首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The accumulation and fate of model microbial "pathogens" within a drinking-water distribution system was investigated in naturally grown biofilms formed in a novel pilot-scale water distribution system provided with chlorinated and UV-treated water. Biofilms were exposed to 1-mum hydrophilic and hydrophobic microspheres, Salmonella bacteriophages 28B, and Legionella pneumophila bacteria, and their fate was monitored over a 38-day period. The accumulation of model pathogens was generally independent of the biofilm cell density and was shown to be dependent on particle surface properties, where hydrophilic spheres accumulated to a larger extent than hydrophobic ones. A higher accumulation of culturable legionellae was measured in the chlorinated system compared to the UV-treated system with increasing residence time. The fate of spheres and fluorescence in situ hybridization-positive legionellae was similar and independent of the primary disinfectant applied and water residence time. The more rapid loss of culturable legionellae compared to the fluorescence in situ hybridization-positive legionellae was attributed to a loss in culturability rather than physical desorption. Loss of bacteriophage 28B plaque-forming ability together with erosion may have affected their fate within biofilms in the pilot-scale distribution system. The current study has demonstrated that desorption was one of the primary mechanisms affecting the loss of microspheres, legionellae, and bacteriophage from biofilms within a pilot-scale distribution system as well as disinfection and biological grazing. In general, two primary disinfection regimens (chlorination and UV treatment) were not shown to have a measurable impact on the accumulation and fate of model microbial pathogens within a water distribution system.  相似文献   

2.
Traditional techniques to study microbes, such as culturable counts, microbial biomass, or microbial activity, do not give information on the microbial ecology of drinking water systems. The aim of this study was to analyze whether the microbial community structure and biomass differed in biofilms collected from two Finnish drinking water distribution systems (A and B) receiving conventionally treated (coagulation, filtration, disinfection) surface water. Phospholipid fatty acid methyl esters (PLFAs) and lipopolysaccharide 3-hydroxy fatty acid methyl esters (LPS 3-OH-FAs) were analyzed from biofilms as a function of water residence time and development time. The microbial communities were rather stabile through the distribution systems, as water residence time had minor effects on PLFA profiles. In distribution system A, the microbial community structure in biofilms, which had developed in 6 weeks, was more complex than those grown for 23 or 40 weeks. The microbial communities between the studied distribution systems differed, possibly reflecting the differences in raw water, water purification processes, and distribution systems. The viable microbial biomass, estimated on the basis of PLFAs, increased with increasing water residence time in both distribution systems. The quantitative amount of LPS 3-OH-FAs increased with increasing development time of biofilms of distribution system B. In distribution system A, LPS 3-OH-FAs were below the detection limit.  相似文献   

3.
The effect of phosphorus addition on survival of Escherichia coli in an experimental drinking water distribution system was investigated. Higher phosphorus concentrations prolonged the survival of culturable E. coli in water and biofilms. Although phosphorus addition did not affect viable but not culturable (VBNC) E. coli in biofilms, these structures could act as a reservoir of VBNC forms of E. coli in drinking water distribution systems.  相似文献   

4.
5.
A pilot-scale study was initiated to examine the behavior of viruses pulse injected into a distribution system. The influence of a free-chlorine residual and that of virus preadsorption to clay particles was evaluated by tracing the viruses both in the water flow and after elution from the biofilm. These experiments demonstrated, first, that virus preadsorption on 40 mg of Na-montmorillonite per liter increased the residence time of the viruses within the pilot plant by roughly three times and, second, that preadsorption to clay did not prevent viruses from being inactivated by chlorine. Moreover, with no clay added, a greater amount of viruses was recovered from the biofilm than from the water flow (by a factor of 2 or 10 in the absence or presence of chlorine, respectively), indicating a tendency for virus accumulation within biofilms.  相似文献   

6.
A pilot-scale study was initiated to examine the behavior of viruses pulse injected into a distribution system. The influence of a free-chlorine residual and that of virus preadsorption to clay particles was evaluated by tracing the viruses both in the water flow and after elution from the biofilm. These experiments demonstrated, first, that virus preadsorption on 40 mg of Na-montmorillonite per liter increased the residence time of the viruses within the pilot plant by roughly three times and, second, that preadsorption to clay did not prevent viruses from being inactivated by chlorine. Moreover, with no clay added, a greater amount of viruses was recovered from the biofilm than from the water flow (by a factor of 2 or 10 in the absence or presence of chlorine, respectively), indicating a tendency for virus accumulation within biofilms.  相似文献   

7.
Abstract

Most water utilities use chlorine or chloramine to produce potable water. These disinfecting agents react with water to produce residual oxidants within a water distribution system (WDS) to control bacterial growth. While monochloramine is considered more stable than chlorine, little is known about the effect it has on WDS biofilms. Community structure of 10-week old WDS biofilms exposed to disinfectants was assessed after developing model biofilms from unamended distribution water. Four biofilm types were developed on polycarbonate slides within annular reactors while receiving chlorine, chloramine, or inactivated disinfectant residual. Eubacteria were identified through 16S rDNA sequence analysis. The model WDS biofilm exposed to chloramine mainly contained Mycobacterium and Dechloromonas sequences, while a variety of alpha- and additional beta-proteobacteria dominated the 16S rDNA clone libraries in the other three biofilms. Additionally, bacterial clones distantly related to Legionella were found in one of the biofilms receiving water with inactivated chlorine residual. The biofilm reactor receiving chloraminated water required increasing amounts of disinfectant after 2 weeks to maintain chlorine residual. In contrast, free chlorine residual remained steady in the reactor that received chlorinated water. The differences in bacterial populations of potable water biofilms suggest that disinfecting agents can influence biofilm development. These results also suggest that biofilm communities in distribution systems are capable of changing in response to disinfection practices.  相似文献   

8.
Most water utilities use chlorine or chloramine to produce potable water. These disinfecting agents react with water to produce residual oxidants within a water distribution system (WDS) to control bacterial growth. While monochloramine is considered more stable than chlorine, little is known about the effect it has on WDS biofilms. Community structure of 10-week old WDS biofilms exposed to disinfectants was assessed after developing model biofilms from unamended distribution water. Four biofilm types were developed on polycarbonate slides within annular reactors while receiving chlorine, chloramine, or inactivated disinfectant residual. Eubacteria were identified through 16S rDNA sequence analysis. The model WDS biofilm exposed to chloramine mainly contained Mycobacterium and Dechloromonas sequences, while a variety of alpha- and additional beta-proteobacteria dominated the 16S rDNA clone libraries in the other three biofilms. Additionally, bacterial clones distantly related to Legionella were found in one of the biofilms receiving water with inactivated chlorine residual. The biofilm reactor receiving chloraminated water required increasing amounts of disinfectant after 2 weeks to maintain chlorine residual. In contrast, free chlorine residual remained steady in the reactor that received chlorinated water. The differences in bacterial populations of potable water biofilms suggest that disinfecting agents can influence biofilm development. These results also suggest that biofilm communities in distribution systems are capable of changing in response to disinfection practices.  相似文献   

9.
A second-generation solar disinfection (SODIS) system (pouch) was constructed from food-grade, commercially available packaging materials selected to fully transmit and amplify the antimicrobial properties of sunlight. Depending upon the season, water source, and challenge organism, culturable bacteria were reduced between 3.5 and 5.5 log cycles. The system was also capable of reducing the background presumptive coliform population in nonsterile river water below the level of detection. Similar experiments conducted with a model virus, the F-specific RNA bacteriophage MS2, indicated that the pouch was slightly less efficient, reducing viable plaques by 3.5 log units in comparison to a 5.0 log reduction of enterotoxigenic Escherichia coli O18:H11 within the same time period. These results suggest that water of poor microbiological quality can be improved by using a freely available resource (sunlight) and a specifically designed plastic pouch constructed of food-grade packaging materials.  相似文献   

10.
The effect of phosphorus addition on survival of Escherichia coli in an experimental drinking water distribution system was investigated. Higher phosphorus concentrations prolonged the survival of culturable E. coli in water and biofilms. Although phosphorus addition did not affect viable but not culturable (VBNC) E. coli in biofilms, these structures could act as a reservoir of VBNC forms of E. coli in drinking water distribution systems.  相似文献   

11.
This pilot study compares the compositions of bacterial biofilms in pipe networks supplied with water containing either high levels of biodegradable organic matter (BOM) or low levels of BOM (conventionally or biologically treated, respectively). The Microbial Identification System for fatty acid analysis was utilized in this study to identify a large number of organisms (>1,400) to determine population changes in both conventionally and biologically treated water and biofilms. Data generated during this study indicated that suspended bacteria have little impact on biofilms, and despite treatment (conventional or biological), suspended microbial populations were similar following disinfection. Prechlorination with free chlorine resulted not only in reduced plate count values but also in a dramatic shift in the composition of the bacterial population to predominately gram-positive bacteria. Chlorination of biologically treated water produced the same shifts toward gram-positive bacteria. Removal of assimilable organic carbon by the biologically active filters slowed the rate of biofilm accumulation, but biofilm levels were similar to those found in conventionally treated water within several weeks. Iron pipes stimulated the rate of biofilm development, and bacterial levels on disinfected iron pipes exceeded those for chlorinated polyvinyl chloride pipes. The study showed that the iron pipe surface dramatically influenced the composition, activity, and disinfection resistance of biofilm bacteria.  相似文献   

12.
This pilot study compares the compositions of bacterial biofilms in pipe networks supplied with water containing either high levels of biodegradable organic matter (BOM) or low levels of BOM (conventionally or biologically treated, respectively). The Microbial Identification System for fatty acid analysis was utilized in this study to identify a large number of organisms (>1,400) to determine population changes in both conventionally and biologically treated water and biofilms. Data generated during this study indicated that suspended bacteria have little impact on biofilms, and despite treatment (conventional or biological), suspended microbial populations were similar following disinfection. Prechlorination with free chlorine resulted not only in reduced plate count values but also in a dramatic shift in the composition of the bacterial population to predominately gram-positive bacteria. Chlorination of biologically treated water produced the same shifts toward gram-positive bacteria. Removal of assimilable organic carbon by the biologically active filters slowed the rate of biofilm accumulation, but biofilm levels were similar to those found in conventionally treated water within several weeks. Iron pipes stimulated the rate of biofilm development, and bacterial levels on disinfected iron pipes exceeded those for chlorinated polyvinyl chloride pipes. The study showed that the iron pipe surface dramatically influenced the composition, activity, and disinfection resistance of biofilm bacteria.  相似文献   

13.
Biofilms containing diverse microflora were developed in tap water on glass and polybutylene surfaces. Legionella pneumophila within the biofilms was labelled with monoclonal antibodies and visualized with immunogold or fluorescein isothiocyanate conjugates. Development of a differential interference contrast technique in an episcopic mode enabled simultaneous visualization of the total biofilm flora and gold-labelled legionellae. The legionellae occurred in microcolonies within the biofilm in the absence of amoebae, suggesting that the bacterial consortium was supplying sufficient nutrients to enable legionellae to grow extracellularly within the biofilm.  相似文献   

14.
Biofilms containing diverse microflora were developed in tap water on glass and polybutylene surfaces. Legionella pneumophila within the biofilms was labelled with monoclonal antibodies and visualized with immunogold or fluorescein isothiocyanate conjugates. Development of a differential interference contrast technique in an episcopic mode enabled simultaneous visualization of the total biofilm flora and gold-labelled legionellae. The legionellae occurred in microcolonies within the biofilm in the absence of amoebae, suggesting that the bacterial consortium was supplying sufficient nutrients to enable legionellae to grow extracellularly within the biofilm.  相似文献   

15.
The susceptibility of Legionella pneumophila to iodination was studied with cultures grown in well water, on rich agar media, and attached to stainless-steel surfaces. Legionella pneumophila grown in water cultures in association with other microorganisms were less sensitive to disinfection by chlorine and iodine than were agar-passaged cultures. Differences in sensitivity to disinfection between water-cultured and agar-grown legionellae were determined by comparing C x T values (concentration in milligrams per litre multiplied by time in minutes to achieve 99% decrease in viability) and CM x T values (concentration in molarity). Iodine (1500x) gave a greater difference in CM x T values than did chlorine (68x). Iodine was 50 times more effective than chlorine when used with agar-grown cultures but was only twice as effective when tested against water-grown Legionella cultures. C x T x S values (C x T multiplied by percent survivors), which take into consideration the percent surviving bacteria, were used to compare sensitivities in very resistant populations, such as those in biofilms. Water cultures of legionellae associated with stainless-steel surfaces were 135 times more resistant to iodination than were unattached legionellae, and they were 210,000 times more resistant than were agar-grown cultures. These results indicate that the conditions under which legionellae are grown can dramatically affect their susceptibility to some disinfectants and must be considered when evaluating the efficacy of a disinfecting agent.  相似文献   

16.
Monitoring of biofilms subjected to different operating conditions was performed using a flow cell system. The system was fed by chlorine-free tap water, with and without added nutrients (0.5 mg l(-1) carbon, 0.1 mg l(-1) nitrogen and 0.01 mg l(-1) phosphorus), and biofilms were grown on polyvinyl chloride (PVC) and stainless steel (SS) coupons, both in laminar and turbulent flow. The parameters analysed were culturable cells, using R2A, and total bacteria, which was assessed using the 4,6-diamino-2-phenylindole (DAPI) staining method. The impact of the different operating conditions in the studied parameters was established using Multivariate Analysis of Variance (MANOVA). From the most relevant to the least relevant factor, the total and culturable bacteria in biofilms increased due to the addition of nutrients to water (F = 20.005; p < 0.001); the use of turbulent (Re = 11000) instead of laminar (Re = 2000) hydrodynamic flows (F = 9.173; p < 0.001); and the use of PVC instead of SS as the support material (F = 2.848; p = 0.060). Interactions between these conditions, namely between surface and flow (F = 8.235; p < 0.001) and also flow and nutrients (F = 5.498; p < 0.05) have also proved to significantly influence biofilm formation. This work highlights the need for a deeper understanding of how the large spectrum of conditions interact and affect biofilm formation potential and accumulation with the final purpose of predicting the total and culturable bacteria attached to real drinking water distribution pipes based on the system characteristics.  相似文献   

17.
18.
Susceptibility of Legionella pneumophila to chlorine in tap water.   总被引:10,自引:9,他引:1       下载免费PDF全文
A study was conducted to compare the susceptibility of legionellae and coliforms to disinfection by chlorine. The chlorine residuals used were similar to concentrations that might be found in the distribution systems of large public potable water supplies. The effects of various chlorine concentrations, temperatures, and pH levels were considered. A number of different Legionella strains, both environmental and clinical, were tested. The results indicate that legionellae are much more resistant to chlorine than are coliform bacteria. At 21 degrees C, pH 7.6, and 0.1 mg of free chlorine residual per liter, a 99% kill of L. pneumophila was achieved within 40 min, compared with less than 1 min for Escherichia coli. The observed resistance is enhanced as conditions for disinfection become less optimal. The required contact time for the removal of L. pneumophilia was twice as long at 4 degrees C than it was at 21 degrees C. These data suggest that legionellae can survive low levels of chlorine for relatively long periods of time.  相似文献   

19.
A second-generation solar disinfection (SODIS) system (pouch) was constructed from food-grade, commercially available packaging materials selected to fully transmit and amplify the antimicrobial properties of sunlight. Depending upon the season, water source, and challenge organism, culturable bacteria were reduced between 3.5 and 5.5 log cycles. The system was also capable of reducing the background presumptive coliform population in nonsterile river water below the level of detection. Similar experiments conducted with a model virus, the F-specific RNA bacteriophage MS2, indicated that the pouch was slightly less efficient, reducing viable plaques by 3.5 log units in comparison to a 5.0 log reduction of enterotoxigenic Escherichia coli O18:H11 within the same time period. These results suggest that water of poor microbiological quality can be improved by using a freely available resource (sunlight) and a specifically designed plastic pouch constructed of food-grade packaging materials.  相似文献   

20.
Susceptibility of Legionella pneumophila to chlorine in tap water   总被引:7,自引:0,他引:7  
A study was conducted to compare the susceptibility of legionellae and coliforms to disinfection by chlorine. The chlorine residuals used were similar to concentrations that might be found in the distribution systems of large public potable water supplies. The effects of various chlorine concentrations, temperatures, and pH levels were considered. A number of different Legionella strains, both environmental and clinical, were tested. The results indicate that legionellae are much more resistant to chlorine than are coliform bacteria. At 21 degrees C, pH 7.6, and 0.1 mg of free chlorine residual per liter, a 99% kill of L. pneumophila was achieved within 40 min, compared with less than 1 min for Escherichia coli. The observed resistance is enhanced as conditions for disinfection become less optimal. The required contact time for the removal of L. pneumophilia was twice as long at 4 degrees C than it was at 21 degrees C. These data suggest that legionellae can survive low levels of chlorine for relatively long periods of time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号