首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
树突状细胞免疫调节作用及其信号转导机制   总被引:2,自引:0,他引:2  
Xu S  Yao YM  Sheng ZY 《生理科学进展》2006,37(4):313-318
树突状细胞(DC)是最强效的抗原提呈细胞。,在抗原的刺激下,DC通过趋化因子作用由外周组织迁移至淋巴组织和器官,同时上调主要组织相容性复合体分子、共刺激分子和黏附分子的表达,分泌细胞因子,获得预激幼稚T细胞的独特能力。DC通过不同的受体吞饮、吞噬和胞吞抗原,例如C型凝集素受体捕获和呈递抗原,通过Toll样受体识别病原体和激活DC。本文主要综述了DC的免疫调节效应及其不同病原体识别受体活化和细胞内信号机制。  相似文献   

2.
The CD40 ligand (CD40L)-CD40 dyad can ignite proinflammatory and procoagulatory activities of the vascular endothelium in the pathogenesis and progression of atherosclerosis. Besides being expressed on the activated CD4(+) T cell surface (mCD40L), the majority of circulating CD40L reservoir (sCD40L) in plasma is released from stimulated platelets. It remains debatable which form of CD40L triggers endothelial inflammation. Here, we demonstrate that the agonistic antibody of CD40 (G28.5), which mimics the action of sCD40L, induces rapid endocytosis of CD40 independent of TRAF2/3/6 binding while CD40L expressed on the surface of HEK293A cells captures CD40 at the cell conjunction. Forced internalization of CD40 by constitutively active mutant of Rab5 preemptively activates NF-kappaB pathway, suggesting that CD40 was able to form an intracellular signal complex in the early endosomes. Internalized CD40 exhibits different patterns of TRAF2/3/6 recruitment and Akt phosphorylation from the membrane anchored CD40 complex. Finally, mCD40L but not sCD40L induces the upregulation of proinflammatory cytokines and cell adhesion factors in the primary human vascular endothelial cells in vitro, although both forms of CD40L activate NF-kappaB pathway. These results therefore may help understand the molecular mechanism of CD40L signaling that contributes to the pathophysiology of atherosclerosis.  相似文献   

3.
The objective of this study is to investigate the signal transduction pathways that regulate heat shock protein 27 (HSP27) phosphorylation and migration of vascular smooth muscle cells (VSMCs) from spontaneously hypertensive rats (SHR) induced by angiotensin II (AngII) and platelet derived growth factor-BB (PDGF-BB). The activity of HSP27 was evaluated by Western blot with specific phospho-HSP27 antibody. F-actin polymerization was detected by FITC-Phalloidine staining using confocal microscopy. Modified Boyden chamber technique was employed for VSMCs migration assessment. Within a given concentration, the phosphorylation of HSP27 induced by AngII and PDGF-BB was blocked by the specific P38MAPK inhibitor SB202190, the specific PI3K inhibitor LY294002 and the specific ERK1/2 inhibitor U0126 in a concentration-dependent manner, with a peak inhibition rate at 87.2%, 78.4% and 37.3%, respectively, induced by AngII (P < 0.01), with a peak inhibition rate at 85.0%, 55.3% and 41.0%, respectively, induced by PDGF-BB (P < 0.01).The migration of VSMCs induced by AngII and PDGF-BB was inhibited by 100 μmol/l SB202190, 30 μmol/l LY294002, and 30 μmol/l U0126, with a inhibition rate at 60.1%, 71.7% and 47.3%, respectively, provoked by AngII (P < 0.01), with a inhibition rate at 55.3%, 55.6% and 38.1%, respectively, provoked by PDGF-BB (P < 0.01). P38MAPK and PI3 K/Akt are important pathways that contribute to the phosphorylation of HSP27 and migration of VSMCs in response to AngII and PDGF-BB. ERK1/2 might be involved in HSP27 phosphorylation and migration of VSMCs provoked by AngII and PDGF-BB.  相似文献   

4.
Molecular signal transduction in vascular cell apoptosis   总被引:18,自引:0,他引:18  
GengYJ 《Cell research》2001,11(4):253-264
INTRODUCTIONApoptosis represents a model of genetically pro--grammed ce1l death and a major mechanism bywhiCh tissue removes unwanted, aged or damagedce1ls. Although cells of mammalian tissues consist ofa broad dtwsity of phenotypes and g6notypes, during the developmeat of apoptosis, all cell types un-dergo similar morphological alteratiOns include chro-matin compaction and margination, nuclear conden-sation and fragmentation, and cell body sbIinkageand b1ebbingf1l. Characteristic apopto…  相似文献   

5.
6.
F-BAR proteins are multivalent adaptors that link plasma membrane and cytoskeleton and coordinate cellular processes such as membrane protrusion and migration. Yet, little is known about the function of F-BAR proteins in vivo. Here we report, that the F-BAR protein NOSTRIN is necessary for proper vascular development in zebrafish and postnatal retinal angiogenesis in mice. The loss of NOSTRIN impacts on the migration of endothelial tip cells and leads to a reduction of tip cell filopodia number and length. NOSTRIN forms a complex with the GTPase Rac1 and its exchange factor Sos1 and overexpression of NOSTRIN in cells induces Rac1 activation. Furthermore, NOSTRIN is required for fibroblast growth factor 2 dependent activation of Rac1 in primary endothelial cells and the angiogenic response to fibroblast growth factor 2 in the in vivo matrigel plug assay. We propose a novel regulatory circuit, in which NOSTRIN assembles a signalling complex containing FGFR1, Rac1 and Sos1 thereby facilitating the activation of Rac1 in endothelial cells during developmental angiogenesis.  相似文献   

7.
8.
Cytokinin signal transduction in plant cells   总被引:8,自引:0,他引:8  
  相似文献   

9.
10.
Beyond LDL oxidation: ROS in vascular signal transduction   总被引:3,自引:0,他引:3  
The notion that oxidative stress contributes to the pathogenesis of vascular disease was originally driven by observations that low-density lipoprotein (LDL) modification is a prominent feature of atherosclerosis. More recently, it has become clear that the relation between oxidative stress and vascular disease goes beyond LDL oxidation and involves cellular production of reactive oxygen species (ROS). Considerable data now indicate that ROS represent an important means of cellular signaling, although the precise mechanisms whereby ROS accomplish this function remain unclear. Emerging data point to protein thiol groups as important targets for post-translational protein modification by ROS. In this review, the data linking ROS to cell signaling is discussed and the notion that ROS mediate a vascular "injury" response is proposed.  相似文献   

11.
Cellular responses to the vasoconstrictor peptide, endothelin, have been investigated in quiescent cultured human vascular smooth muscle cells (hVSMC). Endothelin caused intracellular alkalinization and activation of the protein synthetic enzyme S6-kinase, but such responses were not associated with any mitogenic effects of endothelin on hVSMC. In myo-[3H]inositol-prelabelled hVSMC endothelin elicited a rapid increase in inositol bis- and tris-phosphates and concomitant hydrolysis of polyphosphoinositol lipids. In [3H]arachidonate-prelabelled hVSMC endothelin promoted production of diacylglycerol, the early kinetics of which parallelled polyphosphoinositol lipid hydrolysis. Such phospholipase C activation by endothelin was sustained in hVSMC with accumulation of inositol polyphosphates being markedly protracted and the decay of diacylglycerol slow. Endothelin promoted extracellular release of [3H]arachidonate-labelled material from hVSMC which derived via deacylation of both phosphatidylinositol and phosphatidylcholine. This process was inhibited by phospholipase A2 and lipoxygenase inhibitors, but insensitive to phospholipase C and cyclooxygenase inhibitors. Endothelin-induced activation of phospholipase C and phospholipase A2 signal transduction pathways (EC50 approximately 5-8 nM for both) in hVSMC apparently proceed in an independent parallel manner rather than a sequential one.  相似文献   

12.
13.
Synucleins are small, highly conserved proteins in vertebrates, especially abundant in neurons and typically enriched in presynaptic terminals. alpha-Synuclein protein and a fragment of it, called NAC, have been found in association with pathological lesions of neurodegenerative diseases. Recently, mutations in a alpha-synuclein gene have been reported in families susceptible to an inherited form of Parkinson's diseases. In addition, alpha-synuclein has been implicated in the pathophysiology of other neurodegenerative diseases, including Alzheimer's disease and multiple system atrophy. Far less is known about other members of the synuclein family, beta- and gamma-synucleins. gamma-synuclein is up-regulated in several types of cancer and may affect the integrity of the neurofilament network, while its bovine ortholog, synoretin, activates the Elk-1 signal transduction pathway. In this paper, we present data about the localization and properties of human and bovine gamma-synuclein in several neuronal and non-neuronal cell cultures derived from ocular tissues. We show that gamma-synuclein is present in the perinuclear area and is localized to centrosomes in several types of human interphase cells and in bovine retinal pigment epithelium. In mitotic cells, gamma-synuclein staining is localized to the poles of the spindle. Further, overexpression of synoretin in retinoblastoma cells up-regulates MAPK and Elk-1. These results support the view that gamma-synuclein is a centrosome protein that may be involved in signal transduction pathways.  相似文献   

14.
Molecular mechanisms underlying migration of vascular smooth muscle cells (VSMCs) toward sphingosylphosphorylcholine (SPC) were analyzed in light of the hypothesis that remodeling of the actin cytoskeleton should be involved. After SPC stimulation, mitogen-activated protein kinases (MAPKs), including p38 MAPK (p38) and p42/44 MAPK (p42/44), were found to be phosphorylated. Migration of cells toward SPC was reduced in the presence of SB-203580, an inhibitor of p38, but not PD-98059, an inhibitor of p42/44. Pertussis toxin (PTX), a Gi protein inhibitor, induced an inhibitory effect on p38 phosphorylation and VSMC migration. Myosin light chain (MLC) phosphorylation occurred after SPC stimulation with or without pretreatment with SB-203580 or PTX. The MLC kinase inhibitor ML-7 and the Rho kinase inhibitor Y-27632 inhibited MLC phosphorylation but only partially inhibited SPC-directed migration. Complete inhibition was achieved with the addition of SB-203580. After SPC stimulation, the actin cytoskeleton formed thick bundles of actin filaments around the periphery of cells, and the cells were surrounded by elongated filopodia, i.e., magunapodia. The peripheral actin bundles consisted of alpha- and beta-actin, but magunapodia consisted exclusively of beta-actin. Such a remodeling of actin was reversed by addition of SB-203580 and PTX, but not ML-7 or Y-27632. Taken together, our biochemical and morphological data confirmed the regulation of actin remodeling and suggest that VSMCs migrate toward SPC, not only by an MLC phosphorylation-dependent pathway, but also by an MLC phosphorylation-independent pathway.  相似文献   

15.
Lipid metabolism and signal transduction in endothelial cells   总被引:3,自引:0,他引:3  
Endothelial cells have the capacity to metabolize several important lipids; this includes the ability to store and then metabolize arachidonate, as well as the capacity to synthesize platelet-activating factor (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine). Arachidonate is predominantly metabolized via cyclooxygenase to PGI2 although the spectrum of prostaglandins may vary depending upon the source of the endothelial cell. Biosynthesis of eicosanoids and PAF are likely to be an important physiologic function of the endothelial cell as these potent lipids appear to have a role in maintaining vascular tone and mediating interactions of the endothelium with circulating inflammatory cells. In addition to production of eicosanoids and PAF, endothelial cells metabolize exogenous arachidonate and arachidonate metabolites and other fatty acids such as linoleate to bioactive compounds (HODEs). There is also evidence that small amounts of arachidonate are metabolized via a lipoxygenase. The physiologic significance of these minor lipid pathways is not known at this time. Production of eicosanoids and PAF is not a constitutive function of the endothelial cell. Lipid biosynthesis by endothelial cells is one component of the early activation response that occurs in response to stimulation with pro-inflammatory and vasoactive hormones or to pathologic agents such as oxidants and bacterial toxins. A central mechanism for activation of the relevant pathways is a rise in cellular calcium concentrations that can be mediated by hormone-receptor-binding or by direct permeabilization of the cell membrane to calcium (Fig. 3). Regulatory mechanisms distal to the calcium signal are unknown, but current evidence suggests that calcium directly or indirectly activates phospholipases that release arachidonate from phospholipids and hydrolyze a specific phospholipid to the immediate precursor of PAF. There is evidence that protein kinase C may, in part, regulate this process, but the role of other potential regulatory components, such as other protein kinases or G-proteins is not known. As noted above, the most direct mechanism for initiation of PAF biosynthesis and arachidonate release would be activation of a phospholipase A2 as shown in Fig. 3. Activation of other phospholipases (e.g. phospholipase C) may contribute to the total amount of arachidonate released, although the magnitude of that contribution is not yet known. In addition to generation of PAF and eicosanoids, activation of endothelial cell phospholipases generates second messengers that are important in intracellular signaling (Fig. 4). Activation of phospholipase C, in response to hormonal stimulation, generates diacylglycerol and inositol phosphates from phosphatidylinositol. Each of these is a potent intracellular second messenger.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
An increasing number of studies indicate that changes in cytosolic free Ca2+ ([Ca2+]c) mediate specific types of signal transduction in plant cells. Modulation of [Ca2+]c is likely to be achieved through changes in the activity of Ca2+ channels, which catalyse passive influx of Ca2+ to the cytosol from extracellular and intracellular compartments. Voltage-sensitive Ca2+ channels have been detected in the plasma membranes of algae, where they control membrane electrical properties and cell turgor. These channels are sensitive to 1,4-dihydropyridines, which in animal cells specifically affect one class of voltage-regulated plasma membrane Ca2+ channel. Ca2+-permeable channels with different pharmacological properties have been found in the plasma membrane of higher plants. Recent evidence suggests the existence of two discrete classes of Ca2+ channel co-resident in the vacuolar membrane (tonoplast) of higher plants. The first is gated by inositol 1,4,5-trisphosphate, and bears a number of similarities to its animal counterpart which is located in the endoplasmic reticulum (ER). The second tonoplast Ca2+ channel is voltage-operated. However, the specific roles of these tonoplast channels in signal transduction have yet to be elucidated.  相似文献   

17.
Although vascular smooth muscle cells (VSMCs) are widely used in cardiovascular research, their phenotypic change under various culture conditions is problematic to evaluate the experimental results obtained. The levels of angiotensin (Ang) type 1/2 (AT1/AT2) receptors as well as contractile and structural proteins are degraded through culture passages. The present study demonstrated that heparin recovered Ang receptors and differentiation markers, such as desmin, SM-22 and smooth muscle alpha-actin in VSMCs at the ninth passage. Heparin also potenciated Ang II-induced activation for ERK1/2 and p38. These results suggest a potential value of heparin-treated VSMCs as the model for analysis of Ang-mediated signal transduction under physiological condition.  相似文献   

18.
Sertoli cells play a pivotal role in regulation and maintenance of spermatogenesis. They are hormonally regulated predominantly by follicle-stimulating hormone (FSH) and testosterone (T). Although FSH and T have distinct mechanisms of action they act synergistically in promoting spermatogenesis. Stimulation of freshly isolated Sertoli cells with FSH evokes a prompt rise in cytosolic calcium which is quantitatively reproduced by cAMP. The cytosolic calcium response to FSH in Sertoli cells is predominantly attributable to serial signaling after the generation of endogenous cAMP. Calcium homeostasis of Sertoli cells may also be regulated by cAMP-independent metabolism. Vasoactive testicular paracrine hormones such as angiotensin II (AII) and vasopressin acting via inositol triphosphate generation induce cytosolic calcium rise predominantly derived from the thapsigargin-sensitive endoplasmic reticulum. Investigations involving androgens action on cytosolic calcium reveal a common mechanism of action between the peptide and steroid regulators of Sertoli cell function, indicating that cytosolic calcium ions may represent a unifying biochemical mechanism that could explain the synergism of FSH and T. Androgens rapidly and specifically increase cytosolic calcium, consistent with a plasma membrane site of action. This argues for the possible existence of a short term non-genomic signaling pathway in hormonal regulation of Sertoli cell function in addition to the classical longer term, slower genomic response.  相似文献   

19.
Upregulation of immunoglobulin D-specific receptors (IgD-R) on CD4+ T cells may facilitate their interaction with specific carbohydrate moieties uniquely associated with membrane IgD on B cells. Previous studies have shown that upregulation of IgD-R facilitates cognate T-B cell interactions by mediating bidirectional signaling resulting in increased antibody responses and clonal expansion of antigen-specific T cells. Murine T hybridoma cells, 7C5, constitutively express IgD-R, as has been confirmed by staining with biotinylated IgD. Earlier studies have shown that inhibitors of protein tyrosine kinase (PTK) completely prevented upregulation of IgD-R in response to oligomeric IgD, suggesting that cross-linking of IgD-R may induce signal transduction and functional consequences through one or more PTK activation pathways, leading to upregulation of IgD-R. In the present study we show that cross-linking of IgD-R by oligomeric IgD indeed results in (a) T cell activation as seen by tyrosine phosphorylation of several intracellular proteins, (b) tyrosine phosphorylation of p56 Lck and PLC-gamma in 7C5 T hybridoma cells, and (c) phosphorylation of an approximately 29-kDa band that exhibits strong affinity for IgD. We analyzed tyrosine phosphorylation of p56 Lck and PLC-gamma in BALB/c splenic T cells that were exposed to oligomeric IgD both in vivo and in vitro. In vitro cross-linking as well as in vivo followed by in vitro cross-linking of IgD-R resulted in enhanced phosphorylation of p56 Lck and moderate tyrosine phosphorylation of PLC-gamma. These results suggest that interactions between IgD-R and IgD mediate signal transduction and support our previous findings that IgD-R+ T cells enhance cognate T cell-B cell interactions and antibody production.  相似文献   

20.
Effects of LHRH-analogues on mitogenic signal transduction in cancer cells   总被引:6,自引:0,他引:6  
The expression of luteinizing hormone-releasing hormone (LHRH) and its receptors has been demonstrated in a number of human malignant tumors, including cancers of the breast, ovary, endometrium and prostate. These findings suggest the presence of an autocrine regulatory system based on LHRH. Recent studies in our laboratory have demonstrated that the function of LHRH produced by ovarian cancer cells is the inhibition of their proliferation. Dose-dependent antiproliferative effects of LHRH-agonists have been observed by several laboratories in cell lines derived from the above cancers. Interestingly, also LHRH-antagonists have marked antiproliferative activity in most of the ovarian, breast and endometrial cancer cell lines tested so far, indicating that the dichotomy of LHRH-agonists/LHRH-antagonists is not valid for the LHRH-system in cancer cells. In addition, our data suggest that the classical LHRH receptor signal transduction mechanisms known from the pituitary (phospholipase-C, protein kinase C, adenylyl cyclase) are not involved in the mediation of LHRH effects in cancer cells. Data obtained by several groups, including ours, rather suggest that LHRH analogs interfere with the signal transduction of growth-factor receptors and related oncogene products associated with tyrosine-kinase activity. The mechanism of action is probably an LHRH-induced activation of a phosphotyrosine phosphatase, counteracting the effects of receptor associated tyrosine kinase. In our hands, LHRH analogs virtually blocked the EGF-induced MAP-kinase activity of ovarian and endometrial cancer cells. The pharmacological exploitation of this mechanism might provide promising new therapies for these cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号