首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Orai family of calcium channels includes the store-operated CRAC channels and store-independent, arachidonic acid (AA)-regulated ARC channels. Both depend on STIM1 for their activation but, whereas CRAC channel activation involves sensing the depletion of intracellular calcium stores via a luminal N terminal EF-hand of STIM1 in the endoplasmic reticulum (ER) membrane, ARC channels are exclusively activated by the pool of STIM1 that constitutively resides in the plasma membrane (PM). Here, the EF-hand is extracellular and unlikely to ever lose its bound calcium, suggesting that STIM1-dependent activation of ARC channels is very different from that of CRAC channels. We now show that attachment of the cytosolic portion of STIM1 to the inner face of the PM via an N terminal Lck-domain sequence is sufficient to enable normal AA-dependent activation of ARC channels, while failing to allow activation of store-operated CRAC channels. Introduction of a point mutation within the Lck-domain resulted in the loss of both PM localization and ARC channel activation. Reversing the orientation of the PM-anchored STIM1 C terminus via a C-terminal CAAX-box fails to support either CRAC or ARC channel activation. Finally, the Lck-anchored STIM1 C-terminal domain also enabled the exclusive activation of the ARC channels following physiological agonist addition. These data demonstrate that simple tethering of the cytosolic C-terminal domain of STIM1 to the inner face of the PM is sufficient to allow the full, normal and exclusive activation of ARC channels, and that the N-terminal regions of STIM1 (including the EF-hand domain) play no significant role in this activation.  相似文献   

2.
The Orai family of calcium channels includes the store-operated CRAC channels and store-independent, arachidonic acid (AA)-regulated ARC channels. Both depend on STIM1 for their activation but, whereas CRAC channel activation involves sensing the depletion of intracellular calcium stores via a luminal N terminal EF-hand of STIM1 in the endoplasmic reticulum (ER) membrane, ARC channels are exclusively activated by the pool of STIM1 that constitutively resides in the plasma membrane (PM). Here, the EF-hand is extracellular and unlikely to ever lose its bound calcium, suggesting that STIM1-dependent activation of ARC channels is very different from that of CRAC channels. We now show that attachment of the cytosolic portion of STIM1 to the inner face of the PM via an N terminal Lck-domain sequence is sufficient to enable normal AA-dependent activation of ARC channels, while failing to allow activation of store-operated CRAC channels. Introduction of a point mutation within the Lck-domain resulted in the loss of both PM localization and ARC channel activation. Reversing the orientation of the PM-anchored STIM1 C terminus via a C-terminal CAAX-box fails to support either CRAC or ARC channel activation. Finally, the Lck-anchored STIM1 C-terminal domain also enabled the exclusive activation of the ARC channels following physiological agonist addition. These data demonstrate that simple tethering of the cytosolic C-terminal domain of STIM1 to the inner face of the PM is sufficient to allow the full, normal and exclusive activation of ARC channels, and that the N-terminal regions of STIM1 (including the EF-hand domain) play no significant role in this activation.  相似文献   

3.
The activation of store-operated Ca(2+) entry by Ca(2+) store depletion has long been hypothesized to occur via local interactions of the endoplasmic reticulum (ER) and plasma membrane, but the structure involved has never been identified. Store depletion causes the ER Ca(2+) sensor stromal interacting molecule 1 (STIM1) to form puncta by accumulating in junctional ER located 10-25 nm from the plasma membrane (see Wu et al. on p. 803 of this issue). We have combined total internal reflection fluorescence (TIRF) microscopy and patch-clamp recording to localize STIM1 and sites of Ca(2+) influx through open Ca(2+) release-activated Ca(2+) (CRAC) channels in Jurkat T cells after store depletion. CRAC channels open only in the immediate vicinity of STIM1 puncta, restricting Ca(2+) entry to discrete sites comprising a small fraction of the cell surface. Orai1, an essential component of the CRAC channel, colocalizes with STIM1 after store depletion, providing a physical basis for the local activation of Ca(2+) influx. These studies reveal for the first time that STIM1 and Orai1 move in a coordinated fashion to form closely apposed clusters in the ER and plasma membranes, thereby creating the elementary unit of store-operated Ca(2+) entry.  相似文献   

4.
Store-operated Ca(2+) entry is controlled by the interaction of stromal interaction molecules (STIMs) acting as endoplasmic reticulum ER Ca(2+) sensors with calcium release-activated calcium (CRAC) channels (CRACM1/2/3 or Orai1/2/3) in the plasma membrane. Here, we report structural requirements of STIM1-mediated activation of CRACM1 and CRACM3 using truncations, point mutations, and CRACM1/CRACM3 chimeras. In accordance with previous studies, truncating the N-terminal region of CRACM1 or CRACM3 revealed a 20-amino acid stretch close to the plasma membrane important for channel gating. Exchanging the N-terminal region of CRACM3 with that of CRACM1 (CRACM3-N(M1)) results in accelerated kinetics and enhanced current amplitudes. Conversely, transplanting the N-terminal region of CRACM3 into CRACM1 (CRACM1-N(M3)) leads to severely reduced store-operated currents. Highly conserved amino acids (K85 in CRACM1 and K60 in CRACM3) in the N-terminal region close to the first transmembrane domain are crucial for STIM1-dependent gating of CRAC channels. Single-point mutations of this residue (K85E and K60E) eliminate store-operated currents induced by inositol 1,4,5-trisphosphate and reduce store-independent gating by 2-aminoethoxydiphenyl borate. However, short fragments of these mutant channels are still able to communicate with the CRAC-activating domain of STIM1. Collectively, these findings identify a single amino acid in the N terminus of CRAC channels as a critical element for store-operated gating of CRAC channels.  相似文献   

5.
The activation of Ca(2+) entry through store-operated channels by agonists that deplete Ca(2+) from the endoplasmic reticulum (ER) is an ubiquitous signaling mechanism, the molecular basis of which has remained elusive for the past 20 years. In T lymphocytes, store-operated Ca(2+)-release-activated Ca(2+) (CRAC) channels constitute the sole pathway for Ca(2+) entry following antigen-receptor engagement, and their function is essential for driving the program of gene expression that underlies T-cell activation by antigen. The first molecular components of this pathway have recently been identified: stromal interaction molecule 1 (STIM1), the ER Ca(2+) sensor, and Orai1, a pore-forming subunit of the CRAC channel. Recent work shows that CRAC channels are activated in a complex fashion that involves the co-clustering of STIM1 in junctional ER directly opposite Orai1 in the plasma membrane. These studies reveal an abundance of sites where Ca(2+) signaling might be controlled to modulate the activity of T cells during the immune response.  相似文献   

6.
Stromal interacting molecule 1 (STIM1), reported to be an endoplasmic reticulum (ER) Ca(2+) sensor controlling store-operated Ca(2+) entry, redistributes from a diffuse ER localization into puncta at the cell periphery after store depletion. STIM1 redistribution is proposed to be necessary for Ca(2+) release-activated Ca(2+) (CRAC) channel activation, but it is unclear whether redistribution is rapid enough to play a causal role. Furthermore, the location of STIM1 puncta is uncertain, with recent reports supporting retention in the ER as well as insertion into the plasma membrane (PM). Using total internal reflection fluorescence (TIRF) microscopy and patch-clamp recording from single Jurkat cells, we show that STIM1 puncta form several seconds before CRAC channels open, supporting a causal role in channel activation. Fluorescence quenching and electron microscopy analysis reveal that puncta correspond to STIM1 accumulation in discrete subregions of junctional ER located 10-25 nm from the PM, without detectable insertion of STIM1 into the PM. Roughly one third of these ER-PM contacts form in response to store depletion. These studies identify an ER structure underlying store-operated Ca(2+) entry, whose extreme proximity to the PM may enable STIM1 to interact with CRAC channels or associated proteins.  相似文献   

7.
Orai1 and hTRPC1 have been presented as essential components of store-operated channels mediating highly Ca(2+) selective I(CRAC) and relatively Ca(2+) selective I(SOC), respectively. STIM1 has been proposed to communicate the Ca(2+) content of the intracellular Ca(2+) stores to the plasma membrane store-operated Ca(2+) channels. Here we present evidence for the dynamic interaction between endogenously expressed Orai1 and both STIM1 and hTRPC1 regulated by depletion of the intracellular Ca(2+) stores, using the pharmacological tools thapsigargin plus ionomycin, or by the physiological agonist thrombin, independently of extracellular Ca(2+). In addition we report that Orai1 mediates the communication between STIM1 and hTRPC1, which is essential for the mode of activation of hTRPC1-forming Ca(2+) permeable channels. Electrotransjection of cells with anti-Orai1 antibody, directed toward the C-terminal region that mediates the interaction with STIM1, and stabilization of an actin cortical barrier with jasplakinolide prevented the interaction between STIM1 and hTRPC1. Under these conditions hTRPC1 was no longer involved in store-operated calcium entry but in diacylglycerol-activated non-capacitative Ca(2+) entry. These findings support the functional role of the STIM1-Orai1-hTRPC1 complex in the activation of store-operated Ca(2+) entry.  相似文献   

8.
Wu MM  Luik RM  Lewis RS 《Cell calcium》2007,42(2):163-172
The means by which Ca(2+) store depletion evokes the opening of store-operated Ca(2+) channels (SOCs) in the plasma membrane of excitable and non-excitable cells has been a longstanding mystery. Indirect evidence has supported local interactions between the ER and SOCs as well as long-range interactions mediated through a diffusible activator. The recent molecular identification of the ER Ca(2+) sensor (STIM1) and a subunit of the CRAC channel (Orai1), a prototypic SOC, has now made it possible to visualize directly the sequence of events that links store depletion to CRAC channel opening. Following store depletion, STIM1 moves from locations throughout the ER to accumulate in ER subregions positioned within 10-25nm of the plasma membrane. Simultaneously, Orai1 gathers at discrete sites in the plasma membrane directly opposite STIM1, resulting in local CRAC channel activation. These new studies define the elementary units of store-operated Ca(2+) entry, and reveal an unprecedented mechanism for channel activation in which the stimulus brings a channel and its activator/sensor together for interaction across apposed membrane compartments. We discuss the implications of this choreographic mechanism with regard to Ca(2+) dynamics, specificity of Ca(2+) signaling, and the existence of a specialized ER subset dedicated to the control of the CRAC channel.  相似文献   

9.
TRPC channels as STIM1-regulated store-operated channels   总被引:6,自引:3,他引:3  
Receptor-activated Ca(2+) influx is mediated largely by store-operated channels (SOCs). TRPC channels mediate a significant portion of the receptor-activated Ca(2+) influx. However, whether any of the TRPC channels function as a SOC remains controversial. Our understanding of the regulation of TRPC channels and their function as SOCs is being reshaped with the discovery of the role of STIM1 in the regulation of Ca(2+) influx channels. The findings that STIM1 is an ER resident Ca(2+) binding protein that regulates SOCs allow an expanded and molecular definition of SOCs. SOCs can be considered as channels that are regulated by STIM1 and require the clustering of STIM1 in response to depletion of the ER Ca(2+) stores and its translocation towards the plasma membrane. TRPC1 and other TRPC channels fulfill these criteria. STIM1 binds to TRPC1, TRPC2, TRPC4 and TRPC5 but not to TRPC3, TRPC6 and TRPC7, and STIM1 regulates TRPC1 channel activity. Structure-function analysis reveals that the C-terminus of STIM1 contains the binding and gating function of STIM1. The ERM domain of STIM1 binds to TRPC channels and a lysine-rich region participates in the gating of SOCs and TRPC1. Knock-down of STIM1 by siRNA and prevention of its translocation to the plasma membrane inhibit the activity of native SOCs and TRPC1. These findings support the conclusion that TRPC1 is a SOC. Similar studies with other TRPC channels demonstrate their regulation by STIM1 and indicate that all TRPC channels, except TRPC7, function as SOCs.  相似文献   

10.
11.
Hepatocytes are highly differentiated and spatially polarised cells which conduct a wide range of functions, including intermediary metabolism, protein synthesis and secretion, and the synthesis, transport and secretion of bile acids. Changes in the concentrations of Ca(2+) in the cytoplasmic space, endoplasmic reticulum (ER), mitochondria, and other intracellular organelles make an essential contribution to the regulation of these hepatocyte functions. While not yet fully understood, the spatial and temporal parameters of the cytoplasmic Ca(2+) signals and the entry of Ca(2+) through Ca(2+)-permeable channels in the plasma membrane are critical to the regulation by Ca(2+) of hepatocyte function. Ca(2+) entry across the hepatocyte plasma membrane has been studied in hepatocytes in situ, in isolated hepatocytes and in liver cell lines. The types of Ca(2+)-permeable channels identified are store-operated, ligand-gated, receptor-activated and stretch-activated channels, and these may vary depending on the animal species studied. Rat liver cell store-operated Ca(2+) channels (SOCs) have a high selectivity for Ca(2+) and characteristics similar to those of the Ca(2+) release activated Ca(2+) channels in lymphocytes and mast cells. Liver cell SOCs are activated by a decrease in Ca(2+) in a sub-region of the ER enriched in type1 IP(3) receptors. Activation requires stromal interaction molecule type 1 (STIM1), and G(i2alpha,) F-actin and PLCgamma1 as facilitatory proteins. P(2x) purinergic channels are the only ligand-gated Ca(2+)-permeable channels in the liver cell membrane identified so far. Several types of receptor-activated Ca(2+) channels have been identified, and some partially characterised. It is likely that TRP (transient receptor potential) polypeptides, which can form Ca(2+)- and Na(+)-permeable channels, comprise many hepatocyte receptor-activated Ca(2+)-permeable channels. A number of TRP proteins have been detected in hepatocytes and in liver cell lines. Further experiments are required to characterise the receptor-activated Ca(2+) permeable channels more fully, and to determine the molecular nature, mechanisms of activation, and precise physiological functions of each of the different hepatocyte plasma membrane Ca(2+) permeable channels.  相似文献   

12.
The two membrane proteins, STIM1 and Orai1, have each been shown to be essential for the activation of store-operated channels (SOC). Yet, how these proteins functionally interact is not known. Here, we reveal that STIM1 and Orai1 expressed together reconstitute functional SOCs. Expressed alone, Orai1 strongly reduces store-operated Ca(2+) entry (SOCE) in human embryonic kidney 293 cells and the Ca(2+) release-activated Ca(2+) current (I(CRAC)) in rat basophilic leukemia cells. However, expressed along with the store-sensing STIM1 protein, Orai1 causes a massive increase in SOCE, enhancing the rate of Ca(2+)entry by up to 103-fold. This entry is entirely store-dependent since the same coexpression causes no measurable store-independent Ca(2+) entry. The entry is completely blocked by the SOC blocker, 2-aminoethoxydiphenylborate. Orai1 and STIM1 coexpression also caused a large gain in CRAC channel function in rat basophilic leukemia cells. The close STIM1 homologue, STIM2, inhibited SOCE when expressed alone but coexpressed with Orai1 caused substantial constitutive (store-independent) Ca(2+) entry. STIM proteins are known to mediate Ca(2+) store-sensing and endoplasmic reticulum-plasma membrane coupling with no intrinsic channel properties. Our results revealing a powerful gain in SOC function dependent on the presence of both Orai1 and STIM1 strongly suggest that Orai1 contributes the PM channel component responsible for Ca(2+) entry. The suppression of SOC function by Orai1 overexpression likely reflects a required stoichiometry between STIM1 and Orai1.  相似文献   

13.
STIM1 (stromal interaction molecule 1) has recently been proposed to communicate the intracellular Ca(2+) stores with the plasma membrane to mediate store-operated Ca(2+) entry. Here we describe for the first time that Ca(2+) store depletion stimulates rapid STIM1 surface expression and association with endogenously expressed human canonical TRP1 (hTRPC1) independently of rises in cytosolic free Ca(2+) concentration. These events require the support of the actin cytoskeleton in human platelets, as reported for the coupling between type II inositol 1,4,5-trisphosphate receptor in the Ca(2+) stores and hTRPC1 in the plasma membrane, which has been suggested to underlie the activation of store-operated Ca(2+) entry in these cells. Electrotransjection of cells with anti-STIM1 antibody, directed toward the N-terminal sequence that includes the Ca(2+)-binding region, prevented the migration of STIM1 toward the plasma membrane, the interaction between STIM1 and hTRPC1, the coupling between hTRPC1 and type II inositol 1,4,5-trisphosphate receptor, and reduced store-operated Ca(2+) entry. These findings provide evidence for a role of STIM1 in the activation of store-operated Ca(2+) entry probably acting as a Ca(2+) sensor.  相似文献   

14.
The discovery of the Orai proteins, and the identification of STIM1 as the molecule that regulates them, was based on their role in the agonist-activated store-operated entry of calcium via the CRAC channels. However, these same proteins are also essential components of the ARC channels responsible for a similar agonist-activated, but store-independent, arachidonic acid-regulated entry of calcium. The fact that these 2 biophysically similar calcium entry pathways frequently co-exist in the same cells suggests that they must each possess different features that allow them to function in distinct ways to regulate specific cellular activities. This review begins to address this question by describing recent findings characterizing the unique features of the ARC channels—their molecular composition, STIM1-dependent activation, and physiological activities—and the importance of defining such features for the accurate therapeutic targeting of these 2 Orai channel subtypes.  相似文献   

15.
Receptor-activated Ca(2+) entry is usually thought to occur via capacitative or store-operated Ca(2+) channels. However, at physiological levels of stimulation, where Ca(2+) store depletion is only transient and/or partial, evidence has suggested that an arachidonic acid-dependent noncapacitative Ca(2+) entry is responsible. Recently, we have described a novel arachidonate-regulated Ca(2+)-selective (ARC) conductance that is entirely distinct from store-operated conductances in the same cell. We now show that these ARC channels are indeed specifically activated by low agonist concentrations and provide the predominant route of Ca(2+) entry under these conditions. We further demonstrate that sustained elevations in cytosolic Ca(2+), such as those resulting from activation of store-operated Ca(2+) entry by high agonist concentrations, inhibit the ARC channels. This explains earlier failures to detect the presence of this noncapacitative pathway in experiments where store-operated entry had already been fully activated. The result is that the respective activities of ARC and store-operated Ca(2+) channels display a unique reciprocal regulation that is related to the specific nature of the [Ca(2+)](i) signals generated at different agonist concentrations. Importantly, these data show that at physiologically relevant levels of stimulation, it is the noncapacitative ARC channels that provide the predominant route for the agonist-activated entry of Ca(2+).  相似文献   

16.
STIM1 and Orai1 have recently been identified to be crucial in the regulation of store-operated Ca(2+) entry. However, it remains to be established how STIM1 couples store depletion to the functioning of Orai1 in the plasma membrane. Using quantitative measurement, we find little STIM1 on the surface membrane which is not increased by store depletion. We further demonstrate that Orai1 assembles into clusters that co-localize with STIM1 aggregations upon store depletion. The clustering of Orai1 is only seen when Oari1 are co-expressed with STIM1, but not when expressed alone. Moreover, ER retreat from cell periphery leads to mismatching of Orai1 and STIM1 puncta. Therefore, we propose that store depletion causes aggregation and translocation of STIM1 in close apposition to the plasma membrane, which in turn recruits Orai1 in the plasma membrane to the sites of STIM1 aggregates to assemble functional units of CRAC channels in a stoichiometric manner.  相似文献   

17.
A critical role for arachidonic acid in the regulation of calcium entry during agonist activation of calcium signals has become increasingly apparent in numerous studies over the past 10 years or so. In particular, low concentrations of this fatty acid, generated as a result of physiologically relevant activation of appropriate receptors, induces the activation of a unique, highly calcium-selective conductance now known as the ARC channel. Activation of this channel is specifically dependent on arachidonic acid acting at the intracellular surface of the membrane, and is entirely independent of any depletion of internal calcium stores. Importantly, a specific role of this channel in modulating the frequency of oscillatory calcium signals in various cell types has been described. Recent studies, subsequent to the discovery of STIM1 and the Orai proteins and their role in the store-operated CRAC channels, have revealed that these same proteins are also integral components of the ARC channels and their activation. However, unlike the CRAC channels, activation of the ARC channels depends on the pool of STIM1 that is constitutively resident in the plasma membrane, and the pore of these channels is comprised of both Orai1 and Orai3 subunits. The clear implication is that CRAC channels and ARC channels are closely related, but have evolved to play unique roles in the modulation of calcium signals—largely as a result of their entirely distinct modes of activation. Given this, although the precise details of how arachidonic acid acts to activate the channels remain unclear, it seems likely that the specific molecular features of these channels that distinguish them from the CRAC channels – namely Orai3 and/or plasma membrane STIM1 – will be involved.  相似文献   

18.
Receptor-mediated Ca(2+) release from the endoplasmic reticulum (ER) is often followed by Ca(2+) entry through Ca(2+)-release-activated Ca(2+) (CRAC) channels in the plasma membrane . RNAi screens have identified STIM1 as the putative ER Ca(2+) sensor and CRACM1 (Orai1; ) as the putative store-operated Ca(2+) channel. Overexpression of both proteins is required to reconstitute CRAC currents (I(CRAC); ). We show here that CRACM1 forms multimeric assemblies that bind STIM1 and that acidic residues in the transmembrane (TM) and extracellular domains of CRACM1 contribute to the ionic selectivity of the CRAC-channel pore. Replacement of the conserved glutamate in position 106 of the first TM domain of CRACM1 with glutamine (E106Q) acts as a dominant-negative protein, and substitution with aspartate (E106D) enhances Na(+), Ba(2+), and Sr(2+) permeation relative to Ca(2+). Mutating E190Q in TM3 also affects channel selectivity, suggesting that glutamate residues in both TM1 and TM3 face the lumen of the pore. Furthermore, mutating a putative Ca(2+) binding site in the first extracellular loop of CRACM1 (D110/112A) enhances monovalent cation permeation, suggesting that these residues too contribute to the coordination of Ca(2+) ions to the pore. Our data provide unequivocal evidence that CRACM1 multimers form the Ca(2+)-selective CRAC-channel pore.  相似文献   

19.
Although store-operated calcium entry (SOCE) was identified more that two decades ago, understanding the molecular mechanisms that regulate and mediate this process continue to pose a major challenge to investigators in this field. Thus, there has been major focus on determining which of the models proposed for this mechanism is valid and conclusively establishing the components of the store-operated calcium (SOC) channel(s). The transient receptor potential canonical (TRPC) proteins have been suggested as candidate components of the elusive store-operated Ca(2+) entry channel. While all TRPCs are activated in response to agonist-stimulated phosphatidylinositol 4,5, bisphosphate (PIP(2)) hydrolysis, only some display store-dependent regulation. TRPC1 is currently the strongest candidate component of SOC and is shown to contribute to SOCE in many cell types. Heteromeric interactions of TRPC1 with other TRPCs generate diverse SOC channels. Recent studies have revealed novel components of SOCE, namely the stromal interacting molecule (STIM) and Orai proteins. While STIM1 has been suggested to be the ER-Ca(2+) sensor protein relaying the signal to the plasma membrane for activation of SOCE, Orai1 is reported to be the pore-forming component of CRAC channel that mediates SOCE in T-lymphocytes and other hematopoetic cells. Several studies now demonstrate that TRPC1 also associates with STIM1 suggesting that SOC and CRAC channels are regulated by similar molecular components. Interestingly, TRPC1 is also associated with Orai1 and a TRPC1-Orai1-STIM1 ternary complex contributes to SOC channel function. This review will focus on the diverse SOC channels formed by TRPC1 and the suggestion that TRPC1 might serve as a molecular link that determines their regulation by store-depletion.  相似文献   

20.
Functional requirement for Orai1 in store-operated TRPC1-STIM1 channels   总被引:2,自引:0,他引:2  
Orai1 and TRPC1 have been proposed as core components of store-operated calcium release-activated calcium (CRAC) and store-operated calcium (SOC) channels, respectively. STIM1, a Ca(2+) sensor protein in the endoplasmic reticulum, interacts with and mediates store-dependent regulation of both channels. We have previously reported that dynamic association of Orai1, TRPC1, and STIM1 is involved in activation of store-operated Ca(2+) entry (SOCE) in salivary gland cells. In this study, we have assessed the molecular basis of TRPC1-SOC channels in HEK293 cells. We report that TRPC1+STIM1-dependent SOCE requires functional Orai1. Thapsigargin stimulation of cells expressing Orai1+STIM1 increased Ca(2+) entry and activated typical I(CRAC) current. STIM1 alone did not affect SOCE, whereas expression of Orai1 induced a decrease. Expression of TRPC1 induced a small increase in SOCE, which was greatly enhanced by co-expression of STIM1. Thapsigargin stimulation of cells expressing TRPC1+STIM1 activated a non-selective cation current, I(SOC), that was blocked by 1 microm Gd(3+) and 2-APB. Knockdown of Orai1 decreased endogenous SOCE as well as SOCE with TRPC1 alone. siOrai1 also significantly reduced SOCE and I(SOC) in cells expressing TRPC1+STIM1. Expression of R91WOrai1 or E106QOrai1 induced similar attenuation of TRPC1+STIM1-dependent SOCE and I(SOC), whereas expression of Orai1 with TRPC1+STIM1 resulted in SOCE that was larger than that with Orai1+STIM1 or TRPC1+STIM1 but not additive. Additionally, Orai1, E106QOrai1, and R91WOrai1 co-immunoprecipitated with similar levels of TRPC1 and STIM1 from HEK293 cells, and endogenous TRPC1, STIM1, and Orai1 were co-immunoprecipitated from salivary glands. Together, these data demonstrate a functional requirement for Orai1 in TRPC1+STIM1-dependent SOCE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号