首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The action of cadmium ions on transmitter release was studied at the neuromuscular junction in mouse diaphragm. In the presence of raised K+, Cd2+ caused a parallel shift to the right of the graph of transmitter release rate (frequency of miniature end-plate potentials, fmepp) versus log [Ca2+], with no change in maximum or slope, indicating a competitive mode of action of Cd2+. The apparent dissociation constant for Cd2+ was 3 microM. In calcium-free solutions containing 15 mM K+, Cd2+ caused a rise in the fmepp, which subsequently slowly declined despite the continued presence of Cd2+. The rise in fmepp caused by Cd2+ could be interrupted, but not reversed, by washing out the Cd2+ with EDTA. Exposure of the preparation to 100 microM Cd2+ for 15 min or more resulted in a raised fmepp that persisted despite the removal of Cd2+ and exposure to 200 microM EDTA. Following such treatment, the graph of fmepp versus log [Ca2+] continued to be shifted to the right. The interaction of Ca2+ with the residual effect of Cd2+ indicates that Cd2+, in addition to its action to block Ca2+ entry into the terminal, may act as a competitor and perhaps as a partial agonist at intracellular sites that normally bind Ca2+ and govern transmitter release. If this is the case, then it must be supposed that, in raised K+, quantal release of transmitter represents intermittent intense activation of release sites with local high levels of Ca2+ rather than continuous low level activation.  相似文献   

2.
Intracellular recordings of spontaneous and evoked end-plate potentials have been made at the neuromuscular junction of mouse hemidiaphragms to determine a possible role of cyclic AMP (cAMP) in the release of acetylcholine from presynaptic terminals. Spontaneous release, as determined from the frequency of miniature end-plate potentials, was increased by drugs that inhibit phosphodiesterase: isobutylmethylxanthine (IBMX), SQ 20,009, theophylline, and caffeine; drugs that stimulate adenylate cyclase: forskolin, fluoride, and cholera toxin, and the stable analogue of cAMP: 8-bromo-cAMP but not dibutyryl cAMP. Release increased with time during maintained exposure to the drugs and generally followed a simple exponential time course with time constants ranging from 8 to 17 min at 20 degrees C, except for SQ 20,009 and cholera toxin which required longer exposure times for effect. The order of potency of the phosphodiesterase inhibitors was IBMX = SQ 20,009 greater than theophylline = caffeine. This is consistent with an effect mediated by an increase in cAMP concentrations within the nerve terminal. Evoked release, determined from the quantal content of the end-plate potential, was increased to a lesser extent than spontaneous release. The results are discussed with reference to the possible involvement of second messengers in the release of vesicles from nerve terminals in vertebrate synapses.  相似文献   

3.
4.
The sequence of structural changes that occur during synaptic vesicle exocytosis was studied by quick-freezing muscles at different intervals after stimulating their nerves, in the presence of 4-aminopyridine to increase the number of transmitter quanta released by each stimulus. Vesicle openings began to appear at the active zones of the intramuscular nerves within 3-4 ms after a single stimulus. The concentration of these openings peaked at 5-6 ms, and then declined to zero 50-100 ms late. At the later times, vesicle openings tended to be larger. Left behind at the active zones, after the vesicle openings disappeared, were clusters of large intramembrane particles. The larger particles in these clusters were the same size as intramembrane particles in undischarged vesicles, and were slightly larger than the particles which form the rows delineating active zones. Because previous tracer work had shown that new vesicles do not pinch off from the plasma membrane at these early times, we concluded that the particle clusters originate from membranes of discharged vesicles which collapse into the plasmalemma after exocytosis. The rate of vesicle collapse appeared to be variable because different stages occurred simultaneously at most times after stimulation; this asynchrony was taken to indicate that the collapse of each exocytotic vesicle is slowed by previous nearby collapses. The ultimate fate of synaptic vesicle membrane after collapse appeared to be coalescence with the plasma membrane, as the clusters of particles gradually dispersed into surrounding areas during the first second after a stimulus. The membrane retrieval and recycling that reverse this exocytotic sequence have a slower onset, as has been described in previous reports.  相似文献   

5.
6.
The effects of L-glutamate and acetylcholine on the ventral muscle fibres of the larval mealworm Tenebrio molitor were studied by means of microelectrodes. Bath application of L-glutamate at concentrations higher than 1 × 10 4M suppressed excitatory postsynaptic potentials (EPSPs) and evoked both a depolarisation and a reduction in the input resistance of the muscle fibre. In contrast, acetylcholine chloride (up to 1 mM) had no effect at all. Circumscribed spots could be detected on the fibre surface where iontophoretic applications of L-glutamate caused transient depolarizations (glutamate potentials). Focal extracellular recordings revealed that the glutamate sensitive spots were identical with synaptic sites. The reversal potentials of the EPSP and the L-glutamate potential were identical. These results are compatible with the hypothesis that L-glutamate is an excitatory transmitter at the neuromuscular junction.  相似文献   

7.
The time intervals between miniature excitatory postsynaptic potentials and the counts of them in the cockroach, Periplaneta americana, were analyzed, using a computer program to test for properties of a Poisson process. The miniature potentials occurred basically in random manner at this neuromuscular junction. Although the distribution of the potentials did not fit the criteria for a Poisson process when the muscle fiber exhibited the short burst of high-frequency discharges, it was suggested that the primary process of such a distribution is Poisson, which is occasionally contaminated by the burst phase of the release rates.  相似文献   

8.
9.
The classical model of quantal release of neurotransmitter assumes that a fixed number of quantal units are available for release in the presynaptic terminal, and that each unit has the same probability of being released. This model also assumes that different units are released independently of one another. We consider two variations of the classical model. In the first case we assume that release is independent, but with potentially different release probabilities at different sites. In the second case we allow for dependence among the release units. A maximum likelihood procedure for the estimation of model parameters is developed, and an estimator of the number of quantal units is proposed. The performance of the method is assessed through a simulation study, and the procedures are applied to the analysis of a sequence of post-synaptic potentials recorded intracellularly at the crayfish neuromuscular junction. Goodness of fit and hypothesis test procedures reject the classical model in favor of an independent release mechanism with differing release probabilities. A more general release mechanism, allowing for dependence in the release process, also provides a good fit to the data analyzed.  相似文献   

10.
The effects of nicotinic and muscarinic mimetics and lytics on spontaneous quantal transmitter secretion from the motor nerve endings were investigated during experiments on theRana temporaria sartorius muscle. Acetylcholine and carbachol reduced the frequency of miniature endplate potentials both in a normal ionic medium and in one with potassium ion concentration raised to 10 mM. Similar effects were produced by nicotinic agonists, namely nicotine, tetramethylammonium, and suberyldicholine, whereas muscarinic mimetics — methylfurmetide, oxotremorine, and F-2268 (L- and D-stereoisomers) — did not affect transmitter release. Neither d-tubocurarine, benzohexonium, nor atropine abolished the presynaptic effects of carbachol and acetylcholine. It is concluded that nicotinic cholinoreceptors are present at the frog motor nerve endings which modify spontaneous transmitter release and differ in their pharmacological properties from recognized N-cholinoreceptors of the motor and autonomic systems of the higher vertebrates.S. V. Kurashov Medical Institute, Ministry of Public Health of the RSFSR, Kazan'. Translated from Neirofiziologiya, Vol. 18, No. 5, pp. 586–593, September–October, 1986.  相似文献   

11.
12.
Glutamate, previously demonstrated to participate in regulation of the resting membrane potential in skeletal muscles, also regulates non-quantal acetylcholine (ACh) secretion from rat motor nerve endings. Non-quantal ACh secretion was estimated by the amplitude of endplate hyperpolarization (H-effect) following blockade of skeletal muscle post-synaptic nicotinic receptors by (+)-tubocurarine and cholinesterase by armin (diethoxy-p-nitrophenyl phosphate). Glutamate was shown to inhibit non-quantal release but not spontaneous and evoked quantal secretion of ACh. Glutamate-induced decrease of the H-effect was enhanced by glycine. Glycine alone also lowered the H-effect, probably due to potentiation of the effect of endogenous glutamate present in the synaptic cleft. Inhibition of N-methyl-d-aspartate (NMDA) receptors with (+)-5-methyl-10,11-dihydro-5H-dibenzocyclohepten-5,10-imine (MK801), dl-2-amino-5-phosphopentanoic acid (AP5) and 7-chlorokynurenic acid or the elimination of Ca2+ from the bathing solution prevented the glutamate-induced decrease of the H-effect with or without glycine. Inhibition of muscle nitric oxide synthase by NG-nitro-l-arginine methyl ester (l-NAME), soluble guanylyl cyclase by 1H[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) and binding and inactivation of extracellular nitric oxide (NO) by haemoglobin removed the action of glutamate and glycine on the H-effect. The results suggest that glutamate, acting on post-synaptic NMDA receptors to induce sarcoplasmic synthesis and release of NO, selectively inhibits non-quantal secretion of ACh from motor nerve terminals. Non-quantal ACh is known to modulate the resting membrane potential of muscle membrane via control of activity of chloride transport and a decrease in secretion of non-quantal transmitter following muscle denervation triggers the early post-denervation depolarization of muscle fibres.  相似文献   

13.
An electrophysiological study was made of the effects of four adenosine analogues, 2-chloroadenosine (2-CIA), 5'-N-ethylcarboxamidoadenosine (NECA), L-N6-phenylisopropyladenosine (L-PIA), and 2-(p-methoxyphenyl)-adenosine (CV-1674) on neurotransmitter release in the mouse phrenic nerve - hemidiaphragm preparation. All four drugs decreased miniature end-plate potential frequency in a dose-dependent manner. Evoked transmitter release in the cut diaphragm preparation was depressed by 2-CIA and CV-1674 to a similar extent. The ability of theophylline to antagonize the inhibitory effect of CV-1674 on spontaneous transmitter release was also established. On the basis of these results, the rank order of potencies was: L-PIA greater than NECA greater than 2-CIA greater than CV-1674. A clear classification of receptor type could not be made, since the ratio of potencies of L-PIA and NECA was narrow. Different slopes of the concentration-effect curves for 2-CIA and CV-1674 compared with L-PIA and NECA suggest an additional component to simple agonist action in their overall effects.  相似文献   

14.
Endplate potentials were recorded from frog and toad sartorius neuromuscular junctions under conditions of greatly reduced quantal contents. The magnitudes of augmentation increased with the duration and frequency of stimulation, often increasing at an accelerating rate during 10-20-s conditioning trains. The magnitudes of the first and second components of facilitation also increased, but reached apparent steady state values within the first few seconds of stimulation. These observations could be accounted for by assuming (a) that augmentation and the first and second components of facilitation arise from underlying factors in the nerve terminal that act to increase transmitter release; (b) that each nerve impulse adds an increment to each of the underlying factors; (c) that the magnitude of the increment typically increases during the train for augmentation but remains constant for the components of facilitation; and (d) that the underlying factors decay with first-order kinetics with time constants of approximately 7 s for augmentation and 60 and 500 ms for the first and second components of facilitation, respectively. The increments of facilitation added by each impulse were about twice as large in the toad as in the frog. Facilitation was described better by assuming a power relationship between the underlying factor and the observed facilitation than by assuming a linear relationship. Augmentation was described by assuming either a linear or power relationship.  相似文献   

15.
When a quantum of transmitter is released into a synaptic cleft, the magnitude of the subsynaptic response depends upon how much transmitter becomes bound to receptors. Theoretical considerations lead to the conclusion that if receptor density is normally high enough that most of the quantal transmitter is captured, subsynaptic quantal responses may be insensitive to receptor blockade. The effectiveness of receptor blockers in depressing the subsynaptic response should be diminished by interference with processes that normally dispose of transmitter, but increased if receptor density is reduced. In conformity with equations derived from a simple mathematical model, the apparent potency of (+)- tubocurarine (dTC) to depress the peak height of miniature end-plate currents (MEPCs) in mouse diaphragm was substantially reduced by poisoning of acetylcholinesterase (AChE) and increased by partial blockade of receptors by immunoglobulin G from patients with myasthenia gravis or alpha-bungarotoxin. We calculated from the data that normally capture of quantal acetylcholine (ACh) by receptors is approximately 75% of what it would be if there were no loss of ACh by hydrolysis or diffusion of ACh form the synaptic cleft. This fraction is increased to approximately 90% by poisoning of AChE. Conversely, it normally requires blockade of approximately 80% of receptors-and after AChE poisoning, approximately 90% of receptors-to reduce ACh capture (and MEPC height) by 50%. The apparent potency of dTC to alter MEPC time- course (after AChE poisoning) and to depress responses to superperfused carbachol was much greater than its apparent potency to depress MEPC height, but corresponded closely with the potency of dTC to block receptors as calculated from the action of dTC on MEPC height. These results indicate that the amplitude of the response to nerve-applied acetylcholine does not give a direct measure of receptor blockade; it is, in general, to be expected that an alteration of subsynaptic receptor density may not be equally manifest in responses to exogenous and endogenous neurotransmitter.  相似文献   

16.
In cultured hippocampal neurons, synaptogenesis is largely independent of synaptic transmission, while several accounts in the literature indicate that synaptogenesis at cholinergic neuromuscular junctions in mammals appears to partially depend on synaptic activity. To systematically examine the role of synaptic activity in synaptogenesis at the neuromuscular junction, we investigated neuromuscular synaptogenesis and neurotransmitter release of mice lacking all synaptic vesicle priming proteins of the Munc13 family. Munc13-deficient mice are completely paralyzed at birth and die immediately, but form specialized neuromuscular endplates that display typical synaptic features. However, the distribution, number, size, and shape of these synapses, as well as the number of motor neurons they originate from and the maturation state of muscle cells, are profoundly altered. Surprisingly, Munc13-deficient synapses exhibit significantly increased spontaneous quantal acetylcholine release, although fewer fusion-competent synaptic vesicles are present and nerve stimulation-evoked secretion is hardly elicitable and strongly reduced in magnitude. We conclude that the residual transmitter release in Munc13-deficient mice is not sufficient to sustain normal synaptogenesis at the neuromuscular junction, essentially causing morphological aberrations that are also seen upon total blockade of neuromuscular transmission in other genetic models. Our data confirm the importance of Munc13 proteins in synaptic vesicle priming at the neuromuscular junction but indicate also that priming at this synapse may differ from priming at glutamatergic and gamma-aminobutyric acid-ergic synapses and is partly Munc13 independent. Thus, non-Munc13 priming proteins exist at this synapse or vesicle priming occurs in part spontaneously: i.e., without dedicated priming proteins in the release machinery.  相似文献   

17.
In this study it was found that several agents which elevate cAMP levels in cells also increase dramatically the quantity of transmitter released from crayfish excitatory nerve terminals in response to a stimulus. With respect to time course and magnitude, the increase produced by one of these agents, the cyclic nucleotide phosphodiesterase inhibitor Squibb 20,009 (SQ 20,009), is unlike any reported for such a drug at a synapse. Additionally, SQ 20,009 potentiated the facilitation of transmitter release produced by serotonin (5-HT) at this synapse. These results establish a possible role for cAMP in the control and modulation of transmitter release at the crayfish neuromuscular junction (NMJ). They further suggest that 5-HT functions here by activation of a presynaptically located adenylate cyclase.  相似文献   

18.
K A Skau  M C Gerald 《Life sciences》1977,20(9):1495-1499
Amphetamine inhibited neuromuscular transmission and prevented the irreversible blockade produced by α-bungarotoxin (α-BGT) in the isolated mouse phrenic nerve-diaphragm preparation. Similarly, amphetamine (1.35 × 10?4 to 3 × 10?3M) inhibited the binding of 125I-α-BGT to mouse hemidiaphragms in a concentration-dependent manner; (+)-amphetamine was found to be twice as potent as its (-)-isomer with respect to inhibition of 125I-α-BGT binding. It is suggested that amphetamine binds to the nicotinic, cholinergic receptor of skeletal muscle and may produce weakness and paralysis in amphetamine overdosage.  相似文献   

19.
Under conditions of reduced quantal content, repetitive stimulation of a presynaptic nerve can result in a progressive increase in the amount of transmitter released by that nerve in response to stimulation. At the frog neuromuscular junction, this increase in release has been attributed to four different processes: first and second components of facilitation, augmentation, and potentiation (e.g., Zengel, J. E., and K. L. Magleby. 1982. Journal of General Physiology. 80:583-611). It has been suggested that an increased entry of Ca2+ or an accumulation of intraterminal Ca2+ may be responsible for one or more of these processes. To test this hypothesis, we have examined the role of intracellular Ca2+ in mediating changes in end-plate potential (EPP) amplitude during and after repetitive stimulation at the frog neuromuscular junction. We found that increasing the extracellular Ca2+ concentration or exposing the preparation to carbonyl cyanide m- chlorophenylhydrazone, ionomycin, or cyclopiazonic acid all led to a greater increase in EPP amplitude during conditioning trains of 10-200 impulses applied at a frequency of 20 impulses/s. These experimental manipulations, all of which have been shown to increase intracellular levels of Ca2+, appeared to act by increasing primarily the augmentation component of increased release. The results of this study are consistent with previous suggestions that the different components of increased release represent different mechanisms, and that Ca2+ may be acting at more than one site in the nerve terminal.  相似文献   

20.
(1) The rising phase of minature endplate currets was recorded at the frog's neuromuscular junction using both the two electrode voltage clamp and a single external electrode, or Strickholm, voltage clamp. (2) The Q(10) of the miniature endplate current rising phase was 2.3 in a variety of solutions selected to alter presynaptic behavior. (3) Increasing the solution's viscosity by an amount sufficient to slow the diffusion coefficient of acetylcholine by a third has no effect on the duration of the rising or the decay phase. This solution does seem to further slow the miniature endplate current decay phase, but not the rising phase, after inhibition of the acetylcholinesterase. (4) As the membrane potential is made more positive, the miniature endplate current rising phase is prolonged, with an e-fold slowing per 170 mV change. (5) It is concluded that neither presynaptic nor subsynaptic events determine the rising phase of miniature endplate currents at the frog neuromuscular junction. Rather, the limiting step occurs within the membrane and is most likely a change in the binding constant of the receptor for the acetylcholine molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号