首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
BACKGROUND: Prostate cancer is the second leading cause of male death in the United States. The incidence increases most rapidly with age, and multiple genetic and epigenetic factors have been implicated in the initiation, progression, and metastasis of the cancer. Nevertheless, scientific knowledge of the molecular mechanisms underlying the disease is still limited; and hence treatment has only been partially successful. The objective of the current studies was to examine the role of caspase 3 (CPP32) and NAD(P)H:quinone oxidoreductase (NQO1) in the signaling of genistein-and beta-lapachone (bLap)-induced apoptosis in human prostate carcinoma cells PC3. RESULTS: Both genistein and bLap produced dose-dependent growth inhibition and treatment-induced apoptosis in PC3. Treatment with caspase 3 inhibitor, DEVD-fmk before exposure to genistein, significantly inhibited caspase 3 expression and treatment-induced apoptosis; implicating CPP32 as the main target in genistein-induced apoptosis in PC3. Contrary to this observation, inhibition of CPP32 did not significantly influence bLap-induced apoptosis; implying that the major target of bLap-induced apoptosis may not be the caspase. Treatment with NQO1 inhibitor, dicoumarol (50 microM), prior to exposure of PC3 to bLap led to significant decrease in bLap toxicity concurrent with significant decrease in treatment-induced apoptosis; thus implicating NQO1 as the major target in beta-lapachone-induced apoptosis in PC3. In addition, the data demonstrated that NQO1 is the major target in bLap-genistein (combination)-induced apoptosis. On the contrary, blocking NQO1 activity did not significantly affect genistein-induced apoptosis; implying that NQO1 pathway may not be the main target for genistein-induced apoptosis in PC3 cells. Furthermore, blocking NQO1 and CPP32 did not confer 100% protection against genistein-induced or bLap-induced apoptosis. CONCLUSION: The data thus demonstrate that both genistein-and bLap-induced apoptosis are mostly but not completely dependent on CPP32 and NQO1 respectively. Other minor alternate death pathways may be involved. This suggests that some death receptor signals do not utilize the caspase CPP32 and/or the NQO1 death pathways in PC3. The demonstrated synergism between genistein and bLap justifies consideration of these phytochemicals in chemotherapeutic strategic planning.  相似文献   

3.
The effects of genistein on testicular cells, TM3, TM4, and GC-1 spg, were studied in vitro. First, each cell line was cultured with pre-determined concentrations of genistein for a maximum of 72 h to assess the effects of genistein on in vitro growth of the test cells. A second series of experiments were performed to determine the degree of genistein-induced apoptosis in these cells, using Apop-TagR kit reagents, to detect apoptotic cells in situ by specific end labeling, and detection of DNA fragments produced by the apoptotic process. The results obtained indicate that: i) genistein inhibits the growth and proliferation of testicular cells; ii) growth inhibition and proliferation is dose- and exposure-time dependent; iii) there is significant difference in sensitivity of the different testicular cells to genistein; iv) genistein induces apoptosis in testicular cells in a concentration-dependent manner. Genistein-induced apoptosis identifies genistein as a potential diagnostic and therapeutic tool in testicular pathophysiological research.  相似文献   

4.
The effects of genistein (Gn), sodium azide (naz), and dexamethasone (dxm) on testicular cells TM3, TM4 and GC-1 spg were studied in vitro. First, a series of experiments were performed to assess the response of the cells to the exposure of Gn, naz, dxm, a combination of Gn with naz and Gn with dxm. Trypan blue exclusion assay was used to determine the percentage of viability, and LDH-cytotoxicity test was used to assess the degree of treatment-induced cytotoxicity on each cell type. A second series of experiments were performed to study cytomorphology and determine the type and percentage of treatment-induced cell death (apoptosis and necrosis) on each cell line, using fluorescent dye technique to detect apoptotic and necrotic cells, and tunnel assay to confirm apoptosis. The results from the data obtained demonstrated: i) that incubation of testis cells with each of the agents (Gn, dxm, naz) alone and in two combinations (Gn-dxm, and Gn-naz) induced significant testicular cell death; ii) that both genistein and dexamethasone mostly and significantly induced apoptotic cell death while sodium azide induced necrotic cell death; iii) that addition of dexamethasone to genistein demonstrated synergism in apoptosis on testis cells; and iv) that combination of naz with Gn demonstrated synergism in necrosis on testis cells even though Gn alone did not induce significant necrosis. It is concluded that the synergistic actions of genistein and dxm, and of genistein + sodium azide in induction of apoptosis and/or necrosis may be of clinical and pathophysiological research interest considering the chemopreventive and chemotherapeutic potential of genistein; and the clinico-pharmacological application of dexamethasone and sodium azide.  相似文献   

5.
Although previous studies demonstrated that genistein-induced apoptosis of various cell types including RPE-J cells, the involvement of mitochondrial events in such types of apoptosis has not been demonstrated to date. In this investigation of genistein-induced apoptosis of RPE-J cells, genistein induced the reduction of the mitochondrial membrane potential and the release of cytochrome c to cytosol. A mitochondrial permeability transition pore (PTP) blocker bongkrekic acid prevented the reduction of the mitochondrial membrane potential and cytochrome c release, and consequently abolished caspase-3 activation, nuclear condensation, and DNA fragmentation. On the other hand, zVAD-fmk did not inhibit the mitochondrial event such as the reduction of the mitochondrial membrane potential and cytochrome c release although it prevented caspase-3 activation, nuclear condensation, and DNA fragmentation. Taken together, genistein induces apoptosis of RPE-J cells by opening the mitochondrial PTP, and the mitochondrial event in this type of apoptosis is caused independently of caspase.  相似文献   

6.
Manganese ions block apoptosis of phagocytes induced by various agents. The prevention of apoptosis was attributed to the activation of manganous superoxide dismutase (Mn-SOD) and to the antioxidant function of free Mn2+ cations. However, the effect of Mn2+ on B cell apoptosis is not documented. In this study, we investigated the effects of Mn2+ on the apoptotic process in human B cells. We observed that Mn2+ but not Mg2+ or Ca2+, inhibited cell growth and induced apoptosis of activated tonsilar B cells, Epstein Barr virus (EBV)-negative Burkitt's lymphoma cell lines (BL-CL) and EBV-transformed B cell lines (EBV-BCL). In the same conditions, no apoptosis was observed in U937, a monoblastic cell line. Induction of B cell apoptosis by Mn2+ was time- and dose-dependent. The cell permeable tripeptide inhibitor of ICE family cysteine proteases, zVAD-fmk, suppressed Mn2+-induced apoptosis. Furthermore, Mn2+ triggered the activation of interleukin-1beta converting enzyme (ICE/caspase 1), followed by the activation of CPP32/Yama/Apopain/caspase-3. In addition, poly-(ADP-ribose) polymerase (PARP), a cellular substrate for CPP32 protease was degraded to generate apoptotic fragments in Mn2+-treated B cell lines. The inhibitor, zVAD-fmk suppressed Mn2+-triggered CPP32 activation and PARP cleavage and apoptosis. These results indicate that the activation of caspase family proteases is required for the apoptotic process induced by Mn2+ treatment of B cells. While the caspase-1 inhibitor YVAD was unable to block apoptosis, the caspase-3 specific inhibitor DEVD-cmk, partially inhibited Mn2+-induced CPP32 activation, PARP cleavage and apoptosis of cells. Moreover, Bcl-2 overexpression in BL-CL effectively protected cells from apoptosis and cell death induced by manganese. This is the first report showing the involvement of Mn2+ in the regulation of B lymphocyte death presumably via a caspase-dependent process with a death-protective effect of Bcl-2.  相似文献   

7.
Some widely used antidepressants such as imipramine, clomipramine, and citalopram have been found to possess antineoplastic effects. In the present study, these compounds were found to induce apoptotic cell death in human acute myeloid leukemia HL-60 cells. Apoptosis induced by the antidepressants was identified by electron microscopy and conventional agarose gel electrophoresis and was quantitated by propodium iodide staining and the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) via flow cytometry. Treatment with apoptosis-inducing concentrations of the antidepressants (80 microM imipramine, 35 microM clomipramine, or 220 microM citalopram) caused induction of caspase-3/caspase-3-like activity, which was monitored by the cleavage of poly(ADP-ribose) polymerase (PARP), the loss of the 32 kD caspase-3 (CPP32) precursor, and the cleavage of the fluorescent CPP32-like substrate PhiPhiLux. Pretreatment with a potent caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl-ketone (zVAD-fmk) inhibited antidepressant-induced CPP32/CPP32-like activity and apoptosis. Furthermore, activation of caspase induced by the antidepressants was preceded by the hypergeneration of intracellular reactive oxygen species (ROS). These results suggested that the antidepressants may induce apoptosis via a caspase-3-dependent pathway, and induction of apoptosis by the antidepressants may provide a clue for the mechanism of their antineoplastic effects.  相似文献   

8.
The aim of the current study is to investigate the effect of ceramides on genistein-induced anti-melanoma effects in vitro. We found that exogenously added cell-permeable short-chain ceramides (C6) dramatically enhanced genistein-induced growth inhibition and apoptosis in cultured melanoma cells. Genistein treatment only induced a moderate intracellular ceramides accumulation in B16 melanoma cells. Two different agents including 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), a ceramide glucosylation inhibitor, and the sphingosine kinase-1 (SphK1) inhibitor II (SKI-II), a sphingosine (ceramides precursor) phosphorylation inhibitor, both facilitated genistein-induced ceramides accumulation and melanoma cell apoptosis. Co-administration of ceramide (C6) and genistein induced a significant Akt inhibition and c-jun-NH(2)-kinase (JNK) activation, caspase-3 cleavage and cytochrome c release. Caspase-3 inhibitor z-DVED-fmk, JNK inhibitor SP 600125, or to restore Akt activation by introducing a constitutively active form of Akt (CA-Akt) diminished ceramide (C6) and genistein co-administration-induced in vitro anti-melanoma effect. Our study suggests that increasing cellular level of ceramides may sensitize genistein-induced anti-melanoma effects.  相似文献   

9.
Coxsackievirus B3-induced apoptosis and caspase-3   总被引:11,自引:0,他引:11  
Yuan JP  Zhao W  Wang HT  Wu KY  Li T  Guo XK  Tong SQ 《Cell research》2003,13(3):203-209
  相似文献   

10.
Exposure of mammalian cells to ultraviolet (UV) light elicits a cellular response and can also lead to apoptotic cell death. In this report, we show that a 36-kDa myelin basic protein (MBP) kinase detected by an in-gel kinase assay can be dramatically activated during the early stages of UV irradiation-triggered apoptosis of A431 cells. Immunoblot analysis revealed that this 36-kDa MBP kinase could be recognized by an antibody against the C-terminal regions of a family of p21Cdc42/Rac-activated kinases (PAKs). By using this antibody and a PAK2-specific antibody against the N-terminal region of PAK2 as studying tools, we further demonstrated that UV irradiation caused cleavage of PAK2 to generate a 36-kDa C-terminal catalytic fragment and a 30-kDa N-terminal fragment in A431 cells. The appearance of the 36-kDa C-terminal catalytic fragment of PAK2 matched exactly with the activation of the 36-kDa MBP kinase in A431 cells upon UV irradiation. In addition, UV irradiation also led to activation of CPP32/caspase-3, but not ICH-1L/caspase-2 and ICE/caspase-1, in A431 cells and the kinetics of activation of CPP32/caspase-3 appeared to correlate well with that of DNA fragmentation and of cleavage/activation of PAK2, respectively. Moreover, blockage of activation of CPP32/caspase-3 by pretreating the cells with two specific tetrapeptidic inhibitors for caspases (Ac-DEVD-cho and Ac-YVAD-cmk) could significantly attenuate the extent of cleavage/activation of PAK2 induced by UV irradiation. Collectively, the results demonstrate that cleavage and activation of PAK2 can be induced during the early stages of UV irradiation-triggered apoptosis and indicate the involvement of CPP32/caspase-3 in this process. J. Cell. Biochem. 70:442-454, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

11.
Tumor necrosis factor alpha (TNF) or cytotoxic anti-Fas antibodies lead to the activation of apoptotic proteases (caspases) and to sphingomyelinase-mediated ceramide generation. Caspases and ceramide are both known to induce apoptosis on its own, but their relative contribution to Fas- and TNF-induced cell death is not well established. We report here that rapid apoptosis induced by TNF in U937 cells or anti-Fas in Jurkat cells, in the presence of cycloheximide, induced only a very low increase (<20%) in the cell ceramide content. Neither treatment with inhibitors of sphingomyelinases nor incubation of cells with fumonisin B1, which inhibits de novo ceramide synthesis, prevented TNF and Fas-mediated apoptosis. Increasing or depleting the cell ceramide content by prolonged culture in the presence of monensin or fumonisin B1, respectively, did not prevent TNF and Fas-mediated apoptosis. Treatment of cells with sphingomyelinase inhibitors did not affect to the activation of CPP32 (caspase-3) induced by TNF or anti-Fas antibodies. Chromatin condensation and fragmentation in cells treated with anti-Fas or TNF was abrogated by peptide inhibitors of caspases, which also inhibited Fas-, but not TNF-induced cell death. These results indicate that while ceramide does not seem to act as a critical mediator of TNF and Fas-induced apoptosis, it is generated as a consequence of CPP32 activation and could contribute to the spread of the intracellular death signal.  相似文献   

12.
The B cell lymphoma WEHI-231 has been used as a model to study immature B cell tolerance, based on its capacity to undergo growth arrest and programmed cell death on B cell receptor (BCR) cross-linking. Using this model to identify the molecular mechanisms underlying these processes, we found that BCR cross-linking results in the selective activation of caspase 7/Mch3, but not of the other two members of the CPP32 family, caspase 2/Nedd2 and caspase 3/CPP32. This was evidenced by the induction of proteolytic activity against the substrate for the CPP32 subfamily of caspases (z-DVED-AMC) in vitro, as well as PARP proteolysis in vivo and by the processing of the 35 kDa Mch3 into a 32 kDa species, which was later further proteolyzed. The general caspase inhibitor z-VAD-fmk, but not the CPP32 family inhibitor Ac-DEVD-CHO, blocked anti- micro-induced apoptosis, indicating that a caspase not belonging to the CPP32-like family is also implicated in anti- micro-triggered apoptosis. In contrast, z-VAD-fmk was not able to counteract growth arrest induced by anti- micro treatment, suggesting that caspase activation is not necessary for induction of growth arrest. Neither of the inhibitors prevented Mch3 processing; however, z-VAD-fmk prevented proteolysis of the p32 subunit, suggesting that further processing of this subunit is associated with apoptosis. Bcl-2 overexpression prevented anti- micro induction of CPP32-like activity and apoptosis, and blocked further processing of the Mch3 p32 subunit. In contrast, CD40 stimulation completely blocked the appearance of the p32 subunit in addition to blocking CPP32-like activity and apoptosis induced by BCR cross-linking. Moreover, only CD40 stimulation was able to prevent anti- micro-induced growth arrest, which was correlated with inhibition of retinoblastoma and of cyclin A down-regulation. In splenic B cells, Mch3 is also specifically proteolyzed ex vivo after induction of apoptosis by BCR cross-linking, demonstrating the specific involvement of caspase-7/Mch3 in apoptosis induced in B cell tolerance.  相似文献   

13.
Upon activation, cell surface death receptors, Fas/APO-1/CD95 and tumor necrosis factor receptor-1 (TNFR-1), are attached to cytosolic adaptor proteins, which in turn recruit caspase-8 (MACH/FLICE/Mch5) to activate the interleukin-1 beta-converting enzyme (ICE)/CED-3 family protease (caspase) cascade. However, it remains unknown whether these apoptotic proteases are generally involved in apoptosis triggered by other stimuli such as Myc and p53. In this study, we provide lines of evidence that a death protease cascade consisting of caspases and serine proteases plays an essential role in Myc-mediated apoptosis. When Rat-1 fibroblasts stably expressing either s-Myc or c-Myc were induced to undergo apoptosis by serum deprivation, a caspase-3 (CPP32)-like protease activity that cleaves a specific peptide substrate, Ac-DEVD-MCA, appeared in the cell lysates. Induction of s-Myc- and c-Myc-mediated apoptotic cell death was effectively prevented by caspase inhibitors such as Z-Asp-CH2-DCB and Ac-DEVD-CHO. Furthermore, exposing the cells to a serine protease inhibitor, 4-(2-aminoethyl)benzenesulfonyl fluoride (AEBSF), also significantly inhibited s-Myc- and c-Myc-mediated apoptosis and the appearance of the caspase-3-like protease activity in vivo. However, AEBSF did not directly inhibit caspase-3-like protease activity in the apoptotic cell lysates in vitro. Together, these results indicate that caspase-3-like proteases play a critical role in both s-Myc- and c-Myc-mediated apoptosis and that caspase-3-like proteases function downstream of the AEBSF-sensitive step in the signaling pathway of Myc-mediated apoptosis.  相似文献   

14.
alpha-Fetoprotein (AFP) is an oncoembryonal protein with multiple cell growth regulating, differentiating and immunosuppressive activities. Previous studies have shown that treatment of tumor cells in vitro with 1-10 microM AFP produces significant suppression of tumor cell growth by inducing dose-dependent cytotoxicity, but the molecular mechanisms underlying these AFP functions are obscure. Here, we show that AFP cytotoxicity is closely related to apoptosis, as shown by cell morphology, nuclear DNA fragmentation and caspase-3-like activity resulting in cleavage of poly(ADP-ribose) polymerase. Apoptosis was significantly inhibited by a CPP32 family protease inhibitor whereas a general caspase inhibitor had no inhibitory effect, showing some enhancement of AFP-mediated cell death. Using fluorogenic caspase substrates, we found that caspase-3-like proteases were activated as early as 4 h after treatment of Raji cells with 15 microM AFP, whereas caspase-1, caspase-8, and caspase-9-like activity was not detected during the time interval 0.5-17 h. AFP treatment of Raji cells increased Bcl-2 protein, showing that AFP-induced apoptosis is not explained by downregulation of the Bcl-2 gene. This also suggests that AFP operates downstream of the Bcl-2-sensitive step. AFP notably decreased basal levels of soluble and membrane-bound Fas ligand. Incubation of AFP-sensitive tumor cells (HepG2, Raji) with neutralizing anti-Fas, anti-tumor necrosis factor receptor (TNFR)1 or anti-TNFR2 mAb did not prevent AFP-induced apoptosis, demonstrating its independence of Fas-dependent and TNFR-dependent signaling. In addition, it was found that cells resistant to TNF-induced (Raji) or Fas-induced (MCF-7) apoptosis are, nevertheless, sensitive to AFP-mediated cell death. In contrast, cells sensitive to Fas-mediated cell death (Jurkat) are completely resistant to AFP. Taken as a whole, our data demonstrate that: (a) AFP induces apoptosis in tumor cells independently of Fas/Fas ligand or TNFR/TNF signaling pathways, and (b) AFP-mediated cell death involves activation of the effector caspase-3-like proteases, but is independent of upstream activation of the initiator caspase-1, caspase-8, and caspase-9-like proteases.  相似文献   

15.
Green tea polyphenol-(-)epigallocatechin-3-gallate (EGCG)-is a potent chemopreventive agent in many test systems and has been shown to inhibit tumor promotion and induce apoptosis. In this study we describe a novel observation that EGCG displayed strong inhibitory effects on the proliferation and viability of HTB-94 human chondrosarcoma cells in a dose-dependent manner and induced apoptosis. Investigation of the mechanism of EGCG-induced apoptosis revealed that treatment with EGCG resulted in DNA fragmentation, induction of caspase-3/CPP32 activity, and cleavage of the death substrate poly(ADP-ribose)polymerase (PARP). Pretreatment of cells with a synthetic pan-caspase inhibitor (Z-VAD-FMK) and a caspase-3-specific inhibitor (DEVD-CHO) prevented EGCG-induced PARP cleavage. The induction of apoptosis by EGCG via activation of caspase-3/CPP32-like proteases may provide a mechanistic explanation for its antitumor effects.  相似文献   

16.
Nitric oxide (NO) generated from 1-hydroxy-2-0×0-3, 3-bis(2-aminoethyl)-l-triazene (NOC 18), an NO-releasing compound, induced monocytic differentiation of human promyelocytic leukemia HL-60 cells as assessed by expression of nonspecific esterases and morphologic maturation. Simultaneously, DNA fragmentation and morphological alterations typical of apoptosis were also induced. To investigate the mechanisms of apoptosis during differentiation of HL-60 cells induced by NO, the endogenous levels of Bcl-2 and Bax were assessed by immunoblotting. Treatment of cells with NOC 18 slightly reduced the level of Bcl-2 followed by Bax. These changes might be involved in the induction of apoptosis. The involvement of the activation of the interleukin-lβ converting enzyme (ICE) family of proteases (caspases), such as ICE and CPP32, in the pathways was also investigated. CPP32, but not ICE, was strongly activated in response to NOC 18 stimulation, thereby implicating CPP32-like activity in the induction of apoptosis. Moreover, the possible involvement of tyrosine phosphorylation in apoptosis was investigated. Pretreatment of cells with herbimycin A, an inhibitor of tyrosine kinases, suppressed DNA fragmentation and CPP32-like activity, whereas pretreatment with vanadate, an inhibitor of tyrosine phosphatases, enhanced both parameters, suggesting that tyrosine phosphorylation might be involved in the pathways of apoptosis in HL-60 cells induced by NO.  相似文献   

17.
CTLL cells undergo apoptosis when cultured in the absence of IL-2. The IL-1-converting-enzyme (ICE)/ caspase family has been implicated as an integral component of some forms of apoptosis. Numerous members of the caspase family have been identified, and it appears as if caspase-3/CPP32 plays a critical role. Previously we demonstrated that ICE/caspase-1 expression increases in CTLL cells during apoptosis; however, inhibition of ICE activity did not abrogate apoptotic death. The purpose of this report is to determine if other members of the caspase family are involved in T cell apoptosis induced by growth factor starvation. We show that cytosolic CPP32-like activity, as measured by the cleavage of DEVD-pNA and poly(ADP-ribose) polymerase (PARP), increases during apoptosis following growth factor deprivation. Cytosolic CPP32-like activity is inhibited in cells treated with the broad spectrum ICE family inhibitor boc-aspartyl(OMe)-fluoromethylketone (D-FMK) and by VAD-FMK and DEVD-FMK which have greater specificity for CPP32-like ICE homologs; however, only the broad spectrum ICE inhibitor D-FMK inhibited apoptosis. Our results suggest that apoptosis induced by growth factor deprivation involves the caspase family, but increased CPP32-like activity is not sufficient to mediate apoptosis induced by IL-2 starvation.  相似文献   

18.
Sendai virus (SV) infection and replication lead to a strong cytopathic effect with subsequent death of host cells. We now show that SV infection triggers an apoptotic program in target cells. Incubation of infected cells with the peptide inhibitor z-VAD-fmk abrogated SV-induced apoptosis, indicating that proteases of the caspase family were involved. Moreover, proteolytic activation of two distinct caspases, CPP32/caspase-3 and, as shown for the first time in virus-infected cells, FLICE/caspase-8, could be detected. So far, activation of FLICE/caspase-8 has been described in apoptosis triggered by death receptors, including CD95 and tumor necrosis factor (TNF)-R1. In contrast, we could show that SV-induced apoptosis did not require TNF or CD95 ligand. We further found that apoptosis of infected cells did not influence the maturation and budding of SV progeny. In conclusion, SV-induced cell injury is mediated by CD95- and TNF-R1-independent activation of caspases, leading to the death of host cells without impairment of the viral life cycle.  相似文献   

19.
Oxidative stress may be a common mechanism underlying various forms of cell death, including necrosis and apoptosis. The authors have reported previously that the cupric nitrilotriacetate (Cu-NTA), a renal carcinogen, induces oxidative DNA damage and apoptosis in HL-60 human leukemia cells (Ma, Y., et al. Free Radic. Biol Med. 25:568-575; 1998). The focus of this investigation was to examine the possible pathway of the apoptosis induced by Cu-NTA. Results of the present study demonstrated that after exposure of HL-60 cells to Cu-NTA, an increase in lipid hydroperoxide and loss of mitochondrial membrane potential (deltaphim) were observed, followed by the increase in cytosolic cytochrome c that was released from the mitochondria. These events proceeded and triggered the activation of caspase-3 (CPP32/apopain/Yama), resulting in the degradation of poly (ADP-ribose) polymerase and DNA fragmentation. The antioxidants, N-acetylcysteine and glutathione, protected the loss of deltaphim and blocked the apoptosis induced by Cu-NTA. In addition, Ac-DEVD-CHO, a specific inhibitor of caspase-3, inhibited Cu-NTA-induced apoptosis. These results suggested that Cu-NTA-induced apoptosis in HL-60 cells was, at least in part, triggered by free radical-induced lipid peroxidation of membrane, which induced the release of cytochrome c from mitochondria and activation of caspase-3.  相似文献   

20.
We recently demonstrated that TLCK and TPCK could act as potent but nonspecific inhibitors of mature caspases [Frydrych and Mlejnek [2008] J Cell Biochem 103:1646-1656]. The question whether TLCK and TPCK inhibit simultaneously caspase activation and/or processing remained, however, open. In this article, we demonstrated that TPCK even enhanced caspase-3 and caspase-7 processing although it substantially inhibited caspase-3 and caspase-7 enzymatic (DEVDase) activity in HL-60 cells exposed to various cell death inducing stimuli. Under the same conditions, TLCK had no effect or affected caspase-3 and caspase-7 processing marginally depending on cell treatment used. Importantly, TLCK substantially inhibited caspase-3 and caspase-7 enzymatic (DEVDase) activity irrespectively to the treatment used. Interestingly, treatment of cells with toxic concentrations of TPCK alone was accompanied by full caspase-3 and -7 processing even if it induced necrosis. In contrast, treatment of cells with concentrations of TLCK that caused necrosis was accompanied by only partial caspase-3 and caspase-7 processing. Our results clearly indicated that TPCK and TLCK did not inhibit caspase-3 and -7 enzymatic activity by prevention of their activation and/or processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号