首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
After polymerization of the phage T4 prohead is complete, its capsid expands by approximately 16%, is greatly stabilized, and acquires the capacity to bind accessory proteins. These effects are manifestations of a large-scale, irreversible, conformational change undergone by the major capsid protein, gp23 (521 residues) which is cleaved to gp23* (residues 66-521) during this maturation process. In order to explore its structural basis, we have performed immunoelectron microscopy with antibodies raised against synthetic peptides that correspond to precisely defined segments of the amino acid sequence of gp23. These antibodies were used to label purified polyheads (tubular polymorphic variants of the normal icosahedral capsid), in experiments designed to impose constraints on the possible foldings of the gp23/gp23* polypeptide chains in their successive conformational states. Peptide 1 (residues 48-57), part of the gp23-delta domain that is excised when gp23 is converted to gp23*, resides on the inner surface of the precursor surface lattice, but--if not proteolyzed--is found on the outer surface of the mature surface lattice. Peptide 2 (residues 65-73), immediately distal to the cleavage site, is located on the inside of the precursor surface lattice, and remains there subsequent to expansion. Peptide 3 (residues 139-146) is translocated in the opposite direction from peptide 1, i.e., from the outer to the inner surface upon expansion; moreover, expansion greatly increases the polyheads' affinity for these antibodies. Peptide 5 (residues 301-308) is located on the inside in both the precursor and the mature states. Taking into account data from other sources, these observations imply that the conformational change that underlies capsid expansion involves a radical reorganization of the proteins' structure, in which at least three distinct epitopes, situated in widely differing parts of the polypeptide chain, are translocated from one side to the other. Moreover, the amino-terminal portion of gp23/gp23*, around the cleavage site, is particularly affected.  相似文献   

2.
We have used differential scanning calorimetry in conjunction with cryo-electron microscopy to investigate the conformational transitions undergone by the maturing capsid of phage T4. Its precursor shell is composed primarily of gp23 (521 residues): cleavage of gp23 to gp23* (residues 66 to 521) facilitates a concerted conformational change in which the particle expands substantially, and is greatly stabilized. We have now characterized the intermediate states of capsid maturation; namely, the cleaved/unexpanded, state, which denatures at tm = 60 degrees C, and the uncleaved/expanded state, for which tm = 70 degrees C. When compared with the precursor uncleaved/unexpanded state (tm = 65 degrees C), and the mature cleaved/expanded state (tm = 83 degrees C, if complete cleavage precedes expansion), it follows that expansion of the cleaved precursor (delta tm approximately +23 degrees C) is the major stabilizing event in capsid maturation. These observations also suggest an advantage conferred by capsid protein cleavage (some other phage capsids expand without cleavage): if the gp23-delta domains (residues 1 to 65) are not removed by proteolysis, they impede formation of the stablest possible bonding arrangement when expansion occurs, most likely by becoming trapped at the interface between neighboring subunits or capsomers. Icosahedral capsids denature at essentially the same temperatures as tubular polymorphic variants (polyheads) for the same state of the surface lattice. However, the thermal transitions of capsids are considerably sharper, i.e. more co-operative, than those of polyheads, which we attribute to capsids being closed, not open-ended. In both cases, binding of the accessory protein soc around the threefold sites on the outer surface of the expanded surface lattice results in a substantial further stabilization (delta tm = +5 degrees C). The interfaces between capsomers appear to be relatively weak points that are reinforced by clamp-like binding of soc. These results imply that the "triplex" proteins of other viruses (their structural counterparts of soc) are likely also to be involved in capsid stabilization. Cryo-electron microscopy was used to make conclusive interpretations of endotherms in terms of denaturation events. These data also revealed that the cleaved/unexpanded capsid has an angular polyhedral morphology and has a pronounced relief on its outer surface. Moreover, it is 14% smaller in linear dimensions than the cleaved/expanded capsid, and its shell is commensurately thicker.  相似文献   

3.
Folding of bacteriophage T4 major capsid protein, gene product 23 (534 a.a.), is aided by two proteins: E. coli GroEL chaperonin and viral gp31 co-chaperonin. In the present work a set of mutants with extensive deletions inside gene 23 using controlled digestion with Bal31 nuclease has been constructed. Proteins with deletions were co-expressed from plasmid vectors with phage gp31 co-chaperonin. Deletions from 8 to 33 a.a. in the N-terminal region of the gp23 molecule covering the protein proteolytic cleavage site during capsid maturation have no influence on the mutants' ability to produce in E. coli cells proteins which form regular structures—polyheads. Deletions in other regions of the polypeptide chain (187-203 and 367-476 a.a.) disturb the correct folding and subsequent assembly of gp23 into polyheads.  相似文献   

4.
We have isolated and characterized two types of particles produced in comparable amounts by mutants in gene 17: the empty large particle and the empty small particle. Dimensions, morphology, stability, and protein composition of the empty large particle are very similar to those of the capsids or empty heads of mature phage. The other type of particle (empty small particle) is very similar in dimensions and stability to the prehead, but differs in that it is composed of processed proteins (gp23, gp24, IpIII). Structural analysis has shown that the protein subunits of the empty small particles are arranged in an unexpanded type of lattice (11.2 to 11.3 nm), whereas the empty large particles have an expanded lattice (13 nm). The characterization of the empty small particle as being composed of cleaved proteins, but still unexpanded, shows that the expansion of the T4 head shell is not necessarily linked to the cleavage of the structural proteins.  相似文献   

5.
6.
We have studied the aberrant tubular polyheads of bacteriophages T4D and T2L as a model system for capsid maturation. Six different types of polyhead surface lattice morphology, and the corresponding protein compositions are reported and discussed. Using in vitro systems to induce transformations between particular polyhead types, we have deduced that the structural classes represent successive points in a transitional pathway. In the first step, coarse polyheads (analogous to the prohead τ-particle) are proteolytically cleaved by a phagecoded protease, a fragment of the gene 21 product. This cleavage of P23 to P231 induces a co-operative lattice transformation in the protein of the surface shell, to a conformation equivalent to that of T2L giant phage capsids. These polyheads (derived either from T4 or T2L lysates) can accept further T4-coded proteins. In doing so, they pass through intermediate structural states, eventually reaching an end point whose unit cell morphology is indistinguishable from that of the giant T4 capsids. At least one protein (called soc (Ishii & Yanagida, 1975)) is bound stoichiometrically to P231 in the end-state conformation. The simulation of several aspects of capsid maturation (cleavage of P23 to P231, stabilization, and lattice expansion) in the polyhead pathway suggest that it parallels the major events of phage T-even capsid maturation, decoupled from any involvement of DNA packaging.  相似文献   

7.
Phage T4 terminase is a two-subunit enzyme that binds to the prohead portal protein and cuts and packages a headful of concatameric DNA. To characterize the T4 terminase large subunit, gp17 (70 kDa), gene 17 was cloned and expressed as a chitin-binding fusion protein. Following cleavage and release of gp17 from chitin, two additional column steps completed purification. The purification yielded (i) homogeneous soluble gp17 highly active in in vitro DNA packaging ( approximately 10% efficiency, >10(8) phage/ml of extract); (ii) gp17 lacking endonuclease and contaminating protease activities; and (iii) a DNA-independent ATPase activity stimulated >100-fold by the terminase small subunit, gp16 (18 kDa), and modestly by portal gp20 and single-stranded binding protein gp32 multimers. Analyses revealed a preparation of highly active and slightly active gp17 forms, and the latter could be removed by immunoprecipitation using antiserum raised against a denatured form of the gp17 protein, leaving a terminase with the increased specific activity (approximately 400 ATPs/gp17 monomer/min) required for DNA packaging. Analysis of gp17 complexes separated from gp16 on glycerol gradients showed that a prolonged enhanced ATPase activity persisted after exposure to gp16, suggesting that constant interaction of the two proteins may not be required during packaging.  相似文献   

8.
9.
10.
We have investigated the conformational basis of the expansion transformation that occurs upon maturation of the bacteriophage T4 prohead, by using laser Raman spectroscopy to determine the secondary structure of the major capsid protein in both the precursor and the mature states of the surface lattice. This transformation involves major changes in the physical, chemical, and immunological properties of the capsid and is preceded in vivo by processing of its major protein, gp23 (56 kDa), to gp23* (49 kDa), by proteolysis of its N-terminal gp23-delta domain. The respective secondary structures of gp23 in the unexpanded state, and of gp23* in the expanded state, were determined from the laser Raman spectra of polyheads, tubular polymorphic variants of the capsid. Similar measurements were also made on uncleaved polyheads that had been expanded in vitro and, for reference, on thermally denatured polyheads. We find that, with or without cleavage of gp23, expansion is accompanied by substantial changes in secondary structure, involving a major reduction in alpha-helix content and an increase in beta-sheet. The beta-sheet contents of gp23* or gp23 in the expanded state of the surface lattice, and even of gp23 in the unexpanded state, are sufficient for a domain with the "jellyroll" fold of antiparallel beta-sheets, previously detected in the capsid proteins of other icosahedral viruses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Inter- and intra-subunit bonding within the surface lattice of the capsid of bacteriophage T4 has been investigated by differential scanning calorimetry of polyheads, in conjunction with electron microscopy, limited proteolysis and sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The bonding changes corresponding to successive stages of assembly of the major capsid protein gp23, including its maturation cleavage, were similarly characterized. The uncleaved/unexpanded surface lattice exhibits two endothermic transitions. The minor event, at 46 degrees C, does not visibly affect the surface lattice morphology and probably represents denaturation of the N-terminal domain of gp23. The major endotherm, at 65 degrees C, represents denaturation of the gp23 polymers. Soluble gp23 from dissociated polyheads is extremely unstable and exhibits no endotherm. Cleavage of gp23 to gp23* and the ensuing expansion transformation effects a major stabilization of the surface lattice of polyheads, with single endotherms whose melting temperatures (t*m) range from 73 to 81 degrees C, depending upon the mutant used and the fraction of gp23 that is cleaved to gp23* prior to expansion. Binding of the accessory proteins soc and hoc further modulates the thermograms of cleaved/expanded polyheads, and their effects are additive. hoc binding confers a new minor endotherm at 68 degrees C corresponding to at least partial denaturation of hoc. Denatured hoc nevertheless remains associated with the surface lattice, although in an altered, protease-sensitive state which correlates with delocalization of hoc subunits visualized in filtered images. While hoc binding has little effect on the thermal stability of the gp23* matrix, soc binding further stabilizes the surface lattice (delta Hd approximately +50%; delta t*m = +5.5 degrees C). It is remarkable that in all states of the surface lattice, the inter- and intra-subunit bonding configurations of gp23 appear to be co-ordinated to be of similar thermal stability. Thermodynamically, the expansion transformation is characterized by delta H much less than 0; delta Cp approximately 0, suggesting enhancement of van der Waals' and/or H-bonding interactions, together with an increased exposure to solvent of hydrophobic residues of gp23* in the expanded state. These findings illuminate hypotheses of capsid assembly based on conformational properties of gp23: inter alia, they indicate a role for the N-terminal portion of gp23 in regulating polymerization, and force a reappraisal of models of capsid swelling based on the swivelling of conserved domains.  相似文献   

12.
Folding of the major capsid protein of bacteriophage T4 encoded by gene 23 is aided by Escherichia coli GroEL chaperonin and phage co-chaperonin gp31. In the absence of gene product (gp) 31, aggregates of recombinant gp23 accumulate in the cell similar to inclusion bodies. These aggregates can be solubilized with 6 M urea. However, the protein cannot form regular structures in solution. A system of co-expression of gp31 and gp23 under the control of phage T7 promoter in E. coli cells has been constructed. Folding of entire-length gp23 (534 amino acid residues) in this system results in the correctly folded recombinant gp23, which forms long regular structures (polyheads) in the cell.  相似文献   

13.
Gene 1.7 of bacteriophage T7 confers sensitivity of both phage T7 and its host Escherichia coli to dideoxythymidine (ddT). We have purified the product of gene 1.7, gp1.7. It exists in two forms of molecular weight 22 181 and 17 782. Only the C‐terminal half of the protein is required to confer ddT sensitivity. We show that gp1.7 catalyses the phosphorylation of dGMP and dTMP to dGDP and dTDP, respectively, by using either GTP, dGTP or dTTP as the phosphate donor. Either form of gp1.7 exhibit identical kinase activity as compared with wild‐type gp1.7 that contains a mixture of both forms. The Km of 70 µM and Kcat of 4.3 s?1 for dTMP are similar to those found for E. coli thymidylate kinase. However, unlike the host enzyme, gp1.7 efficiently catalyses the conversion of the chain‐terminating dideoxythymidylate (ddTMP) to ddTDP. This finding explains the sensitivity of phage T7 but not E. coli to exogenous ddT. Gp1.7 is unusual in that it has no sequence homology to any known nucleotide kinase, it has no identifiable nucleotide‐binding motif and its activity is independent of added metal ions. When coupled with nucleoside diphosphate kinase, gp1.7 exponentially converts dTMP to dTTP.  相似文献   

14.
Two amber mutations in gene 67 of bacteriophage T4 were constructed by oligonucleotide-directed mutagenesis and the resulting mutated genes were recombined back into the phage genome and their phenotype was studied. The 67amK1 mutation is close to the amino terminus of the gene, and phage carrying this mutation are unable to form plaques on suppressor-negative hosts. A second mutation, 67amK2, which lies in the middle of the gene, three codons N-terminal to a proteolytic cleavage site, produces a small number of viable phage particles. In suppressor-negative hosts, both mutants produce polyheads and proheads. 67amK1 assembles only few proheads that have a disorganized core structure, as judged from thin sections of infected cells. The proheads and the mature phages of both mutants are mainly isometric rather than having the usual prolate shape. Depending on the 67 mutant and the host, between 20% and 73% of the particles that are produced are isometric, and 1 to 10% are two-tailed biprolate particles. 67amK2 phages grown on a supD suppressor strain that inserts serine in place of the wild-type leucine do not contain gp67* derived from gene product 67 (gp67) by proteolytic cleavage. This demonstrates the importance of the correct amino acid at this position in the protein. Other abnormalities in these 67amK2 phages are the presence of uncleaved scaffolding core proteins (IPIII and gp68), indicating a structural alteration in the prohead scaffold, resulting in only partial cleavage. In wild-type phages these proteins are found in the head only in the cleaved form. With double-mutants of 67 with mutations in the major shell protein gp23 no naked scaffolding cores were found, confirming the necessity of gp67 for the assembly or persistence of a "normal" core.  相似文献   

15.
SPP1 is a siphophage infecting the gram‐positive bacterium Bacillus subtilis. It is constituted by an icosahedric head and a long non‐contractile tail formed by gene products (gp) 17–21. A group of 5 small genes (gp 22–24.1) follows in the genome those coding for the main tail components. However, the belonging of the corresponding gp to the tail or to other parts of the phage is not documented. Among these, gp22 lacks sequence identity to any known protein. We report here the gp22 structure solved by X‐ray crystallography at 2.35 Å resolution. We found that gp22 is a monomer in solution and possesses a significant structural similarity with lactococcal phage p2 ORF 18 N‐terminal “shoulder” domain.  相似文献   

16.
Heat cleavage of asp-pro peptide bonds was used to probe the primary structures of the Phage T4 major capsid protein precursor, gp23, its mature capsid form gp23*, and a DNA-dependent ATPase, called capsizyme. This analysis suggests that capsizyme is a gp23** resulting from the N-terminal processing found in gp23* as well as shortening at the C-terminus. Photoaffinity labeling with Azido-ATP and BrU-DNA, followed by heat cleavage, suggests binding sites for these compounds toward the C-terminus of gp23**, suggesting localization of functions within the gp23 primary sequence. Site-directed mutagenesis experiments were targeted therefore to the C-terminal end of g23 as well as to its processing sites. N-terminal processing site modification supports the consensus gp21 proteinase cleavage rule, whereas mutagenesis at the C-terminus suggests that the C-terminal alteration is unlikely to result from a gp21-morphogenesis proteinase cleavage. Amino acid replacements in gp23 at newly introduced amber sites reveal a new g23 mutant phenotype, defective partially DNA-filled heads, in support of the hypothesis that gp23 and its products function directly in the DNA packaging mechanism.  相似文献   

17.
通过重组技术获得大肠埃希菌噬菌体内溶素纯化蛋白和表面展示噬菌体,并观察产物的生物效应。将肠侵袭性大肠埃希菌EIEC 8401噬菌体LSB-1内溶素基因gp17构建到质粒pET300中,并在大肠埃希菌BL21中诱导表达,通过Ni柱纯化系统纯化产物;利用噬菌体展示技术构建T7-LSB-gp17重组噬菌体,通过双层琼脂法纯化噬菌体,并观察2种产物的抗菌效应。2 139 bp的gp17基因通过重组技术表达出78.3 ku的可溶性蛋白,纯化后浓度为2.38 mg/mL,其对EIEC8401有良好的抑菌活性,但对其他试验菌无抗性;通过噬菌体展示技术构建的重组噬菌体T7-LSB-gp17通过SDS-PAGE电泳显示在78 ku处有表达增强,对EIEC8401无感染、裂解作用,但对EIEC8401及其他试验菌有明显溶菌作用,宿主谱增加。通过重组技术获得的噬菌体LSB-1内溶素基因gp17的产物对LSB-1噬菌体原宿主具有明显的抑制效应。其中gp17表达的纯化蛋白具有明显的宿主专一性,重组噬菌体悬液有较宽种类的抗菌作用。这可能是因为gp17蛋白与噬菌体表面复杂空间结构的相互作用产生的生物效应。  相似文献   

18.
Tailed bacteriophages use powerful molecular motors to package the viral genome into a preformed capsid. Packaging at a rate of up to ~2000 bp/s and generating a power density twice that of an automobile engine, the phage T4 motor is the fastest and most powerful reported to date. Central to DNA packaging are dynamic interactions among the packaging components, capsid (gp23), portal (gp20), motor (gp17, large "terminase"), and regulator (gp16, small terminase), leading to precise orchestration of the packaging process, but the mechanisms are poorly understood. Here we analyzed the interactions between small and large terminases of T4-related phages. Our results show that the gp17 packaging ATPase is maximally stimulated by homologous, but not heterologous, gp16. Multiple interaction sites are identified in both gp16 and gp17. The specificity determinants in gp16 are clustered in the diverged N- and C-terminal domains (regions I-III). Swapping of diverged region(s), such as replacing C-terminal RB49 region III with that of T4, switched ATPase stimulation specificity. Two specificity regions, amino acids 37-52 and 290-315, are identified in or near the gp17-ATPase "transmission" subdomain II. gp16 binding at these sites might cause a conformational change positioning the ATPase-coupling residues into the catalytic pocket, triggering ATP hydrolysis. These results lead to a model in which multiple weak interactions between motor and regulator allow dynamic assembly and disassembly of various packaging complexes, depending on the functional state of the packaging machine. This might be a general mechanism for regulation of the phage packaging machine and other complex molecular machines.  相似文献   

19.
Pseudomonas aeruginosa myovirus ϕKZ has a 270-kb genome within a T=27 icosahedral capsid that contains a large, unusual, and structurally well-defined protein cylindrical inner body (IB) spanning its interior. Proteolysis forms a pivotal stage in ϕKZ head and IB morphogenesis, with the protease gp175 cleaving at least 19 of 49 different head proteins, including the major capsid protein and five major structural IB proteins. Here we show that the purified mature form of gp175 is active and cleaves purified IB structural proteins gp93 and gp89. Expression vector synthesis and purification of the zymogen/precursor yielded an active, mature-length protease, showing independent C-terminal gp175 self-cleavage autoactivation. Mutation of either the predicted catalytic serine or histidine inactivated mature gp175, supporting its classification as a serine protease and representing the first such direct biochemical demonstration with purified protease and substrate proteins for any phage protease. These mutations also blocked self-cleavage of the precursor while allowing intermolecular gp175 processing. To confirm the cleavage specificity of gp175, we mutated three cleavage sites in gp93, which blocked proteolysis at these sites. The N-terminal propeptide of gp93 was shown to undergo more extensive proteolysis than previously identified. We found that proteolysis in gp93 progressed from the N to C terminus, while blocking cleavage sites slowed but did not eliminate downstream proteolysis. These findings were shown by informatics to be relevant to the head morphogenesis of numbers of other related IB-containing giant phages as well as to T4 and herpesviruses, which have homologous proteases.  相似文献   

20.
Double-stranded DNA-packaging in icosahedral bacteriophages is believed to be driven by a packaging "machine" constituted by the portal protein and the two packaging/terminase proteins assembled at the unique portal vertex of the empty prohead shell. Although ATP hydrolysis is evidently the principal driving force, which component of the packaging machinery functions as the translocating ATPase has not been elucidated. Evidence suggests that the large packaging subunit is a strong candidate for the translocating ATPase. We have constructed new phage T4 terminase recombinants under the control of phage T7 promoter and overexpressed the packaging/terminase proteins gp16 and gp17 in various configurations. The hexahistidine-tagged-packaging proteins were purified to near homogeneity by Ni(2+)-agarose chromatography and were shown to be highly active for packaging DNA in vitro. The large packaging subunit gp17 but not the small subunit gp16 exhibited an ATPase activity. Although gp16 lacked ATPase activity, it enhanced the gp17-associated ATPase activity by >50-fold. The gp16 enhancement was specific and was due to an increased catalytic rate for ATP hydrolysis. A phosphorylated gp17 was demonstrated under conditions of low catalytic rates but not under high catalytic rates in the presence of gp16. The data are consistent with the hypothesis that a weak ATPase is transformed into a translocating ATPase of high catalytic capacity after assembly of the packaging machine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号