首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. Mitotic cells in normal, mature rat corneal epithelium were examined with a light microscope on serial, semi-thick plastic sections.
Classification of mitotic figures into horizontally, obliquely or vertically positioned with reference to the epithelial basal lamina has shown that no single configuration predominates. A striking correlation between the position of the daughter cells after cytokinesis and their morphology has been observed. Horizontal cytokinetic pairs were morphologically symmetric but vertical ones were asymmetric, displaying distinct differences between daughter cells. Analysis of earlier mitotic phases has shown that the asymmetry could also be observed in vertical anaphases and telophases.
The data provide clear morphological evidence for real asymmetric (unequal) cell division in a replacing epithelium in an adult mammal. It is concluded that asymmetric cell division in the corneal epithelium coexists with, and is as frequent as symmetric (equal) cell division. Randomness of mitotic spindle positioning implies that diverse forms of cell transfer from the proliferative into the differentiative epithelial compartments must operate. Therefore, the universality of the general model of cell renewal in stratified epithelia, which assumes a strong predominance of horizontal mitoses, exclusively equal mitotic divisions and one form of cell transfer, is questioned.  相似文献   

2.
During asymmetric stem cell divisions, the mitotic spindle must be correctly oriented and positioned with respect to the axis of cell polarity to ensure that cell fate determinants are appropriately segregated into only one daughter cell. By contrast, epithelial cells divide symmetrically and orient their mitotic spindles perpendicular to the main apical–basal polarity axis, so that both daughter cells remain within the epithelium. Work in the past 20 years has defined a core ternary complex consisting of Pins, Mud and Gαi that participates in spindle orientation in both asymmetric and symmetric divisions. As additional factors that interact with this complex continue to be identified, a theme has emerged: there is substantial overlap between the mechanisms that orient the spindle and those that establish and maintain apical–basal polarity in epithelial cells. In this review, we examine several factors implicated in both processes, namely Canoe, Bazooka, aPKC and Discs large, and consider the implications of this work on how the spindle is oriented during epithelial cell divisions.  相似文献   

3.
Proper balance between self-renewal and differentiation of lung-specific progenitors is absolutely required for normal lung morphogenesis/regeneration. Therefore, understanding the behavior of lung epithelial stem/progenitor cells could identify innovative solutions for restoring normal lung morphogenesis and/or regeneration. The Notch inhibitor Numb is a key determinant of asymmetric or symmetric cell division and hence cell fate. Yet Numb proximal-distal expression pattern and symmetric versus asymmetric division are uncharacterized during lung epithelial development. Herein, the authors find that the cell fate determinant Numb is highly expressed and asymmetrically distributed at the apical side of distal epithelial progenitors and segregated to one daughter cell in most mitotic cells. Knocking down Numb in MLE15 epithelial cells significantly increased the number of cells expressing the progenitor cell markers Sox9/Id2. Furthermore, cadherin hole analysis revealed that most distal epithelial stem/progenitor cells in embryonic lungs divide asymmetrically; with their cleavage, planes are predicted to bypass the cadherin hole, resulting in asymmetric distribution of the cadherin hole to the daughter cells. These novel findings provide evidence for asymmetric cell division in distal epithelial stem/progenitor cells of embryonic lungs and a framework for future translationally oriented studies in this area.  相似文献   

4.
Cell polarity, mitotic spindle orientation and asymmetric division play a crucial role in the self-renewal/differentiation of epithelial cells, yet little is known about these processes and the molecular programs that control them in embryonic lung distal epithelium. Herein, we provide the first evidence that embryonic lung distal epithelium is polarized with characteristic perpendicular cell divisions. Consistent with these findings, spindle orientation-regulatory proteins Insc, LGN (Gpsm2) and NuMA, and the cell fate determinant Numb are asymmetrically localized in embryonic lung distal epithelium. Interfering with the function of these proteins in vitro randomizes spindle orientation and changes cell fate. We further show that Eya1 protein regulates cell polarity, spindle orientation and the localization of Numb, which inhibits Notch signaling. Hence, Eya1 promotes both perpendicular division as well as Numb asymmetric segregation to one daughter in mitotic distal lung epithelium, probably by controlling aPKCζ phosphorylation. Thus, epithelial cell polarity and mitotic spindle orientation are defective after interfering with Eya1 function in vivo or in vitro. In addition, in Eya1(-/-) lungs, perpendicular division is not maintained and Numb is segregated to both daughter cells in mitotic epithelial cells, leading to inactivation of Notch signaling. As Notch signaling promotes progenitor cell identity at the expense of differentiated cell phenotypes, we test whether genetic activation of Notch could rescue the Eya1(-/-) lung phenotype, which is characterized by loss of epithelial progenitors, increased epithelial differentiation but reduced branching. Indeed, genetic activation of Notch partially rescues Eya1(-/-) lung epithelial defects. These findings uncover novel functions for Eya1 as a crucial regulator of the complex behavior of distal embryonic lung epithelium.  相似文献   

5.
Epithelial cells mostly orient the spindle along the plane of the epithelium (planar orientation) for mitosis to produce two identical daughter cells. The correct orientation of the spindle relies on the interaction between cortical polarity components and astral microtubules. Recent studies in mammalian tissue culture cells suggest that the apically localised atypical protein kinase C (aPKC) is important for the planar orientation of the mitotic spindle in dividing epithelial cells. Yet, in chicken neuroepithelial cells, aPKC is not required in vivo for spindle orientation, and it has been proposed that the polarization cues vary between different epithelial cell types and/or developmental processes. In order to investigate whether Drosophila aPKC is required for spindle orientation during symmetric division of epithelial cells, we took advantage of a previously isolated temperature-sensitive allele of aPKC. We showed that Drosophila aPKC is required in vivo for spindle planar orientation and apical exclusion of Pins (Raps). This suggests that the cortical cues necessary for spindle orientation are not only conserved between Drosophila and mammalian cells, but are also similar to those required for spindle apicobasal orientation during asymmetric cell division.  相似文献   

6.
The asymmetric segregation of cell-fate determinants and the generation of daughter cells of different sizes rely on the correct orientation and position of the mitotic spindle. In the Drosophila embryo, the determinant Prospero is localized basally and is segregated equally to daughters of similar cell size during epidermal cell division. In contrast, during neuroblast division Prospero is segregated asymmetrically to the smaller daughter cell. This simple switch between symmetric and asymmetric segregation is achieved by changing the orientation of cell division: neural cells divide in a plane perpendicular to that of epidermoblast division. Here, by labelling mitotic spindles in living Drosophila embryos, we show that neuroblast spindles are initially formed in the same axis as epidermal cells, but rotate before cell division. We find that daughter cells of different sizes arise because the spindle itself becomes asymmetric at anaphase: apical microtubules elongate, basal microtubules shorten, and the midbody moves basally until it is positioned asymmetrically between the two spindle poles. This observation contradicts the widely held hypothesis that the cleavage furrow is always placed midway between the two centrosomes.  相似文献   

7.
Oriented cell division is a fundamental determinant of tissue organization. Simple epithelia divide symmetrically in the plane of the monolayer to preserve organ structure during epithelial morphogenesis and tissue turnover. For this to occur, mitotic spindles must be stringently oriented in the Z-axis, thereby establishing the perpendicular division plane between daughter cells. Spatial cues are thought to play important roles in spindle orientation, notably during asymmetric cell division. The molecular nature of the cortical cues that guide the spindle during symmetric cell division, however, is poorly understood. Here we show directly for the first time that cadherin adhesion receptors are required for planar spindle orientation in mammalian epithelia. Importantly, spindle orientation was disrupted without affecting tissue cohesion or epithelial polarity. This suggests that cadherin receptors can serve as cues for spindle orientation during symmetric cell division. We further show that disrupting cadherin function perturbed the cortical localization of APC, a microtubule-interacting protein that was required for planar spindle orientation. Together, these findings establish a novel morphogenetic function for cadherin adhesion receptors to guide spindle orientation during symmetric cell division.  相似文献   

8.
Asymmetric cell division (ACD) is the basic process which creates diversity in the cells of multicellular organisms. As a result of asymmetric cell division, daughter cells acquire the ability to differentiate and specialize in a given direction, which is different from that of their parent cells and from each other. This type of division is observed in a wide range of living organisms from bacteria to vertebrates. It has been shown that the molecular-genetic control mechanism of ACD is evolutionally conservative. The proteins involved in the process of ACD in different kinds of animals have a high degree of homology. Sensory organs--setae (macrochaetae)--of Drosophila are widely used as a model system for studying the genetic control mechanisms of asymmetric division. Setae located in an orderly manner on the head and body of the fly play the role of mechanoreceptors. Each of them consists of four specialized cells--offspring of the only sensory organ precursor cell (SOPC), which differentiates from the imaginal wing disc at the larval stage of the late third age. The basic differentiation and further specialization of the daughter cells of SOPC is an asymmetric division process. In this summary, experimental data on genes and their products controlling asymmetric division of SOPC and daughter cells, and also the specialization of the latter, have been systemized. The basic mechanisms which determine the time cells enter into asymmetric mitosis and which provides the structural characteristics of the asymmetric division process--the polar distribution of protein determinants Numb and Neuralized--the orientation of the mitotic spindle in relation to these determinants, and the uneven segregation of the determinants into the daughter cells that determines the direction of their development have been discussed.  相似文献   

9.
Apical-basal polarity of epithelial cells is critical for their symmetric versus asymmetric division and commonly thought to be established in interphase. In a novel type of cell division termed "mirror-symmetric", apical cell constituents accumulate during M-phase at the cleavage furrow, resulting in epithelial daughter cells with opposite apical-basal polarity.  相似文献   

10.
Cell division often generates unequally sized daughter cells by off-center cleavages, which are due to either displacement of mitotic spindles or their asymmetry. Drosophila neuroblasts predominantly use the latter mechanism to divide into a large apical neuroblast and a small basal ganglion mother cell (GMC), where the neural fate determinants segregate. Apically localized components regulate both the spindle asymmetry and the localization of the determinants. Here, we show that asymmetric spindle formation depends on signaling mediated by the G beta subunit of heterotrimeric G proteins. G beta 13F distributes throughout the neuroblast cortex. Its lack induces a large symmetric spindle and causes division into nearly equal-sized cells with normal segregation of the determinants. In contrast, elevated G beta 13F activity generates a small spindle, suggesting that this factor suppresses spindle development. Depletion of the apical components also results in the formation of a small symmetric spindle at metaphase. Therefore, the apical components and G beta 13F affect the mitotic spindle shape oppositely. We propose that differential activation of G beta signaling biases spindle development within neuroblasts and thereby causes asymmetric spindles. Furthermore, the multiple equal cleavages of G beta mutant neuroblasts accompany neural defects; this finding suggests indispensable roles of eccentric division in assuring the stem cell properties of neuroblasts.  相似文献   

11.
The orientation of the mitotic spindle relative to the cell axis determines whether polarized cells undergo symmetric or asymmetric divisions. Drosophila epithelial cells and neuroblasts provide an ideal pair of cells to study the regulatory mechanisms involved. Epithelial cells divide symmetrically, perpendicular to the apical-basal axis. In the asymmetric divisions of neuroblasts, by contrast, the spindle reorients parallel to that axis, leading to the unequal distribution of cell-fate determinants to one daughter cell. Receptor-independent G-protein signalling involving the GoLoco protein Pins is essential for spindle orientation in both cell types. Here, we identify Mushroom body defect (Mud) as a downstream effector in this pathway. Mud directly associates and colocalizes with Pins at the cell cortex overlying the spindle pole(s) in both neuroblasts and epithelial cells. The cortical Mud protein is essential for proper spindle orientation in the two different division modes. Moreover, Mud localizes to centrosomes during mitosis independently of Pins to regulate centrosomal organization. We propose that Drosophila Mud, vertebrate NuMA and Caenorhabditis elegans Lin-5 (refs 5, 6) have conserved roles in the mechanism by which G-proteins regulate the mitotic spindle.  相似文献   

12.
Asymmetric cell division is a developmental process utilized by several organisms. On the most basic level, an asymmetric division produces two daughter cells, each possessing a different identity or fate. Drosophila melanogaster progenitor cells, referred to as neuroblasts, undergo asymmetric division to produce a daughter neuroblast and another cell known as a ganglion mother cell (GMC). There are several features of asymmetric division in Drosophila that make it a very complex process, and these aspects will be discussed at length. The cell fate determinants that play a role in specifying daughter cell fate, as well as the mechanisms behind setting up cortical polarity within neuroblasts, have proved to be essential to ensuring that neurogenesis occurs properly. The role that mitotic spindle orientation plays in coordinating asymmetric division, as well as how cell cycle regulators influence asymmetric division machinery, will also be addressed. Most significantly, malfunctions during asymmetric cell division have shown to be causally linked with neoplastic growth and tumor formation. Therefore, it is imperative that the developmental repercussions as a result of asymmetric cell division gone awry be understood.  相似文献   

13.
During asymmetric cell division, the mitotic spindle must be properly oriented to ensure the asymmetric segregation of cell fate determinants into only one of the two daughter cells. In Drosophila neuroblasts, spindle orientation requires heterotrimeric G proteins and the G alpha binding partner Pins, but how the Pins-G alphai complex interacts with the mitotic spindle is unclear. Here, we show that Pins binds directly to the microtubule binding protein Mud, the Drosophila homolog of NuMA. Like NuMA, Mud can bind to microtubules and enhance microtubule polymerization. In the absence of Mud, mitotic spindles in Drosophila neuroblasts fail to align with the polarity axis. This can lead to symmetric segregation of the cell fate determinants Brat and Prospero, resulting in the mis-specification of daughter cell fates and tumor-like over proliferation in the Drosophila nervous system. Our data suggest a model in which asymmetrically localized Pins-G alphai complexes regulate spindle orientation by directly binding to Mud.  相似文献   

14.
The position of the mitotic spindle plays a key role in spatial control of cell division. It is generally believed that when a spindle is positioned asymmetrically in a dividing cell, the resulting daughter cells are usually unequal in size due to eccentric cleavage of the mother cell. Molecular mechanisms underlying the generation of unequal sized daughter cells have been extensively studied in Drosophila neuroblast and Caenorhabditis elegans zygote where the Gα subunit of the heterotrimeric G proteins and its binding partner - Pins in Drosophila and GPR-1/2 in C. elegans - are shown to be critical in governing spindle positioning and asymmetric cleavage of the mother cell. In mammalian system, although Gα and LGN (mammalian Pins homolog) are also required for spindle orientation, whether they can mediate asymmetric spindle positioning or asymmetric cleavage of the mother cell is not known. Here, by artificially targeting Gαi to the apical cortex in 3-D cultured MDCK cells, we established a system where asymmetric spindle positioning can be consistently induced. Interestingly, this asymmetrically positioned spindle does not lead to asymmetric cleavage; instead it results in equal sized daughter cells. Live cell time-lapse analysis revealed that anaphase spindle elongation compensated the original asymmetric spindle positioning. Our findings demonstrate that asymmetric spindle positioning does not necessarily lead to unequal sized daughter cells in mammalian system. We discuss potential mechanisms in generating unequal sized daughter cells.  相似文献   

15.
BACKGROUND: Generation of cell-fate diversity in Metazoan depends in part on asymmetric cell divisions in which cell-fate determinants are asymmetrically distributed in the mother cell and unequally partitioned between daughter cells. The polarization of the mother cell is a prerequisite to the unequal segregation of cell-fate determinants. In the Drosophila bristle lineage, two distinct mechanisms are known to define the axis of polarity of the pI and pIIb cells. Frizzled (Fz) signaling regulates the planar orientation of the pI division, while Inscuteable (Insc) directs the apical-basal polarity of the pIIb cell. The orientation of the asymmetric division of the pIIa cell is identical to the one of its mother cell, the pI cell, but, in contrast, is regulated by an unknown Insc- and Fz-independent mechanism. RESULTS: DE-Cadherin-Catenin complexes are shown to localize at the cell contact between the two cells born from the asymmetric division of the pI cell. The mitotic spindle of the dividing pIIa cell rotates to line up with asymmetrically localized DE-Cadherin-Catenin complexes. While a complete loss of DE-Cadherin function disrupts the apical-basal polarity of the epithelium, both a partial loss of DE-Cadherin function and expression of a dominant-negative form of DE-Cadherin affect the orientation of the pIIa division. Furthermore, expression of dominant-negative DE-Cadherin also affects the position of Partner of Inscuteable (Pins) and Bazooka, two asymmetrically localized proteins known to regulate cell polarity. These results show that asymmetrically distributed Cad regulates the orientation of asymmetric cell division. CONCLUSIONS: We describe a novel mechanism involving a specialized Cad-containing cortical region by which a daughter cell divides with the same orientation as its mother cell.  相似文献   

16.
细胞不对称分裂是多细胞生物发育的基础。细胞不对称分裂的重要特征是细胞命运决定子在细胞分裂期间的不对称分离。细胞不对称分裂一般要经历4个步骤:在细胞中建立一个极性轴;沿此轴定向并形成纺锤体;细胞命运决定子沿极性轴作极性分布;细胞分裂后,不同的细胞命运决定子指导决定细胞的不同命运。  相似文献   

17.
The morphology and orientation of cytokinetic figures were studied in the rat corneal epithelium by light microscopy using serial semi-thick plastic sections. It has been found that the mitotising cell of the basal epithelial layer produces either a pair of morphologically similar daughter cells--equivalent or symmetrical division or a pair of morphologically dissimilar cells--differential or asymmetrical division. The equivalent divisions are horizontally orientated, whereas the differential divisions are oblique or vertical in relation to the basement membrane.  相似文献   

18.
Summary The parenchyma of the normal resting human breast was examined by electron microscopy to characterize the cells undergoing mitosis and the mechanism by which the normal tissue architecture is maintained during this process. In this study of 112 mitotic cells, it was found that the mitotic cells were luminally positioned, polarised epithelial cells with no evidence of myoepithelial cell division. Ultrastructurally, the nuclear and cytoplasmic changes were consistent with previous reports of mitosis in other tissues. However, unlike all previous reports, two specific orientations of the nuclear spindle and thus the planes of cytokinesis were observed. In a few cases the spindle formed parallel to the lumen and division resulted in two luminally positioned daughter cells. However, in the majority of mitotic cells the spindle was approximately at right angles to the lumen and this orientation resulted in a luminally and a basally positioned daughter cell. It is proposed that the abnormally positioned basal daughter cell could develop into a myoepithelial cell or undergo deletion (apoptosis). Thus the two orientations of mitosis may explain the mechanism by which the epithelial and myoepithelial cell populations were maintained by a single progenitor cell without disrupting the integrity of the tissue architecture.  相似文献   

19.
Asymmetric segregation of cell-fate determinants during cell division plays an important part in generating cell diversity in invertebrates. We showed previously that cells in the neonatal rat retina divide at various orientations and that some dividing cells asymmetrically distribute the cell-fate determinant Numb to the two daughter cells. Here, we test the possibility that such asymmetric divisions contribute to retinal cell diversification. We have used long-term videomicroscopy of green-fluorescent-protein (GFP)-labeled retinal explants from neonatal rats to visualize the plane of cell division and follow the differentiation of the daughter cells. We found that cells that divided with a horizontal mitotic spindle, where both daughter cells should inherit Numb, tended to produce daughters that became the same cell type, whereas cells that divided with a vertical mitotic spindle, where only one daughter cell should inherit Numb, tended to produce daughters that became different. Moreover, overexpression of Numb in the dividing cells promoted the development of photoreceptor cells at the expense of interneurons and Müller glial cells. These findings indicate that the plane of cell division influences cell-fate choice in the neonatal rat retina and support the hypothesis that the asymmetric segregation of Numb normally influences some of these choices.  相似文献   

20.
The development and maintenance of polarized epithelial tissue requires a tightly controlled orientation of mitotic cell division relative to the apical polarity axis. Hepatocytes display a unique polarized architecture. We demonstrate that mitotic hepatocytes asymmetrically segregate their apical plasma membrane domain to the nascent daughter cells. The non-polarized nascent daughter cell can form a de novo apical domain with its new neighbor. This asymmetric segregation of apical domains is facilitated by a geometrically distinct “apicolateral” subdomain of the lateral surface present in hepatocytes. The polarity protein partitioning-defective 1/microtubule-affinity regulating kinase 2 (Par1b/MARK2) translates this positional landmark to cortical polarity by promoting the apicolateral accumulation of Leu-Gly-Asn repeat-enriched protein (LGN) and the capture of nuclear mitotic apparatus protein (NuMA)–positive astral microtubules to orientate the mitotic spindle. Proliferating hepatocytes thus display an asymmetric inheritance of their apical domains via a mechanism that involves Par1b and LGN, which we postulate serves the unique tissue architecture of the developing liver parenchyma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号