首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The first protein map was developed of Synechococcus sp. strain PCC 7942, a model organism for studies of photosynthesis, prokaryotic circadian rhythms, cell division, carbon-concentrating mechanisms, and adaptive responses to a variety of stresses. The proteome was analyzed by two-dimensional gel electrophoresis with subsequent MALDI-TOF mass spectroscopy and database analysis. Of the 140 analyzed protein spots, 110 were successfully identified as 62 different proteins, many of which occurred as multiple spots on the gel. The identified proteins participate in the major metabolic and cellular processes in cyanobacterial cells during the exponential growth phase. In addition, 14 proteins which were previously either unknown or considered to be hypothetical were shown to be true gene products in Synechococcus sp. strain PCC 7942. These results may be helpful for the annotation of the recently sequenced genome of this cyanobacterium, as well as for biochemical and physiological studies of Synechococcus.  相似文献   

2.
The first protein map was developed of Synechococcus sp. strain PCC 7942, a model organism for studies of photosynthesis, prokaryotic circadian rhythms, cell division, carbon-concentrating mechanisms, and adaptive responses to a variety of stresses. The proteome was analyzed by two-dimensional gel electrophoresis with subsequent MALDI-TOF mass spectroscopy and database analysis. Of the 140 analyzed protein spots, 110 were successfully identified as 62 different proteins, many of which occurred as multiple spots on the gel. The identified proteins participate in the major metabolic and cellular processes in cyanobacterial cells during the exponential growth phase. In addition, 14 proteins which were previously either unknown or considered to be hypothetical were shown to be true gene products in Synechococcus sp. strain PCC 7942. These results may be helpful for the annotation of the recently sequenced genome of this cyanobacterium, as well as for biochemical and physiological studies of Synechococcus.  相似文献   

3.
4.
A mutant of the cyanobacterium Synechococcus sp. strain PCC 7942 carrying a disrupted gene encoding glucose-6-phosphate dehydrogenase (zwf) produced no detectable glucose-6-phosphate dehydrogenase as assessed by enzyme assay and Western blot (immunoblot) analysis. This mutant exhibited significantly impaired dark viability.  相似文献   

5.
Precipitation of CaCO3 catalyzed by the growth and physiology of cyanobacteria in the genus Synechococcus represents a potential mechanism for sequestration of atmospheric CO2 produced during the burning of coal for power generation. Synechococcus sp. strain PCC 8806 and Synechococcus sp. strain PCC 8807 were tested in microcosm experiments for their ability to calcify when exposed to a fixed calcium concentration of 3.4 mM and dissolved inorganic carbon concentrations of 0.5, 1.25 and 2.5 mM. Synechococcus sp. strain PCC 8806 removed calcium continuously over the duration of the experiment producing approximately 18.6 mg of solid phase calcium. Calcium removal occurred over a two-day time period when Synechococcus sp. strain PCC 8807 was tested and only 8.9 mg of solid phase calcium was produced. Creation of an alkaline growth environment catalyzed by the physiology of the cyanobacteria appeared to be the primary factor responsible for CaCO3 precipitation in these experiments.  相似文献   

6.
The cyanobacterium Synechococcus sp. strain PCC7942 has three dnaK homologues (dnaK1, dnaK2, and dnaK3), and a gene disruption experiment was carried out for each dnaK gene by inserting an antibiotic resistance marker. Our findings revealed that DnaK1 was not essential for normal growth, whereas DnaK2 and DnaK3 were essential. We also examined the effect of heat shock on the levels of these three DnaK and GroEL proteins and found a varied response to heat shock, with levels depending on each protein. The DnaK2 and GroEL proteins exhibited a typical heat shock response, that is, their synthesis increased upon temperature upshift. In contrast, the synthesis of DnaK1 and DnaK3 did not respond to heat shock; in fact, the level of DnaK1 protein decreased. We also analyzed the effect of overproduction of each DnaK protein in Escherichia coli cells using an inducible expression system. Overproduction of DnaK1 or DnaK2 resulted in defects in cell septation and formation of cell filaments. On the other hand, overproduction of DnaK3 did not result in filamentous cells; rather a swollen and twisted cell morphology was observed. When expressed in an E. coli dnaK756 mutant, dnaK2 could suppress the growth deficiency at the nonpermissive temperature, while dnaK1 and dnaK3 could not suppress this phenotype. On the contrary, overproduction of DnaK1 or DnaK3 resulted in growth inhibition at the permissive temperature. These results suggest that different types of Hsp70 in the same cellular compartment have specific functions in the cell.  相似文献   

7.
Summary In order to deregulate arginine biosynthesis in Synechococcus sp. PCC7942, d-arginine-resistant cell lines were selected following ethyl methanesulfonate mutagenesis of wild-type (WT) cells. Three of these arginine-producing mutant (APM) cell lines, APM1, APM31 and APM40, were putative regulatory mutants based upon secretion of l-arginine into their growth medium. HPLC of lyophilized post-harvest supernatants of APM 31 and 40 resolved two predominant amino acids, arginine and citrulline. In-vitro activity of N-acetylglutamate kinase (NAGK), the proposed regulatory enzyme of the arginine pathway, was about 100-fold less sensitive to l-arginine inhibition in extracts from APM 31 and 40 than the enzyme in WT extracts. The enzyme from APM 1 was 20-fold less sensitive to l-arginine inhibition than WT. The most likely site of mutation in each of the APM cell lines is in the gene for NAGK, rendering the enzymes insensitive to l-arginine feedback control. These strains can be utilized for the phototrophic production of arginine. Offprint requests to: S. E. Bingham  相似文献   

8.
In the present study, we describe the sequential events by which the cyanobacterium Synechococcus sp. PCC 7942 adapts to iron deficiency. In doing so, we have tried to elucidate both short and long-term acclimation to low iron stress in order to understand how the photosynthetic apparatus adjusts to low iron conditions. Our results show that after an initial step, where CP43' is induced and where ferredoxin is partly replaced by flavodoxin, the photosynthetic unit starts to undergo major rearrangements. All measured components of Photosystem I (PSI), PSII and cytochrome (Cyt) ƒ decrease relative to chlorophyll (Chl) a . The photochemical efficiencies of the two photosystems also decline during this phase of acclimation. The well-known drop in phycobilisome content measured as phycocyanin (PC)/Chl was not due to an increased degradation, but rather to a decreased rate of synthesis. The largest effects of iron deficiency were observed on PSI, the most iron-rich structure of the photosynthetic apparatus. In the light of the recent discovery of an iron deficiency induced CP43' ring around PSI a possible dual function of this protein as both an antenna and a quencher is discussed. We also describe the time course of a blue shift in the low temperature Chl emission peak around 715 nm, which originates in PSI. The shift might reflect the disassembly and/or degradation of PSI during iron deficiency and, as a consequence, PSI might under these conditions be found predominantly in a monomeric form. We suggest that the observed functional and compositional alterations represent cellular acclimation enabling growth and development under iron deficiency, and that growth ceases when the acclimation capacity is exhausted. However, the cells remain viable even after growth has ceased, since they resumed growth once iron was added back to the culture.  相似文献   

9.
10.
11.
The glnB gene product (PII protein) from Synechococcus sp. has previously been identified among 32P-labeled proteins, and its modification state has been observed to depend on both the nitrogen source and the spectral light quality (N. F. Tsinoremas, A. M. Castets, M. A. Harrison, J. F. Allen, and N. Tandeau de Marsac, Proc. Natl. Acad. Sci. USA 88:4565-4569, 1991). As shown in this study, modification of the PII protein primarily responds to the N-status of the cell, and its light-dependent variations are are mediated through nitrate metabolism. Modification of the PII protein results in the appearance of three isomeric forms with increasing negative charge. Unlike its homolog counterparts characterized so far, PII in Synechococcus sp. is modified by phosphorylation on a serine residue, which represents a unique kind of protein modification in bacterial nitrogen signalling pathways.  相似文献   

12.
Two open reading frames denoted as cpcE and cpcF were cloned and sequenced from Synechococcus sp. PCC 6301. The cpcE and cpcF genes are located downstream of the cpcB2A2 gene cluster in the phycobilisome rod operon and can be transcribed independently of the upstream cpcB2A2 gene cluster. The cpcE and cpcF genes were separately inactivated by insertion of a kanamycin resistance cassette in Synechococcus sp. PCC 7942 to generate mutants R2EKM and R2FKM, respectively, both of which display a substantial reduction in spectroscopically detectable phycocyanin. The levels of - and -phycocyanin polypeptides were reduced in the R2EKM and R2FKM mutants although the phycocyanin and linker genes are transcribed at normal levels in the mutants as in the wild type indicating the requirement of the functional cpcE and cpcF genes for normal accumulation of phycocyanin. Two biliprotein fractions were isolated on sucrose density gradient from the R2EKM/R2FKM mutants. The faster sedimenting fraction consisted of intact phycobilisomes. The slower sedimenting biliprotein fraction was found to lack phycocyanin polypeptides, thus no free phycocyanin was detected in the mutants. Characterization of the phycocyanin from the mutants revealed that it was chromophorylated, had a max similar to that from the wild type and could be assembled into the phycobilisome rods. Thus, although phycocyanin levels are reduced in the R2EKM and R2FKM mutants, the remaining phycocyanin seems to be chromophorylated and similar to that in the wild type with respect to phycobilisome rod assembly and energy transfer to the core.  相似文献   

13.
We use confocal fluorescence microscopy and fluorescence recovery after photobleaching to show that a specific light signal controls the diffusion of a protein complex in thylakoid membranes of the cyanobacterium Synechococcus sp PCC7942 in vivo. In low light, photosystem II appears completely immobile in the membrane. However, exposure to intense red light triggers rapid diffusion of up to approximately 50% of photosystem II reaction centers. Particularly intense or prolonged red light exposure also leads to the redistribution of photosystem II to specific zones within the thylakoid membranes. The mobilization does not result from photodamage but is triggered by a specific red light signal. We show that mobilization of photosystem II is required for the rapid initiation of recovery from photoinhibition. Thus, intense red light triggers a switch from a static to a dynamic configuration of thylakoid membrane protein complexes, and this facilitates the rapid turnover and repair of the complexes. The localized concentrations of photosystem II seen after red light treatment may correspond to specific zones where the repair cycle is active.  相似文献   

14.
We have constructed a mutant of the cyanobacterium Synechococcus sp. PCC7942 deficient in the Photosystem I subunit PsaL. As has been shown in other cyanobacteria, we find that Photosystem I is exclusively monomeric in the PsaL(-) mutant: no Photosystem I trimers can be isolated. The mutation does not significantly alter pigment composition, photosystem stoichiometry, or the steady-state light-harvesting properties of the cells. In agreement with a study in Synechococcus sp. PCC7002 [Schluchter et al. (1996) Photochem Photobiol 64: 53-66], we find that state transitions, a physiological adaptation of light-harvesting function, occur significantly faster in the PsaL(-) mutant than in the wild-type. To explore the reasons for this, we have used fluorescence recovery after photobleaching (FRAP) to measure the diffusion of phycobilisomes in vivo. We find that phycobilisomes diffuse, on average, nearly three times faster in the PsaL(-) mutant than in the wild-type. We discuss the implications for the mechanism of state transitions in cyanobacteria.  相似文献   

15.
16.
17.
Two unicellular cyanobacteria Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942 showed contrasting responses to chromate stress with EC50 of 12 ± 2 and 150 ± 15 μM potassium dichromate respectively. There was no depletion of chromate in growth medium in both the cases. Using labeled chromate, very low accumulation (<1 nmol/108 cells) was observed in Synechocystis after incubation for 24 h in light. No accumulation of chromate could be observed in Synechococcus under these conditions. Chromate oxyanion is known to enter the cells using sulfate uptake channels. Therefore, inhibition of sulfate uptake caused by chromate was monitored using 35S labeled sulfate. IC50 values of chromate for 35sulfate uptake were higher in Synechococcus as compared to Synechocystis. The results suggested that the sulfate transporters in Synechococcus have lower affinity to chromate than those from Synechocystis possibly due to differences in affinity of sulfate receptors for chromate. Bioinformatic analyses revealed presence of sulfate and chromate transporters with considerable similarity; however, minor differences in these may play a role in their differential response to chromate. In both cases the IC50 values decreased when sulfate concentration was reduced in the medium indicating competitive inhibition of sulfate uptake by chromate. Interestingly, Synechococcus showed stimulation of growth at concentrations of chromate less than 100 μM, which affected its cell size without disturbing the ultrastructure and thylakoid organization. In Synechocystis, growth with 12 μM potassium dichromate damaged the ultrastructure and thylakoid organization with slight elongation of the cells. The results suggested that Synechococcus possesses efficient strategies to prevent entry and to remove chromate from the cell as compared to Synechocystis. This is the first time a differential response of Synechococcus 7942 and Synechocystis 6803 to chromate is reported. The contrasting characteristics observed in the two cyanobacteria will be useful in understanding the basis of resistance or susceptibility to chromate.  相似文献   

18.
19.
报道了室温、空气环境下聚球藻Synechococcus sp.PCC7942氢酶的分离纯化.经过超声破碎、超速离心、离子交换层析、疏水层析及凝胶层析等步骤,氢酶被纯化了218倍,得率为6.5%,比活为1.46U·mg-1蛋白.纯化氢酶的SDS-PAGE图显示五条蛋白带,分子量约为83kDa,60kDa,47kDa,30kDa和27kDa.该氢酶为可溶性的双向氢酶,其催化放氢的最佳电子供体为还原态的甲基紫精,最适温度50℃,最适pH8.0.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号