphos-phate (MgApp(NH) p) as substrate. GTP and 5′- guanylylimidodiphosphate (Gpp(NH) p) stimulate adenylate cyclase under conditions where the guanyl nucleotide is not degraded. The apparent stimulation of adenylate cyclase by GDP is due to an ATP-dependent transphosphorylase present in the tissue which converts GDP to GTP. We conclude that GTP is the physiological guanyl nucleotide responsible for stimulation of striatal adenylate cyclase. Dopamine lowers the Ka for Gpp(NH) p stimulation twofold, from 2.4 μM to 1.2 μM and increases maximal velocity 60%. The kinetics of Gpp(NH) p stimulation indicate no homotropic interactions between Gpp(NH) p sites and are consistent with one nonessential Gpp(NH) p activator site per catalytic site. Double reciprocal plots of the activation by free Mg2+ were concave downward, indicating either two sets of sites with different affinities or negative cooperativity (Hill coefficient = 0.3, K0.5= 23 mM). The data conform well to a model for two sets of independent sites and dopamine lowers the Ka for free Mg2+ at the high-affinity site threefold, from 0.21 mM to 0.07 mM. The antipsy-chotic drug fluphenazine blocks this shift in Ka due to dopamine. Dopamine does not appreciably affect the affinity of adenylate cyclase for the substrate, MgApp(NH) p. Therefore, dopamine stimulates striatal adenylate cyclase by increasing the affinity for free Mg2+ and guanyl nucleotide and by increasing maximal velocity.  相似文献   

17.
The possible roles of adenosine and the GTP analogue Gpp(NH)p in regulating mouse sperm adenylate cyclase activity were investigated during incubation in vitro under conditions in which after 30 min the spermatozoa are essentially uncapacitated and poorly fertile, whereas after 120 min they are capacitated and highly fertile. Adenylate cyclase activity, assayed in the presence of 1 mM ATP and 2 mM Mn2+, was determined by monitoring cAMP production. When adenosine deaminase (1 U/ml) was included in the assay to deplete endogenous adenosine, enzyme activity was decreased in the 30-min suspensions but increased in the 120-min samples (P < 0.02). This suggests that endogenous adenosine has a stimulatory effect on adenylate cyclase in uncapacitated spermatozoa but is inhibitory in capacitated cells. Since the expression of adenosine effects at low nucleoside concentrations usually requires guanine nucleotides, the effect of adding adenosine in the presence of 5 x 10–5 M Gpp(NH)p was examined. While either endogenous adenosine or adenosine deaminase may have masked low concentration (10?9?10?7 M) effects of exogenous adenosine, a marked inhibition (P < 0.001) of adenylate cyclase activity in both uncapacitated and capacitated suspensions was observed with higher concentrations (>10?5 M) of adenosine. Similar inhibition was also observed in the absence of Gpp(NH)p, suggesting the presence of an inhibitory P site on the enzyme. In further experiments, the effects of Gpp(NH)p in the presence and absence of adenosine deaminase were examined. Activity in 30-min suspensions was stimulated by the guanine nucleotide and in the presence of adenosine deaminase this stimulation was marked, reversing the inhibition seen with adenosine deaminase alone. In capacitated suspensions the opposite profile was observed, with Gpp(NH)p plus adenosine deaminase being inhibitory; again, this was a reversal of the effects obtained in the presence of adenosine deaminase alone, which had stimulated enzyme activity. These results suggest the existence of a stimulatory adenosine receptor site (Ra) on mouse sperm adenylate cyclase that is expressed in uncapacitated spermatozoa and an inhibitory receptor site (Ri) that is expressed in capacitated cells, with guanine nucleotides modifying the final response to adenosine. It is concluded that adenosine and guanine nucleotides may regulate mouse sperm adenylate cyclase activity during capacitation.  相似文献   

18.
Adenylate cyclase in particulate extracts of Saccharomyces cerevisiae utilized either MnATP or MgATP as substrate. A mutation in the CYR1 gene, which codes for the catalytic unit of yeast adenylate cyclase (Matsumoto, K., Uno, I., and Ishikawa, T. (1983) Cell 32, 417-423), eliminated utilization of both MgATP and MnATP, indicating that a single enzyme was responsible for both activities. GTP and guanylyl-5'-imidodiphosphate stimulated yeast adenylate cyclase, while a GDP analog, guanosine-5'-O-(2-thiodiphosphate), competitively inhibited this stimulation. Thermal inactivation studies distinguished putative guanine-nucleotide regulatory protein (N) from the catalytic unit (C) of yeast adenylate cyclase. Yeast N, which conferred guanine nucleotide regulation and the ability to utilize MgATP on yeast C, was quickly inactivated by incubation of particulate extracts at 30 degrees C. In contrast, yeast C, which apparently utilized MnATP as substrate in the absence of a functional N protein, resisted inactivation at 30 degrees C. These observations suggested that physically distinct protein components mediated the catalytic activity of yeast adenylate cyclase and its regulation by guanine nucleotides. These findings indicate a striking homology between the adenylate cyclase systems of S. cerevisiae and those of vertebrate cells.  相似文献   

19.
A method for preparing human platelet membranes with high adenylate cyclase activity is described. Using these membranes, epinephrine and GTP individually are noted to inhibit adenylate cyclase slightly. When present together, epinephrine and GTP act synergistically to cause a 50% inhibition of basal activity. The epinephrine effect is an alpha-adrenergic process as it is reversed by phentolamine but not propranolol. The quasi-irreversible activation of adenylate cyclase by Gpp(NH)p is time, concentration, and Mg2+-dependent but is not altered by the presence of epinephrine. Adenylate cyclase activated by Gpp(NH)p, and extensively washed to remove unbound Gpp(NH)p, is inhibited by the subsequent addition of Gpp(NH)p, GTP, and epinephrine. This effect of epinephrine is also an alpha-adrenergic phenomenon. In contrast to epinephrine which inhibits the cyclase, PGE1 addition results in enzyme stimulation. PGE1 stimulation does not require GTP addition. PGE1 accelerates the rate of Gpp(NH)p-induced activation. Low GTP concentrations (less than 1 x 10(-6) M) enhance PGE1 stimulation while higher GTP concentrations cause inhibition. These observations suggest that human platelet adenylate cyclase possesses at least two guanine nucleotide sites, one which interacts with the alpha-receptor to result in enzyme inhibition and a second guanine nucleotide site which interacts with the PGE1 receptor and causes enzyme stimulation.  相似文献   

20.
Characteristics of adenylate cyclase stimulation by the GTP analog 5'-guanyl imidodiphosphate Gpp(NH)p have been examined in intact frog erythrocytes, frog erythrocyte membranes, and solubilized canine myocardial preparations. Gpp(NH)p caused marked enzyme activation in the erythrocyte membranes and in solubilized myocardial preparations, but had much lesser effects in intact cells. Enzyme activation by Gpp(NH)p exhibited a definite lag period, requiring 10 to 15 min for complete activation at 37 degrees. Activation was essentially irreversible after a 5-hour dialysis sufficient to reduce the Gpp(NH)p levels below threshold for stimulation. Gpp(NH)p-"activated" enzyme differed from native enzyme in several respects, such as its greater temperature stability, and its insensitivity to further stimulation by other activators, such as catecholamine or fluoride. These differences suggest that the enzyme, once fully activated by Gpp(NH)p, may have undergone some modification that is not subject ot facile reversal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号