首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular genetic approaches to understanding the actin cytoskeleton   总被引:1,自引:0,他引:1  
New tools in molecular genetics, such as genetic interaction screens and conditional gene targeting, have advanced the study of actin dynamics in a number of model systems. Yeast, Dictyostelium, Caenorhabditis elegans, Drosophila, and mice have contributed much in recent years to a better understanding of both the numerous functions and modes of regulation of the actin cytoskeleton.  相似文献   

2.
Alpha-chloralose suppression of neuronal activity   总被引:4,自引:0,他引:4  
Alpha-chloralose, an anesthetic agent widely used in neurophysiologic studies, caused a significant and long-lasting suppression of single neuron activity recorded from two areas of the central nervous system in decerebrate cats. A 50 mg/kg dose (an average anesthetic dose used in many neurophysiologic studies) caused suppression of spontaneous and evoked activity of neurons in the dorsal horn of the spinal cord and greater suppression of neurons in the nucleus reticularis gigantocellularis (NRGC) of the medial medullary reticular formation. Many researchers are of the opinion that alpha-chloralose causes less suppression of the central nervous system (CNS) than other commonly used anesthetic agents. The neuronal suppression recorded in this study appears similar in many ways to suppression caused by other anesthetic agents in the same two areas of the CNS. The results of the present study suggest that alpha-chloralose may be capable of producing significant suppression of neurons in the dorsal horn of the spinal cord and NRGC. Its ability to influence other areas of the CNS should not be inferred from these results, but the data do indicate the importance of evaluating the effects of anesthetics upon neurophysiologic systems under study.  相似文献   

3.
Higher plant morphogenesis has received renewed interest over the past few years. The improvement of molecular genetic approaches to generate tagged developmental mutants, for instance by T-DNA insertion, facilitated the isolation and characterization of the altered genes. Here we present recent progress on flower and root morphogenesis in the small crucifer Arabidopsis thaliana. The current model of Arabidopsis flower development is presented. We report on FLOWER1 (Fl1), which is a T-DNA-tagged ap2 allele. Our observations indicate that this Fl1 mutant has, besides the homeotic Ap2 phenotype, an aberrant seed coat, suggesting that this gene has also a function late in flower development. Furthermore, we present a brief summary about root development and focus on the super root (Sur) mutant, which is an ethyl methanesulfonate-induced mutant that produces excess lateral roots. Root explants of the Sur mutant, that do not develop further than the 4-leaf stage, can be induced to produce normal-looking shoots and flowers by addition of only cytokinin to the medium. The phenotype of Sur and its relation to the action of phytohormones is discussed.  相似文献   

4.
Protein function in vivo can be studied by deleting (knock-out) the gene that encodes it, and search for the consequences. This procedure involves different technologies, including recombinant DNA procedures, cell biology methods and histological and immunocytochemical analysis. In this work we have reviewed these procedures when they have been applied to ascertain the function of several microtubule-associated proteins. These proteins have been previously involved, through in vitro experiments, in having a role in the microtubule stabilization. Here, we will summarize the generation and characterization of different microtubule-associated protein knock-out mice. Special attention will be paid to MAP1B knock-out mice. Amongst the different MAPs knock-out mice these show the strongest phenotype, the most likely for being MAP1B, the MAP that is expressed earliest in neurogenesis. Molecular genetics could be considered as a valid and useful procedure to truly establish the in vivo functions of a protein, although it is necessary to be aware of possible artifacts such as the generation of some kinds of RNA alternative splicing. To avoid this the best strategy to be used must consider the deletion of the exon that contains the functional domains of the protein.  相似文献   

5.
Molecular genetic approaches to the cytoskeleton in Dictyostelium.   总被引:1,自引:0,他引:1  
Recent advances in molecular genetic techniques are being applied in Dictyostelium to test and expand prevailing views on the functioning of the actin-based cytoskeleton. Current research involves the disruption, by homologous recombination, of genes encoding cytoskeletal elements. We suggest combining classical and molecular genetic approaches to supplement these investigations.  相似文献   

6.
7.
Normal cells in culture exhibit limited division potential, which is used as a model for cellular aging. In contrast, tumor-derived, carcinogen- or virus-transformed cells are capable of dividing indefinitely (immortal). Fusion of normal with immortal human cells yielded hybrids having limited life span, indicating that cellular senescence is a dominant phenotype and that immortality is recessive. Fusions of various immortal human cell lines with each other led to the identification of four complementation groups for indefinite division. In order to identify the chromosomes and genes involved in growth regulation, that had been modified in immortal cells, we used the technique of microcell fusion to introduce either a normal human chromosome 11 or 4 into cell lines representative of the different complementation groups. Chromosome 11 had no effect on the in vitro life span of the different immortal human tumor lines. However, when a normal human chromosome 4 was introduced into cell lines assigned to complementation group B, the cells lost the immortal phenotype. No effect on the proliferation potential of cell lines representative of the other complementation groups was observed. These results suggest that a gene(s) on human chromosome 4 has been modified in immortal cell lines assigned to complementation group B, to allow escape from senescence. They also provide evidence for a genetic basis for cellular aging.  相似文献   

8.
Molecular genetic approaches to developing quality protein maize   总被引:11,自引:0,他引:11  
Since its development more than two decades ago, Quality Protein Maize (QPM) has been adopted for cultivation in many regions of the developing world. Given the potential benefits of widespread use of QPM, research to better understand the genetic and biochemical mechanisms responsible for its altered kernel texture and protein quality is important. Recent investigations into the improved protein quality of the opaque2 mutant and the genetic mechanisms that can suppress its starchy kernel phenotype provide new insights to support the continued improvement of QPM. Chief among these developments are the use of transgenic approaches to improve nutritional quality and the discovery that an important component of modified endosperm texture in QPM is related to altered starch granule structure.  相似文献   

9.
10.
11.
Great interest in studying the molecular genetic bases of the adaptation processes is explained by their importance in understanding evolutionary changes, in the development of intraspecific and interspecific genetic diversity, and in the creation of approaches and programs for maintaining and restoring populations. The article examines the sources and conditions for generating adaptive genetic variability and contribution of neutral and adaptive genetic variability to the population structure of species; methods for identifying the adaptive genetic variability on the genome level are also described. Considerable attention is paid to the potential of new technologies of genome analysis, including next-generation sequencing and some accompanying methods. In conclusion, the important role of the joint use of genomics and proteomics approaches in understanding the molecular genetic bases of adaptation is emphasized.  相似文献   

12.
A critical challenge faced by clinical nephrologists today is the escalating number of patients developing end stage renal disease, a major proportion of which is attributed to diabetic nephropathy (DN). The need for new measures to prevent and treat this disease cannot be overemphasized. To this end, modern genetic approaches provide powerful tools to investigate the etiology of DN. Human studies have already established the importance of genetic susceptibility for DN. Several major susceptibility loci have been identified using linkage studies. In addition, linkage studies in rodents have pinpointed promising chromosomal segments that influence renal traits. Besides augmenting our understanding of disease pathogenesis, these animal studies may facilitate the cloning of disease susceptibility genes in man through the identification of homologous regions that contribute to renal disease. In human diabetes, various genes have been evaluated for their risk contribution to DN. This widespread strategy has been propelled by our knowledge of the glucose-activated pathways underlying DN. Evidence has emerged that a true association does indeed exist for some candidate genes. Furthermore, the in vivo manipulation of gene expression has shown that these genes can modify features of DN in transgenic and knockout rodent models, thus corroborating the findings from human association studies. Still, the exact molecular mechanisms involving these genes remain to be fully elucidated. This formidable task may be accomplished by continuing to harness the synergy between human and experimental genetic approaches. In this respect, our review provides a first synthesis of the current literature to facilitate this challenging effort.  相似文献   

13.
Optical and genetic tools are beginning to revolutionize thestudies of neuronal circuits. Neurons can now be labeled withconventional or genetically encoded indicators that allow theiractivity to be monitored during behavior in intact animals.Laser ablations and genetic inactivation offer ways to perturbactivity of specific cells to test their contributions to behavior.These approaches promise to speed progress in the understandingof vertebrate networks in genetic model systems such as miceand zebrafish. Here we review some of the progress in applyingthese tools, with an emphasis on our work to develop and applythese approaches in the zebrafish model.  相似文献   

14.
15.
Computational modelling is an approach to neuronal network analysis that can complement experimental approaches. Construction of useful neuron and network models is often complicated by a variety of factors and unknowns, most notably the considerable variability of cellular and synaptic properties and electrical activity characteristics found even in relatively ‘simple’ networks of identifiable neurons. This chapter discusses the consequences of biological variability for network modelling and analysis, describes a way to embrace variability through ensemble modelling and summarizes recent findings obtained experimentally and through ensemble modelling.  相似文献   

16.
17.
Experimental genetic approaches to addiction   总被引:4,自引:0,他引:4  
Laakso A  Mohn AR  Gainetdinov RR  Caron MG 《Neuron》2002,36(2):213-228
Drugs of abuse are able to elicit compulsive drug-seeking behaviors upon repeated administration, which ultimately leads to the phenomenon of addiction. Evidence indicates that the susceptibility to develop addiction is influenced by sources of reinforcement, variable neuroadaptive mechanisms, and neurochemical changes that together lead to altered homeostasis of the brain reward system. Addiction is hypothesized to be a cycle of progressive dysregulation of the brain reward system that results in the compulsive use and loss of control over drug taking and the initiation of behaviors associated with drug seeking. The view that addiction represents a pathological state of reward provides an approach to identifying the factors that contribute to vulnerability, addiction, and relapse in genetic animal models.  相似文献   

18.
The incidence of diseases increases rapidly with age, accompanied by progressive deteriorations of physiological functions in organisms. Aging-associated diseases are sporadic but mostly inevitable complications arising from senescence. Senescence is often considered the antithesis of early development, but yet there may be factors and mechanisms in common between these two phenomena over the dynamic process of aging. The association between early development and late-onset disease with advancing age is thought to come from a consequence of developmental plasticity, the phenomenon by which one genotype can give rise to a range of physiologically and/or morphologically adaptive states in response to different environmental or genetic perturbations. On the one hand, we hypothesized that the future aging process can be predictive based on adaptivity during the early developmental period. Modulating the thresholds of adaptive plasticity by chemical genetic approaches, we have been investigating whether any relationship exists between the regulatory mechanisms that function in early development and in senescence using the zebrafish (Danio rerio), a small freshwater fish and a useful model animal for genetic studies. We have successfully conducted experiments to isolate zebrafish mutants expressing apparently altered senescence phenotypes during embryogenesis (“embryonic senescence”), subsequently showing shortened lifespan in adulthoods. We anticipate that previously uncharacterized developmental genes may mediate the aging process and play a pivotal role in senescence. On the other hand, unexpected senescence-related genes might also be involved in the early developmental process and regulation. The ease of manipulation using the zebrafish system allows us to conduct an exhaustive exploration of novel genes and small molecular compounds that can be linked to the senescence phenotype, and thereby facilitates searching for the evolutionary and developmental origins of aging in vertebrates. This article is part of a Special Issue entitled: Animal Models of Disease.  相似文献   

19.
A potential problem in the field release of transgenic plants is the spread of foreign gene products via pollen. Therefore, the use of the tomato pollen-specific lat52 gene promoter was investigated as a means of targeting antisense RNA to pollen without affecting transgene expression elsewhere in the plant. A transgenic tobacco line T115, which showed GUS expression in pollen, leaves and roots were retransformed with a construct containing the pollen-specific lat52 promoter driving the GUS encoding uid A gene in antisense orientation. From 24 independent transformants obtained, 19 showed a significant reduction in pollen GUS activity. Of these lines, four showed a reproducible antisense effect in pollen in the next generation, while it was shown in one line that GUS activity in leaves and roots was also unaffected. To ascertain the effectiveness of the antisense strategy to downregulate very high levels of pollen expression, a lat52-gus antisense construct was introduced into tobacco lines containing lat52-gus, which had pollen GUS activity of up to 250 times greater than in line T115. Results showed that 30 out of 34 independent lines exhibited a significant antisense effect in pollen, confirming the effectiveness of pollen-targeted antisense strategy to reduce undesirable expression in pollen independent of expression level in pollen.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号