首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
The biosynthesis of the proteinase inhibitor alpha 1-antitrypsin has been studied in rat hepatocyte primary cultures. Newly synthesized alpha 1-antitrypsin was found in hepatocytes as a glycoprotein of an apparent molecular weight of 49,000 carrying oligosaccharide side chains of the high mannose type. In the hepatocyte medium a secreted alpha 1-antitrypsin of an apparent molecular weight of 54,000 could be identified as a glycoprotein with carbohydrate chains of the complex type. Pulse-chase experiments revealed a precursor-product relationship for the two forms of alpha 1-antitrypsin. When the hepatocytes were treated with swainsonine, an intracellular form of alpha 1-antitrypsin with an apparent molecular weight of 49,000 indistinguishable from that of control cells was found. However, the alpha 1-antitrypsin secreted from swainsonine-treated hepatocytes was different from that present in control media. It was characterized by a lower apparent molecular weight (51,000), a higher amount of [3H]mannose incorporation, half as much incorporation of [3H]galactose, and the same amount of [3H]fucose incorporation compared to alpha 1-antitrypsin of control media. In contrast to the 54,000 complex type alpha 1-antitrypsin from control media the 51,000 alpha 1-antitrypsin from the medium of swainsonine-treated cells was found to be susceptible to the action of endoglucosaminidase H, even when fucose was attached to the proximal GlcNAc residue. alpha 1-Antitrypsin secreted from swainsonine-treated cells combines features usually associated with either high mannose or complex type oligosaccharides and therefore represents a hybrid structure. In spite of its effect on the carbohydrate part of alpha 1-antitrypsin swainsonine did not impair the secretion of the incompletely processed glycoprotein.  相似文献   

2.
《The Journal of cell biology》1984,98(5):1720-1729
1- Deoxynojirimycin is a specific inhibitor of glucosidases I and II, the first enzymes that process N-linked oligosaccharides after their transfer to polypeptides in the rough endoplasmic reticulum. In a pulse- chase experiment, 1- deoxynojirimycin greatly reduced the rate of secretion of alpha 1-antitrypsin and alpha 1-antichymotrypsin by human hepatoma HepG2 cells, but had marginal effects on secretion of the glycoproteins C3 and transferrin, or of albumin. As judged by equilibrium gradient centrifugation, 1- deoxynojirimycin caused alpha 1- antitrypsin and alpha 1-antichymotrypsin to accumulate in the rough endoplasmic reticulum. The oligosaccharides on cell-associated alpha 1- antitrypsin and alpha 1-antichymotrypsin synthesized in the presence of 1- deoxynojirimycin , remained sensitive to Endoglycosidase H and most likely had the structure Glu1- 3Man9GlcNAc2 . Tunicamycin, an antibiotic that inhibits addition of N-linked oligosaccharide units to glycoproteins, had a similar differential effect on secretion of these proteins. Swainsonine , an inhibitor of the Golgi enzyme alpha- mannosidase II, had no effect on the rates of protein secretion, although the proteins were in this case secreted with an abnormal N- linked, partially complex, oligosaccharide. We conclude that the movement of alpha 1-antitrypsin and alpha 1-antichymotrypsin from the rough endoplasmic reticulum to the Golgi requires that the N-linked oligosaccharides be processed to at least the Man9GlcNAc2 form; possibly this oligosaccharide forms part of the recognition site of a transport receptor for certain secretory proteins.  相似文献   

3.
Endo-alpha-D-mannosidase, a Golgi-situated processing enzyme, provides a glucosidase-independent pathway for the formation of complex N-linked oligosaccharides of glycoproteins (Moore, S. E. H., and Spiro, R. G. (1990) J. Biol. Chem. 265, 13104-13112). The present report demonstrates that at least five distinct glycoproteins secreted by HepG2 cells (alpha 1-antitrypsin, transferrin, alpha 1-acid glycoprotein, alpha 1-antichymotrypsin, and alpha-fetoprotein) as well as cell surface components can effectively utilize this alternate processing route. During a castanospermine (CST)-imposed glucosidase blockade, these glycoproteins apparently were produced with their usual complement of complex carbohydrate units, and upon addition of the mannosidase I inhibitor, 1-deoxymannojirimycin (DMJ), to prevent further processing of deglucosylated N-linked oligosaccharides, Man6-8GlcNAc, but not Man9GlcNAc, were identified; the Man8GlcNAc component occurred as the characteristic isomer generated by endomannosidase cleavage. Although the endomannosidase-mediated deglucosylation pathway appeared to be nonselective, a differential inhibitory effect on the secretion of the various glycoproteins was noted in the presence of CST which was directly related to the number of their N-linked oligosaccharides, ranging from minimal in alpha-fetoprotein to substantial (approximately 65%) in alpha 1-acid glycoprotein. Addition of DMJ to CST-incubated cells did not further decrease secretion of the glycoproteins, although processing was now arrested at the polymannose stage, and a portion of the oligosaccharides were still in the glucosylated form. These latter findings indicate that complex carbohydrate units are not required for secretion of these glycoproteins and that any effect which glucose residues exert on their intracellular transit would be related to movement from the endoplasmic reticulum to the Golgi compartment.  相似文献   

4.
Swainsonine is a potent inhibitor of lysosomal alpha-D-mannosidase, causes the production of hybrid glycoproteins, and is reported to produce a phenocopy of hereditary alpha-mannosidosis. We now report that the effects of swainsonine administration in the rat are different in two respects from those found in other animals thus far studied. Swainsonine caused the accumulation of oligosaccharide in kidney and urine but not in liver or brain. The accumulated oligosaccharides were mainly Man(alpha 1-3)[Man(alpha 1-6)]Man(beta 1-4)GlcNAc, Man(alpha 1-3)[Man(alpha 1-6)[Man(alpha 1-3)]Man(beta 1-4) GlcNAc, and Man(alpha 1-3)[Man(alpha 1-6)]Man(alpha 1-6)[Man(alpha 1-3)]Man(beta 1-4)GlcNAc. Analogous branched Man4 and Man5 structures are found in pig and sheep tissues, but they are N, N'-diacetylchitobiose derivatives. The substrate specificities of rat kidney lysosomal and cytosolic alpha-D-mannosidases were investigated because in one type of hereditary alpha-mannosidosis, that occurring in man, the major storage products are linear rather than branched oligosaccharides. The lysosomal enzyme showed much greater activity toward linear oligosaccharides than toward the branched oligosaccharides induced in the kidney by swainsonine. On the other hand, cytosolic alpha-D-mannosidase preferred the branched oligosaccharides, a result suggesting that this mannosidase might be inhibitable by swainsonine and that the enzyme might play a normal role in glycoprotein catabolism. Swainsonine was indeed found to inhibit this enzyme at relatively high concentrations (I50 at 100 microM swainsonine), and concentrations of this magnitude were in fact found in the cytosol of kidney of swainsonine-fed rats. The kidney cytosolic alpha-D-mannosidase levels were reduced in these rats and, more important, the accumulated oligosaccharides were present mainly in the cytosol rather than in lysosomes. These results point to possible involvement of cytosolic alpha-D-mannosidase in glycoprotein degradation in the rat.  相似文献   

5.
Swainsonine affects the processing of glycoproteins in vivo   总被引:4,自引:0,他引:4  
Rats, sheep and guinea pigs treated with swainsonine excrete 'high mannose' oligosaccharides in urine. The major rat and guinea pig oligosaccharide is (Man)5GlcNAc, whereas sheep excrete a mixture of oligosaccharides of composition (Man)2-5GlcNAc2 and (Man)3-5GlcNAc. The presence of these oligosaccharides suggests that Golgi alpha-D-mannosidase II as well as lysosomal alpha-D-mannosidase is inhibited by swainsonine resulting in storage of abnormally processed asparagine-linked glycans from glycoproteins. Altered glycoprotein processing appears to have little effect on the health of the intoxicated animal, but the accompanying lysosomal storage produces a disease state.  相似文献   

6.
Urinary oligosaccharides isolated from locoweed-intoxicated sheep were separated and quantified by reversed-phase high pressure liquid chromatography of the perbenzoylated alditols. Mannose-containing oligosaccharides were elevated as early as day 3 of feeding, but maximum levels (approx. 1 mumol/ml) were not attained until after 6 weeks of feeding. The relative abundance of individual oligosaccharides changed over the course of the feeding period. Man3GlcNAc2 reached a peak on day 3 and then rapidly declined. Two isomers were shown to be present in this fraction and the relative proportions altered with the duration of locoweed treatment. The major isomer present at early time points (less than 8 days) co-eluted with synthetic Man(alpha 1-3)[Man(alpha 1-6)]Man(beta 1-4)GlcNAc(beta 1-4)GlcNAc, was digested by endo-beta-N-acetyl-glucosaminidase D, and is probably derived from the trimannosyl core of complex glycoproteins synthesized prior to locoweed treatment. Man3GlcNAc2 isolated from day 53 urine was resistant to endo-beta-N-acetylglucosaminidase D digestion but was cleaved by endo-beta-N-acetylglucosaminidase H. This isomer has the probable structure Man(alpha 1-3)Man(alpha 1-6)Man(beta 1-4)GlcNAc(beta 1-4)GlcNAc, indicative of its origin from hybrid or high-mannose glycoproteins. Man5GlcNAc2 reached a peak on day 13 and then slowly declined, whereas Man4GlcNAc2 increased concomitantly. The rapid increase in Man5GlcNAc2 can probably be attributed to the breakdown of hybrid glycans produced as a result of swainsonine inhibition of Golgi alpha-D-mannosidase II. The onset of observable clinical signs on day 38 closely correlated with the time point at which the level of Man4GlcNAc2 exceeded Man5GlcNAc2. After locoweed feeding was discontinued, the amount of urinary oligosaccharides declined rapidly and reached baseline levels within 12 days.  相似文献   

7.
Characterization of a novel alpha-D-mannosidase from rat brain microsomes   总被引:4,自引:0,他引:4  
A new alpha-D-mannosidase has been identified in rat brain microsomes. The enzyme was purified 70-100-fold over the microsomal fraction by solubilization with Triton X-100, followed by ion exchange, concanavalin A-Sepharose, and hydroxylapatite chromatography. The purified enzyme is very active towards mannose-containing oligosaccharides and has a pH optimum of 6.0. Unlike rat liver endoplasmic reticulum alpha-D-mannosidase and both Golgi mannosidases IA and IB, which have substantial activity only towards alpha 1,2-linked mannosyl residues, the brain enzyme readily cleaves alpha 1,2-, alpha 1,3-, and alpha 1,6-linked mannosyl residues present in high mannose oligosaccharides. The brain enzyme is also different from liver Golgi mannosidase II in that it hydrolyzes (Man)5GlcNAc and (Man)4GlcNAc without their prior N-acetylglucosaminylation. Moreover, the facts that the ability of the enzyme to cleave GlcNAc(Man)5GlcNAc, the biological substrate for Golgi mannosidase II, is not inhibited by swainsonine, and that p-nitrophenyl alpha-D-mannoside is a poor substrate provide further evidence for major differences between the brain enzyme and mannosidase II. Inactivation studies and the co-purification of activities towards various substrates suggest that a single enzyme is responsible for all the activities found. In view of these results, it seems possible that, in rat brain, a single mannosidase cleaves asparagine-linked high mannose oligosaccharide to form the core Man3GlcNAc2 moiety, which would then be modified by various glycosyl transferases to form complex type glycoproteins.  相似文献   

8.
Inhibitors of the biosynthesis and processing of N-linked oligosaccharides   总被引:15,自引:0,他引:15  
A number of glycoproteins have oligosaccharides linked to protein in a GlcNAc----asparagine bond. These oligosaccharides may be either of the complex, the high-mannose or the hybrid structure. Each type of oligosaccharides is initially biosynthesized via lipid-linked oligosaccharides to form a Glc3Man9GlcNAc2-pyrophosphoryl-dolichol and transfer of this oligosaccharide to protein. The oligosaccharide portion is then processed, first of all by removal of all three glucose residues to give a Man9GlcNAc2-protein. This structure may be the immediate precursor to the high-mannose structure or it may be further processed by the removal of a number of mannose residues. Initially four alpha 1,2-linked mannoses are removed to give a Man5 - GlcNAc2 -protein which is then lengthened by the addition of a GlcNAc residue. This new structure, the GlcNAc- Man5 - GlcNAc2 -protein, is the substrate for mannosidase II which removes the alpha 1,3- and alpha 1,6-linked mannoses . Then the other sugars, GlcNAc, galactose, and sialic acid, are added sequentially to give the complex types of glycoproteins. A number of inhibitors have been identified that interfere with glycoprotein biosynthesis, processing, or transport. Some of these inhibitors have been valuable tools to study the reaction pathways while others have been extremely useful for examining the role of carbohydrate in glycoprotein function. For example, tunicamycin and its analogs prevent protein glycosylation by inhibiting the first step in the lipid-linked pathway, i.e., the formation of Glc NAc-pyrophosphoryl-dolichol. These antibiotics have been widely used in a number of functional studies. Another antibiotic that inhibits the lipid-linked saccharide pathway is amphomycin, which blocks the formation of dolichyl-phosphoryl-mannose. In vitro, this antibiotic gives rise to a Man5GlcNAc2 -pyrophosphoryl-dolichol from GDP-[14C]mannose, indicating that the first five mannose residues come directly from GDP-mannose rather than from dolichyl-phosphoryl-mannose. Other antibodies that have been shown to act at the lipid-level are diumycin , tsushimycin , tridecaptin, and flavomycin. In addition to these types of compounds, a number of sugar analogs such as 2-deoxyglucose, fluoroglucose , glucosamine, etc. have been utilized in some interesting experiments. Several compounds have been shown to inhibit glycoprotein processing. One of these, the alkaloid swainsonine , inhibits mannosidase II that removes alpha-1,3 and alpha-1,6 mannose residues from the GlcNAc- Man5GlcNAc2 -peptide. Thus, in cultured cells or in enveloped viruses, swainsonine causes the formation of a hybrid structure.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Processing glycosidases play an important role in N-glycan biosynthesis in mammalian cells by trimming Glc(3)Man(9)GlcNAc(2) and thus providing the substrates for the formation of complex and hybrid structures by Golgi glycosyltransferases. Processing glycosidases also play a role in the folding of newly formed glycoproteins and in endoplasmic reticulum quality control. The properties and molecular nature of mammalian processing glycosidases are described in this review. Membrane-bound alpha-glucosidase I and soluble alpha-glucosidase II of the endoplasmic reticulum remove the alpha1,2-glucose and alpha1,3-glucose residues, respectively, beginning immediately following transfer of Glc(3)Man(9)GlcNAc(2) to nascent polypeptides. The alpha-glucosidases participate in glycoprotein folding mediated by calnexin and calreticulin by forming the monoglucosylated high mannose oligosaccharides required for the interaction with the chaperones. In some mammalian cells, Golgi endo alpha-mannosidase provides an alternative pathway for removal of glucose residues. Removal of alpha1,2-linked mannose residues begins in the endoplasmic reticulum where trimming of mannose residues in the endoplasmic reticulum has been implicated in the targeting of malfolded glycoproteins for degradation. Removal of mannose residues continues in the Golgi with the action of alpha1, 2-mannosidases IA and IB that can form Man(5)GlcNAc(2) and of alpha-mannosidase II that removes the alpha1,3- and alpha1,6-linked mannose from GlcNAcMan(5)GlcNAc(2) to form GlcNAcMan(3)GlcNAc(2). These membrane-bound Golgi enzymes have been cloned and shown to have very distinct patterns of tissue-specific expression. There are also broad specificity alpha-mannosidases that can trim Man(4-9)GlcNAc(2) to Man(3)GlcNAc(2), and provide an alternative pathway toward complex oligosaccharide formation. Cloning of the remaining alpha-mannosidases will be required to evaluate their specific functions in glycoprotein maturation.  相似文献   

10.
The mannose analogue, 1-deoxymannojirimycin, which inhibits Golgi alpha-mannosidase I but not endoplasmic reticulum (ER) alpha-mannosidase has been used to determine the role of the ER alpha-mannosidase in the processing of the asparagine-linked oligosaccharides on glycoproteins in intact cells. In the absence of the inhibitor, the predominant oligosaccharide structures found on the ER glycoprotein 3-hydroxy-3-methylglutaryl-CoA reductase in UT-1 cells are single isomers of Man6GlcNAc and Man8GlcNAc. In the presence of 150 microM 1-deoxymannojirimycin, the Man8GlcNAc2 isomer accumulates indicating that the 1-deoxymannojirimycin-resistant ER alpha-mannosidase is responsible for the conversion of Man9GlcNAc2 to Man8GlcNAc2 on reductase. The processing of Man8GlcNAc2 to Man6GlcNAc2, however, must be attributed to a 1-deoxymannojirimycin-sensitive alpha-mannosidase. When cells were radiolabeled with [2-(3)H]mannose for 15 h in the presence of 1-deoxymannojirimycin and then further incubated for 3 h in nonradioactive medium without inhibitor, the Man8GlcNAc2 oligosaccharides which accumulated during the labeling period were partially trimmed to Man6GlcNAc. This finding suggests that a second alpha-mannosidase, sensitive to 1-deoxymannojirimycin, resides in the crystalloid ER and is responsible for trimming the reductase oligosaccharide chain from Man8GlcNAc2 to Man6GlcNAc2. To determine if ER alpha-mannosidase is responsible for trimming the oligosaccharides of all glycoproteins from Man9GlcNAc to Man8GlcNAc, the total asparagine-linked oligosaccharides of rat hepatocytes labeled with [2-(3)H]mannose in the presence or absence of 1.0 mM 1-deoxymannojirimycin were examined. the inhibitor prevented the formation of complex oligosaccharides and caused a 30-fold increase in the amount of Man9GlcNAc2 and a 13-fold increase in the amount of Man8GlcNAc2 present on secreted glycoproteins. This result suggests that only one-third of the secreted glycoproteins is initially processed by ER alpha-mannosidase, and two-thirds are processed by Golgi alpha-mannosidase I or another 1-deoxymannojirimycin-sensitive alpha-mannosidase. The inhibitor caused only a 2.6-fold increase in the amount of Man9GlcNAc2 on cellular glycoproteins suggesting that a higher proportion of these glycoproteins are initially processed by the ER alpha-mannosidase. We conclude that some, but not all, hepatocyte glycoproteins are substrates for ER alpha-mannosidase which catalyzes the removal of a specific mannose residue from Man9GlcNAc2 to form a single isomer of Man8GlcNAc2.  相似文献   

11.
Endogenous ligands for the hepatic lectin which is specific for mannose and N-acetylglucosamine (mannan-binding protein, MBP) were isolated from rat liver rough microsomes and primary cultured hepatocytes by affinity chromatography on an immobilized MBP column. Western blotting using specific antisera revealed that serum glycoproteins, alpha 1-macroglobulin, alpha 1-antitrypsin, and alpha 1-acid glycoprotein, and a lysosomal enzyme, beta-glucuronidase were the major constituents of the endogenous ligands. These endogenous ligands consisted of high mannose-type oligosaccharides of Man9GlcNAc2 and Man8GlcNAc2, and had rapid turnover rates with an average half-life of 45 min, indicating that they were mainly composed of biosynthetic intermediates of glycoproteins. In view of the identification of the endogenous ligands as the biosynthetic intermediates of glycoproteins, the possible functions of the intracellular lectin are discussed in relation to the intracellular transport of glycoproteins.  相似文献   

12.
Golgi membranes from rat liver have been shown to contain an endo-alpha-D-mannosidase which can convert Glc1Man9GlcNAc to Man8GlcNAc with the release of Glc alpha 1----3Man (Lubas, W. A., and Spiro, R. G. (1987) J. Biol. Chem. 262, 3775-3781). We now report that this enzyme has the capacity to cleave the alpha 1----2 linkage between the glucose-substituted mannose residue and the remainder of the polymannose branch in a wide range of oligosaccharides (Glc3Man9GlcNAc to Glc1Man4GlcNAc) as well as glycopeptides and oligosaccharide-lipids. Whereas the tri- and diglucosylated species (Glc3Man9GlcNAc and Glc2Man9GlcNAc), which yielded Glc3Man and Glc2Man, respectively, were processed more slowly than Glc1Man9GlcNAc, the monoglucosylated components with truncated mannose chains (Glc1Man8GlcNAc to Glc1Man4GlcNAc) were trimmed at an increased rate which was inversely related to the number of mannose residues present. The endomannosidase was not inhibited by a number of agents which are known to interfere with N-linked oligosaccharide processing by exoglycosidases, including 1-deoxynojirimycin, castanospermine, bromoconduritol, 1-deoxymannojirimycin, swainsonine, and EDTA. However, Tris and other buffers containing primary hydroxyl groups substantially decreased its activity. After Triton solubilization, the endomannosidase was observed to be bound to immobilized wheat germ agglutinin, indicating the presence of a type of carbohydrate unit consistent with Golgi localization of the enzyme. The Man8GlcNAc isomer produced by endomannosidase action was found to be processed by Golgi enzymes through a different sequence of intermediates than the rough endoplasmic reticulum-generated Man8GlcNAc variant, in which the terminal mannose of the middle branch is absent. Whereas the latter oligosaccharide is converted to Man5GlcNAc via Man7GlcNAc and Man6GlcNAc at an even rate, the processing of the endomannosidase-derived Man8GlcNAc stalls at the Man6GlcNAc stage due to the apparent resistance to Golgi mannosidase I of the alpha 1,2-linked mannose of the middle branch. The results of our study suggest that the Golgi endomannosidase takes part in a processing route for N-linked oligosaccharides which have retained glucose beyond the rough endoplasmic reticulum; the distinctive nature of this pathway may influence the ultimate structure of the resulting carbohydrate units.  相似文献   

13.
We have purified a protein with hemagglutinating activity from the seeds of a West African legume, Bowringia milbraedii. The purified protein, designated BMA, has a native Mr = 38,000 on gel filtration and a subunit size of Mr = 16,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing or nonreducing conditions. Hemagglutination was inhibited most effectively by Man alpha 1----2 linked sugars. Affinity chromatography of oligosaccharides on BMA-Sepharose showed that Man alpha 1----2Man alpha 1----2Man alpha 1----3Man beta 1----4GlcNAcol (where GlcNAcol is N-acetylglucosaminitol) and Man alpha 1----2Man alpha 1----3Man beta 1----4GlcNAcol were retarded on the column, whereas Man alpha 1----3Man beta 1----4GlcNAcol did not bind. Oligomannosidic-type glycans obtained by treatment of [3H] mannose-labeled baby hamster kidney cells with endo-beta-N-acetylglucosaminidase H bound more strongly to BMA-Sepharose and required 10 or 200 mM methyl-alpha-mannoside for elution. Oligosaccharides bearing the sequence Man alpha 1----2Man alpha 1----6Man alpha 1----6Man, i.e. Man9GlcNAc and certain isomers of Man8GlcNAc and Man7GlcNAc, bound more tightly than other Man8 GlcNAc and Man7GlcNAc isomers lacking this sequence. Man6GlcNAc and Man5GlcNAc were weakly bound. These results suggest that BMA binds preferentially to glycoproteins that are subjected to early steps of oligosaccharide processing in the endoplasmic reticulum but not to glycoproteins that are exposed to more extensive processing by Golgi mannosidases. Staining of permeabilized cells with BMA-chromophore conjugates revealed a reticular cytoplasmic pattern consistent with a preferential visualization of the endoplasmic reticulum. BMA staining was less evident in the juxtanuclear regions that were stained brightly with wheat germ agglutinin, a lectin that binds preferentially to sialylated glycoproteins located in Golgi compartments.  相似文献   

14.
Misfolded glycoproteins synthesized in the endoplasmic reticulum (ER) are degraded by cytoplasmic proteasomes, a mechanism known as ERAD (ER-associated degradation). In the present study, we demonstrate that ERAD of the misfolded genetic variant-null Hong Kong alpha1-antitrypsin is enhanced by overexpression of the ER processing alpha1,2-mannosidase (ER ManI) in HEK 293 cells, indicating the importance of ER ManI in glycoprotein quality control. We showed previously that EDEM, an enzymatically inactive mannosidase homolog, interacts with misfolded alpha1-antitrypsin and accelerates its degradation (Hosokawa, N., Wada, I., Hasegawa, K., Yorihuzi, T., Tremblay, L. O., Herscovics, A., and Nagata, K. (2001) EMBO Rep. 2, 415-422). Herein we demonstrate a combined effect of ER ManI and EDEM on ERAD of misfolded alpha1-antitrypsin. We also show that misfolded alpha1-antitrypsin NHK contains labeled Glc1Man9GlcNAc and Man5-9GlcNAc released by endo-beta-N-acetylglucosaminidase H in pulse-chase experiments with [2-3H]mannose. Overexpression of ER ManI greatly increases the formation of Man8GlcNAc, induces the formation of Glc1Man8GlcNAc and increases trimming to Man5-7GlcNAc. We propose a model whereby the misfolded glycoprotein interacts with ER ManI and with EDEM, before being recognized by downstream ERAD components. This detailed characterization of oligosaccharides associated with a misfolded glycoprotein raises the possibility that the carbohydrate recognition determinant triggering ERAD may not be restricted to Man8GlcNAc2 isomer B as previous studies have suggested.  相似文献   

15.
The processing of asparagine-linked oligosaccharides on the alpha- chains of an immunoglobulin A (IgA) has been investigated using MOPC 315 murine plasmacytoma cells. These cells secrete IgA containing complex-type oligosaccharides that were not sensitive to endo-beta-N- acetylglucosaminidase H. In contrast, oligosaccharides present on the intracellular alpha-chain precursor were of the high mannose-type, remaining sensitive to endo-beta-N-acetylglucosaminidase H despite a long intracellular half-life of 2-3 h. The major [3H]mannose-labeled alpha-chain oligosaccharides identified after a 20-min pulse were Man8GlcNAc2 and Man9GlcNAc2. Following chase incubations, the major oligosaccharide accumulating intracellularly was Man6GlcNAc2, which was shown to contain a single alpha 1,2-linked mannose residue. Conversion of Man6GlcNAc2 to complex-type oligosaccharides occurred at the time of secretion since appreciable amounts of Man5GlcNAc2 or further processed structures could not be detected intracellularly. The subcellular locations of the alpha 1,2-mannosidase activities were studied using carbonyl cyanide m-chlorophenylhydrazone and monensin. Despite inhibiting the secretion of IgA, these inhibitors of protein migration did not effect the initial processing of Man9GlcNAc2 to Man6GlcNAc2. Furthermore, no large accumulation of Man5GlcNAc2 occurred, indicating the presence of two subcellular locations of alpha 1,2-mannosidase activity involved in oligosaccharide processing in MOPC 315 cells. Thus, the first three alpha 1,2-linked mannose residues were removed shortly after the alpha-chain was glycosylated, most likely in rough endoplasmic reticulum, since this processing occurred in the presence of carbonyl cyanide m-chlorophenylhydrazone. However, the removal of the final alpha 1,2-linked mannose residue as well as subsequent carbohydrate processing occurred just before IgA secretion, most likely in the trans Golgi complex since processing of Man6GlcNAc2 to Man5GlcNAc2 was greatly inhibited in the presence of monensin.  相似文献   

16.
We have studied the effects of brefeldin A (BFA) and monensin on the processing of the oligosaccharides of thyrotropin (TSH), free alpha-subunits, and cellular glycoproteins of mouse pituitary tissue to clarify the subcellular sites of action of BFA. BFA was previously shown to inhibit the translocation of glycoproteins from the rough endoplasmic reticulum to the Golgi apparatus but action at other sites was possible. Pituitaries from hypothyroid mice were incubated with [35S]methionine, [3H]mannose, [3H]galactose, [3H]fucose, N-[3H]acetylmannosamine, or [35S]sulfate for 2 hr in the absence or presence of 5 micrograms of BFA/ml or 2 microM monensin. TSH and free alpha-subunits were immunoprecipitated from tissue lysates and analyzed by sodium dodecyl sulfate-gel electrophoresis. The tryptic glycopeptides of TSH were separated using high-performance liquid chromatography. Total glycoproteins in cell lysates were precipitated using trichloroacetic acid. Labeled oligosaccharides were released from the tryptic glycopeptides of TSH and cellular glycoproteins by endoglycosidase H and they were analyzed by paper chromatography. Compared with control incubations, BFA caused the intracellular accumulation of glycoproteins having less than expected amounts of Man9GlcNAc2 units, but with excess Man8GlcNAc2, Man7GlcNAc2, Man6GlcNAc2, and Man5GlcNAc2 units. There was a lesser accumulation of glucose-containing oligosaccharides, especially Glc1Man9GlcNAc2. Monensin also caused the accumulation of certain high mannose species, but the pattern differed from that seen for BFA, since Man9GlcNAc2 units were preserved and there was less excess of Man8GlcNAc2, Man7GlcNAc2, Man6GlcNAc2, and Man5GlcNAc2 units. BFA did not block the initial attachment of oligosaccharides at any of the three Asn-glycosylation sites of TSH, but caused the accumulation of Man5-8GlcNAc2 units at each site. Both monensin and BFA inhibited fucosylation, sulfation, and sialylation more markedly than mannose incorporation. Thus, in addition to its previously described action of inhibiting rough endoplasmic reticulum to Golgi transport, BFA appears to partially inhibit the glucose-trimming enzymes as well as some Golgi enzymes.  相似文献   

17.
Thioglycollate-stimulated murine peritoneal macrophages were cultured for eight days in the presence of swainsonine, or 1,4-dideoxy-1,4-imino-d-mannitol (DIM), or both of these competitive -mannosidase inhibitors together. Analysis of accumulated high-mannose oligosaccharides by reversed phase HPLC after perbenzoylation revealed that DIM- and DIM-plus swainsonine-treated macrophages contained larger amounts of Man7GlcNAc, Man8GlcNAc and Man9GlcNAc, while swainsonine-treated macrophages contained relatively more Man3GlcNAc and Man5GlcNAc. These results are consistent with the known inhibitory effects of DIM and swainsonine on Golgi mannosidases I and II, respectively, and on lysosomal -mannosidase. Depletion of stored oligosaccharides to control values was complete within seven days of terminating swainsonine treatment.  相似文献   

18.
The influenza viral hemagglutinin contains L-fucose linked alpha 1,6 to some of the innermost GlcNAc residues of the complex oligosaccharides. In order to determine what structural features of the oligosaccharide were required for fucosylation or where in the processing pathway fucosylation occurred, influenza virus-infected MDCK cells were incubated in the presence of various inhibitors of glycoprotein processing to stop trimming at different points. After several hours of incubation with the inhibitors, [5,6-3H]fucose and [1-14C]mannose were added to label the glycoproteins, and cells were incubated in inhibitor and isotope for about 40 h to produce mature virus. Glycopeptides were prepared from the viral and the cellular glycoproteins, and these glycopeptides were isolated by gel filtration on Bio-Gel P-4. The glycopeptides were then digested with endo-beta-N-acetylglucosaminidase H and rechromatographed on the Bio-Gel column. In the presence of castanospermine or 2,5-dihydroxymethyl-3,4-dihydroxypyrrolidine, both inhibitors of glucosidase I, most of the radioactive mannose was found in Glc3Man7-9GlcNAc structures, and these did not contain radioactive fucose. In the presence of deoxymannojirimycin, an inhibitor of mannosidase I, most of the [14C]mannose was in a Man9GlcNAc structure which was also not fucosylated. However, in the presence of swainsonine, an inhibitor of mannosidase II, the [14C]mannose was mostly in hybrid types of oligosaccharides, and these structures also contained radioactive fucose. Treatment of the hybrid structures with endoglucosaminidase H released the [3H]fucose as a small peptide (Fuc-GlcNAc-peptide), whereas the [14C]mannose remained with the oligosaccharide. The data support the conclusion that the addition of fucose linked alpha 1,6 to the asparagine-linked GlcNAc is dependent upon the presence of a beta 1,2-GlcNAc residue on the alpha 1,3-mannose branch of the core structure.  相似文献   

19.
The complete primary structures of the major Asn-linked oligosaccharides from the type II variant surface glycoproteins (VSGs), MITat 1.2 and MITat 1.7, and the type III VSG, MITat 1.5, were determined using a combination of exo- and endoglycosidase digestions, methylation analysis, acetolysis, and 500 MHz 1H NMR spectroscopy. Each variant contained classical branched oligomannose-type and biantennary complex oligosaccharides, a proportion of the latter substituted with terminal alpha(1-3)-linked galactose residues, the first report of the presence of this epitope in Trypanosoma brucei. In addition both the type II variants contained relatively large amounts of the unusual small oligomannose-type oligosaccharides, Man4GlcNAc2 and Man3GlcNAc2, and a diverse array of novel branched poly-N-acetyllactosamine oligosaccharides, similar but not identical to those from mammalian glycoproteins. These latter structures were also partially substituted with terminal alpha(1-3)-linked galactose residues. Glycosylation in the type II variants showed site specificity in that the poly-N-acetyllactosamine and Man(9-5)GlcNAc2 oligosaccharides were located exclusively at Asn-glycosylation site 1 very close to the C terminus, whereas the Man(4-3)GlcNAc2 and biantennary complex oligosaccharides were located exclusively at site 2. This is the first report of the presence of poly-N-acetyllactosamine oligosaccharides in protozoa.  相似文献   

20.
Agents that affect intracellular cation and pH gradients and inhibit energy production have been tested for their ability to modulate the processing and secretion of the free alpha subunit and the alpha beta dimer of human chorionic gonadotropin (hCG) by cultured human trophoblastic cells (JAR). Incubation of JAR cells with monensin or nigericin, monovalent cation ionophores that produce equilibration of Na+ and K+ across cellular membranes, dicyclohexylcarbodiimide, an agent that inhibits intracellular membrane ATPases, and methylamine, which neutralizes intracellular pH gradients, produced similar effects on hCG processing and secretion. All these agents inhibited the processing of the asparagine-linked oligosaccharide chains of free alpha subunit and the alpha and beta subunits contained in the hCG dimer. Moreover, after treatment of JAR cells with these agents, there was an intracellular accumulation of precursor forms and an inhibition of secretion of "mature" forms of hCG. Monensin affected the processing and secretion of hCG subunits differently at different concentrations. At 5 X 10(-7) M, monensin inhibited the processing of the asparagine-linked oligosaccharides of hCG without altering the rate-limiting step in the secretory pathway or blocking hCG secretion. The intracellular hCG subunit precursors in both control and monensin-treated cells contained a similar array of high mannose oligosaccharides, predominantly of the Man8GlcNAc2 and Man9GlcNAc2 types. However, monensin-treated cells secreted hCG subunits that contained endo H-sensitive oligosaccharides of the high mannose (mostly Man5GlcNAc2) and hybrid types rather than the endo H-resistant complex chains synthesized by control cells. Nevertheless, a full complement of serine-linked oligosaccharides was added to the hCG-beta subunit in monensin-treated cells. These results indicate that the intracellular movement of hCG from the rough endoplasmic reticulum to the cell surface was not inhibited by monensin at a concentration that impaired Golgi-localized steps in the processing of asparagine-linked oligosaccharides. At 5 X 10(-6) M, monensin significantly inhibited secretion of hCG and created a new rate-limiting step in the processing pathway. hCG subunits bearing Man5GlcNAc2 units accumulated intracellularly, suggesting that the equilibration of intracellular Na+/K+ pools blocked oligosaccharide processing at an intra-Golgi point, perhaps by inhibiting movement of the glycoprotein hormone from the "cis" to the "trans" Golgi compartment. Since the other drugs mentioned above produced similar effects on hCG processing and secretion, it appears that maintenance of intracellular cation and pH gradients is necessary for the intra-Golgi transport of glycoprotein hormones.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号