首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 73 毫秒
1.
The effect of Ginkgo biloba (EGb), a plant extract with an antioxidant effect, has been studied on gentamicin-induced nephrotoxicity in male wistar rats. Ginkgo biloba extract (300 mg/kg BW) was administered orally 2 days before and 8 days concurrently with gentamicin (80 mg/kg BW). Saline treated animals served as control. Estimations of urine creatinine, glucose, blood urea, serum creatinine, plasma and kidney tissue MDA were carried out after 8 days of gentamicin treatment. Kidneys were examined using histological techniques. Blood urea and serum creatinine were increased by 896% and 461% respectively, with gentamicin, compared to saline treated group. Creatinine clearance was significantly decreased with gentamicin. Ginkgo biloba extract protected rats from gentamicin-induced nephrotoxicity. Changes in blood urea, serum creatinine and creatinine clearance induced by gentamicin were significantly prevented by Ginkgo biloba extract. There was a 177% and 374% rise in plasma and kidney tissue MDA with gentamicin, which were significantly reduced to normal with Ginkgo biloba extract. Histomorphology showed necrosis and desquamation of tubular epithelial cells in renal cortex with gentamicin, while it was normal and comparable to control with Ginkgo biloba extract. These data suggest that supplementation of Ginkgo biloba extract may be helpful to reduce gentamicin nephrotoxicity.  相似文献   

2.
Crocus sativus, known as saffron, is used in folk medicine for treatment of different types of diseases, and its anti-inflammatory and free radical scavenging activities have been demonstrated. The present study evaluated gentamicin nephrotoxicity in saffron treated rats. Male Wistar rats (200-250 g) were treated with saffron (40 or 80 mg/k/d) for 10 days, or saffron (40 or 80 mg/ kg/d) for 10 days and gentamicin 80 mg/kg/d for five days, starting from day 6. At the end of treatment, blood samples were taken for measurement of serum creatinine (SCr) and BUN. The left kidney was prepared for histological evaluation and the right kidney for Malondialdehyde (MDA) measurement. Gentamicin 80 (mg/k/d) increased SCr, BUN and renal tissue levels of MDA and induced severe histological changes. Saffron at 40 mg/k/d significantly reduced gentamicin-induced increases in BUN and histological scores (p<0.05). Gentamicin-induced increases in BUN, SCr and MDA and histological injury were significantly reduced by treatment with saffron 80 mg/k/d (p<0.05, p<0.001, p<0.05, and p<0.001 respectively). In conclusion, our results suggest that saffron treatment reduces gentamicin-induced nephrotoxicity and this effect seems to be dose dependent.  相似文献   

3.
Cisplatin is a highly effective chemotherapeutic agent which causes severe nephrotoxicity. Studies have suggested that reactive oxygen species, mainly generated in mitochondria, play a central role in cisplatin-induced renal damage. A wide range of antioxidants have been evaluated as possible protective agents against cisplatin-induced nephrotoxicity; however a safe and efficacious compound has not yet been found. The present study is the first to evaluate the protective potential of carvedilol, a beta-blocker with strong antioxidant properties, against the mitochondrial oxidative stress and apoptosis in kidney of rats treated with cisplatin. The following cisplatin-induced toxic effects were prevented by carvedilol: increased plasmatic levels of creatinine and blood urea nitrogen (BUN); lipid peroxidation, oxidation of cardiolipin; oxidation of protein sulfhydryls; depletion of the non-enzymatic antioxidant defense and increased activity of caspase-3. Carvedilol per se did not present any effect on renal mitochondria. It was concluded that carvedilol prevents mitochondrial dysfunction and renal cell death through the protection against the oxidative stress and redox state unbalance induced by cisplatin. The association of carvedilol to cisplatin chemotherapy was suggested as a possible strategy to minimize the nephrotoxicity induced by this antitumor agent.  相似文献   

4.
Effect of pentoxifylline on cyclosporine-induced nephrotoxicity in rats   总被引:2,自引:0,他引:2  
Effect of unique hemorrheologic agent pentoxifylline (PTX) was investigated on cyclosporine (CsA) induced nephrotoxicity in rats. Compared to saline control, CsA produced significant increase in blood urea and serum creatinine. Pentoxifylline treatment prevented the CsA-induced rise in blood urea and serum creatinine. Creatinine clearance (Ccr) and lithium clearance (Licr) was decreased with CsA. PTX treatment prevented the CsA-induced decrease in Ccr and Licr. Malondialdehyde (MDA) was increased with CsA compared to saline treated animals. PTX prevented the CsA-induced MDA rise. Kidney form CsA treated rat showed marked vacuolar degeneration of tubular epithelium with excess of microcalcification. Severity of the lesions was markedly reduced in rats treated with PTX plus CsA. The results indicate that PTX reduces CsA-induced renal toxicity in rats.  相似文献   

5.
Therapeutic effect of ethanolic extract of Hygrophila spinosa in gentamicin-induced nephrotoxic model of kidney injury in male Sprague-Dawley rats was studied. Rats were administered with gentamicin at a dose of 80 mg/kg intraperitoneally (ip) to induce nephrotoxicity. Kidney function was assessed by measuring serum creatinine and urea. Kidney superoxide dismutase, lipid peroxidation, catalase and reduced glutathione were also measured in control and treated rats. H. spinosa extract showed free radical scavenging activities at doses of 50 and 250 mg/kg with a predominant activity at 250 mg/kg. The ethanolic extract also caused a reduction in serum creatinine and urea levels. Histopathological studies were conducted to confirm the therapeutic action of the plant extract. The results demonstrated that the ethanolic extract of whole plant of H. spinosa evinced the therapeutic effect and inhibited gentamicin-induced proximal tubular necrosis.  相似文献   

6.
Gentamicin nephrotoxicity is one of the most common causes of acute kidney injury (AKI). Hypoxia-inducible factor (HIF) is effective in protecting the kidney from ischemic and toxic injury. Increased expression of HIF-1α mRNA has been reported in rats with gentamicin-induced renal injury. We hypothesizd that we could study the role of HIF in gentamicin-induced AKI by modulating HIF activity. In this study, we investigated whether HIF activation had protective effects on gentamicin-induced renal tubule cell injury. Gentamicin-induced AKI was established in male Sprague-Dawley rats. Cobalt was continuously infused into the rats to activate HIF. HK-2 cells were pre-treated with cobalt or dimethyloxalylglycine (DMOG) to activate HIF and were then exposed to gentamicin. Cobalt or DMOG significantly increased HIF-1α expression in rat kidneys and HK-2 cells. In HK-2 cells, HIF inhibited gentamicin-induced reactive oxygen species (ROS) formation. HIF also protected these cells from apoptosis by reducing caspase-3 activity and the amount of cleaved caspase-3, and -9 proteins. Increased expression of HIF-1α reduced the number of gentamicin-induced apoptotic cells in rat kidneys and HK-2 cells. HIF activation improved the creatinine clearance and proteinuria in gentamicin-induced AKI. HIF activation also ameliorated the extent of histologic injury and reduced macrophage infiltration into the tubulointerstitium. In gentamicin-induced AKI, the activation of HIF by cobalt or DMOG attenuated renal dysfunction, proteinuria, and structural damage through a reduction of oxidative stress, inflammation, and apoptosis in renal tubular epithelial cells.  相似文献   

7.
The present investigation reports the effect of rosmarinic acid (RA), an antioxidant on gentamicin sulphate (GS)-induced renal oxidative damage in rats. Rosmarinic acid (RA) has been demonstrated to have antioxidant, free radical scavenger and anti-inflamatory effects. Twenty-eight Sprague-Dawley rats were divided in to four equal groups as follows: group 1 (control), group 2 (GS 100 mg/kg/d ip), group 3 (GS 100 mg/kg/d ip + RA 50 mg/kg/d) and group 4 (GS 100 mg/kg/d ip + RA 100 mg/kg/d). Treatments were administrated once daily for 12 days. After 12 days 24 h urine was collected, blood was sampled and kidneys were removed. Serum and kidney tissue MDA assessed by thiobarbituric acid. Kidney paraffin sections (5 μm thickness) from the left kidney stained with periodic acid Schiff. Tubular necrosis was studied semiquantitatively and glomerular volume and volume density of proximal convoluted tubule (PCT) estimated stereologically. Kidney homogenize were prepared from right kidney. Serum creatinine, urea and kidney antioxidant enzymes activity were assessed by special kits. Data were compared by SPSS 13 software and Mann–Whitney test at p < 0.05. Co treatment of GS and RA (High dose) significantly decreased serum creatinine, MDA, urea, tubular necrosis (p < 0.05) and increase renal GSH, GPX, CAT, SOD, volume density of PCT and creatinine clearance significantly in comparison with GS group (p < 0.05). Treatment with RA (high dose) maintained serum creatinine, volume density of PCT, renal GSH, GPX, SOD and MDA as the same level as control group significantly (p < 0.05). In conclusion, RA alleviates GS nephrotoxicity via antioxidant activity, increase of renal GSH content and increase of renal antioxidant enzymes activity.  相似文献   

8.
The protective effects of Panax ginseng (PG) on gentamicin sulphate (GS) induced acute nephrotoxicity were investigated in rats. A total of 32 adult Sprague-Dawley rats were randomly divided into 4 equal groups and treated by intraperitoneous route for 10?days with: 0.5?mL of isotonic saline (group C), GS 100?mg/kg/day (group GS), co treatment PG (100 and 200?mg/kg/day) plus GS (100?mg/kg/day). After the last injection, kidney markers (urea, creatinine and blood urea nitrogen-BUN) and hepatic markers (aspartate aminotransferase-AST, alanine aminotransferase-ALT, gama glutamil transferase-GGT), and biochemical parameters were analyzed using diagnostic kits. Also, kidney changes were evaluated by immunohistochemical and stereological methods. GS treatment induced significant elevation (P?相似文献   

9.
Aminoglycoside antibiotics are widely used against Gram‐negative infections. On the other hand, nephrotoxicity is a deleterious side effect associated with aminoglycoside therapy. Gentamicin is the most nephrotoxic aminoglycoside. Because of serious health complications ensue the nephrotoxicity induced by aminoglycosides, finding new therapeutic strategies against this problem has a great clinical value. This study has attempted to compare the nephrotoxic properties of gentamicin and a new nanosized formulation of this drug in a mice model. Animals were treated with gentamicin (100 mg/kg, i.p. for eight consecutive days) and nanogentamicin (100 mg/kg, i.p. for eight consecutive days). Blood urea nitrogen (BUN), plasma creatinine levels, and histopathological changes of kidney proximal tubule were monitored. It was found that gentamicin caused severe degeneration of kidney proximal tubule cells and an increase in serum creatinine and BUN. No severe injury was observed after nanogentamicin administration. This study proved that nanosized gentamicin is less nephrotoxic.  相似文献   

10.
Gentamicin is a member of aminoglycosides, which has represented highly effective antimicrobial agents especially in Gram-negative infections despite their toxic effects in the kidney. Rapid diagnosis is vital to preserve renal function and to slow down renal injury. Owing to the poor sensitivity and specificity of serum creatinine (SCr) and blood urea nitrogen (BUN), new biomarkers for earlier and more accurate detection are needed. The aim of our study was to determine whether kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) may be useful biomarkers in the assessment of gentamicin-induced nephrotoxicity in rats. In this study, the two biomarkers of renal toxicity were assessed via ELISA, quantitative real-time PCR, and immunohistochemistry in rats treated with gentamicin for up to 7 days. Repeated administration of gentamicin to male SD rats for 1, 3, or 7 days resulted in a dose- and time-dependent increase in the expression of KIM-1 and NGAL. Changes in gene and protein expressions were found to correlate with the progressive histopathological alterations and preceded effects on traditional clinical parameters indicative of impaired kidney function. Both of the biomarkers are supported to be used as sensitive indicators of acute kidney injury caused by gentamicin.  相似文献   

11.
The ability of Cu(II)(2)(3,5-diisopropylsalicylate)(4), CuDIPS, which exhibits superoxide dismutase (SOD)-like activity, to prevent cisplatin-induced nephrotoxicity was examined in rats. Rats were divided into four groups and treated as follows: (i) vehicle control; (ii) cisplatin (16 mg/kg, intraperitoneally); (iii) CuDIPS (10 mg/kg, intraperitoneally); and (iv) cisplatin plus CuDIPS. Rats were sacrificed 3 days post-treatment. Cisplatin alone resulted in significantly increased plasma creatinine and urea. Administration of 10 mg/kg CuDIPS prevented the cisplatin-induced elevation of plasma creatinine and urea and protected against kidney damage. Relative to controls, rats that received cisplatin treatment displayed a decrease of reduced glutathione (GSH) and elevated platinum and thiobarbituric acid reactive substances (TBARS) levels in the kidney. In comparison with controls, activities of antioxidant enzymes (SOD, CAT, GSH-Px and GSH-Rd) were also reduced in the kidney of rats treated with cisplatin. Administration of 10 mg/kg CuDIPS prevented cisplatin-induced alterations in renal platinum, GSH, TBARS, and antioxidant enzyme activities. This study suggests that the protection offered by CuDIPS against cisplatin-induced nephrotoxicity is partly related to maintenance of renal antioxidant systems.  相似文献   

12.
The ethanol extract of the roots of Cassia auriculata was studied for its nephroprotective activity in cisplatin- and gentamicin-induced renal injury in male albino rats. In the cisplatin model, the extract at doses of 300 and 600 mg/kg body wt. reduced elevated blood urea and serum creatinine and normalized the histopathological changes in the curative regimen. In the gentamicin model, the ethanol extract at a dose of 600 mg/kg body wt. reduced blood urea and serum creatinine effectively in both the curative and the preventive regimen. The extract had a marked nitric oxide free-radical-scavenging effect. The findings suggest that the probable mechanism of nephroprotection by C. auriculata against cisplatin- and gentamicin-induced renal injury could be due to its antioxidant and free-radical-scavenging property.  相似文献   

13.
Gentamicin is an aminoglycoside antibiotic that is very effective in treating different gram negative infections, however, one of its main side effects is nephrotoxicity. Gentamicin-induced decreases in glomerular filtration rate could be mediated by mesangial cell contraction. Resveratrol, a natural hydroxystilbene, has been identified to be a potent antioxidant with many biological activities including protection against kidney diseases. As we have previously demonstrated that gentamicin induced a reduction of planar surface area of cultured rat mesangial cells, and that resveratrol has a protective effect on gentamicin-induced nephrotoxicity in vivo, the aim of this study was to investigate the effect of resveratrol on gentamicin-induced mesangial cell contraction. This study demonstrates that the contractile effect of gentamicin on mesangial cells can be prevented by incubation with resveratrol at an optimal dose of 10 microM, as it blunted the gentamicin-induced reduction in planar cell surface area and the number of contracted cells. Besides, the preincubation with 10(-5)M diphenylene iodinium (DPI), an inhibitor of the NADP(H) oxidase, also blunted gentamicin-induced cell contraction. This preventive effect was higher when cells were incubated with both substances together. These results strongly suggest that the protective effect resveratrol against gentamicin-induced reduction in renal function in vivo could be mediated by inhibiting gentamicin-induced mesangial cells contraction.  相似文献   

14.
In this study, the modulator effect of caffeic acid phenethyl ester (CAPE) on the oxidative nephrotoxicity of gentamicin in the kidneys of rats was investigated by determining indices of lipid peroxidation and the activities of antioxidant enzymes as well as by histological analyses. Forty female Wistar albino rats were randomly divided into four groups, namely control, gentamicin, CAPE, and gentamicin plus CAPE. On the 12th day of the study, all rats were sacrificed and then blood samples and kidneys were taken. Lipid peroxidation and nitric oxide levels, glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase (CAT) enzyme activities, and histological evaluation were measured in kidneys of rats. Levels of blood urea nitrogen and creatinine were studied in serum. CAPE with gentamicin caused decreases in lipid peroxidation, nitric oxide, urea nitrogen, and creatinine levels, although it caused increases in CAT, GSH-Px, and SOD activities when compared with gentamicin alone. In addition, on histological evaluation, the renal damage caused by gentamicin alone appeared much higher than that caused by CAPE plus gentamicin. It is concluded that oxidative stress plays a critical role in causing gentamicin nephrotoxicity and that this nephrotoxicity may be significantly reduced by CAPE.  相似文献   

15.
To assess whether PAF could be involved in the gentamicin-induced nephrotoxicity, we have studied the effect of PAF antagonist BN-52021 on renal function in rats after gentamicin (GENTA) treatment. Experiments were completed in 21 Wistar rats divided into three groups: group GENTA was injected with gentamicin 100 mg kg(-1) body wt/day s.c. for 6 days. Group GENTA + BN received gentamicin and BN-52021 i.p. 5 mg kg(-1) body wt/day. A third group served as control. Rats were placed in meta-bolic cages and plasma creatinine and creatinine clearance were measured daily. GENTA group showed a progressive increase in plasma creatinine, a drop in creatinine clearance and an increase in urinary excretion of N-acetyl-beta-D-glucosaminidase and alkaline phosphatase. GENTA + BN group showed a lesser change in plasma creatinine and a creatinine clearance, but no difference with GENTA group in urinary excretion of NAG and AP were observed. Histological examination revealed a massive cortical tubular necrosis in rats treated with gentamicin, whereas in BN-52021 injected animals tubular damage was markedly attenuated. The present results suggest a role for PAF in the gentamicininduced nephro-toxicity.  相似文献   

16.
Gentamicin is an effective widely used antibiotic, but the risk of nephrotoxicity and oxidative damage limit its long-term use. Hence, the current study aims to elucidate such hazardous effects. To achieve the study aim male Wistar albino rats (Rattus norvegicus) were exposed to gentamicin to investigate the resultant blood chemical changes and renal histological alterations. In comparison with control rats, gentamicin produced outstanding tubular, glomerular and interstitial alterations that included degeneration, necrosis, cytolysis and cortical tubular desquamation together with mesangial hypercellularity, endothelial cell proliferation and blood capillary congestion. Compared with control animals significant blood chemical changes (P < 0.05) including free radicals, ALT, AST, ALP, serum creatinine and serum urea were recorded in gentamicin-injected animals. The findings revealed that exposure to gentamicin can induce significant histological alterations in the kidney as well as remarkable blood chemical changes that might indicate marked renal failure.  相似文献   

17.
Fosfomycin is clinically recognized to reduce the aminoglycoside antibiotics-induced nephrotoxicity. However, little has been clarified why fosfomycin protects the kidney from the aminoglycosides-induced nephrotoxicity. Gentamicin, a typical aminoglycoside, is reported to cause lipid peroxidation. We focused on lipid peroxidation induced by gentamicin as a mechanism for the aminoglycosides-induced nephrotoxicity. The aim of this study is to investigate the effect of fosfomycin on the gentamicin-induced lipid peroxidation. In rat renal cortex mitochondria, fosfomycin was shown to depress the gentamicin-induced lipid peroxidation, which was evaluated by formation of thiobarbituric acid reactive substances (TBARS). Interestingly, this effect was observed in rat renal cortex mitochondria, but not in rat liver microsomes. However, fosfomycin did not affect lipid peroxidation of arachidonic acid caused by gentamicin with iron. Fosfomycin inhibited the gentamicin-induced iron release from rat renal cortex mitochondria. These results indicated that fosfomycin inhibited the gentamicin-induced lipid peroxidation by depressing the iron release from mitochondria. This may possibly be one mechanism for the protection of fosfomycin against the gentamicin-induced nephrotoxicity.  相似文献   

18.
In the present study, the protective effect of curcumin against sodium fluoride-induced nephrotoxicity was evaluated in rats. Renal injury was induced by daily administration of 600 ppm sodium fluoride in drinking water for 1 week. One week before the administration of fluoride, the animals selected as study group were given curcumin (10 and 20 mg/kg body weight, intraperitoneally). After 1 week, lipid peroxidation level, activities of superoxide dismutase, catalase, and level of glutathione in kidney homogenate were measured. Blood serum samples were examined for creatinine, serum urea, and blood urea nitrogen levels. Another group of rats received vitamin C (10 mg/kg) as standard antioxidant. The results show that curcumin and vitamin C treatment prior to fluoride administration normalized the levels of serum creatinine, serum urea, and blood urea nitrogen. Moreover, curcumin and vitamin C administrations prevented the antioxidant enzyme decreasing and lipid peroxidation levels imbalance. In conclusion, curcumin treatment at the doses of 10 and 20 mg/kg (intraperitoneally) showed significant nephroprotective effects.  相似文献   

19.

Objective

Gentamicin (GM) is an effective antibiotic against severe infection but has limitations related to nephrotoxicity. In this study, we investigated whether benfotiamine (BFT) and coenzyme Q10 (CoQ10), could ameliorate the nephrotoxic effect of GM in rats.

Methods

Rats were divided into five groups. Group 1 and 2 served as control and sham respectively, Group 3 as GM group, Group 4 as GM + CoQ10 and Group 5 as GM + BFT for 8 days. At the end of the study, all rats were euthanized by cervical decapitation and then blood samples and kidneys were collected for further analysis. Serum urea, creatinine, cytokine TNF-a, oxidant and antioxidant parameters, as well as histopathological examination of kidney tissues were assessed.

Results

Gentamicin administration caused a severe nephrotoxicity which was evidenced by an elevated serum creatinine, urea and KIM-1 level as compared with the controls. Moreover, a significant increase in serum malondialdehyde, reduced glutathione. Histopathological examination of renal tissue in gentamisin administered group, there were extremly pronounced necrotic tubules in the renal cortex and hyalen cast accumulation in the medullar tubuli. BFT given to GM rats reduced these nephrotoxicity parameters. Serum creatinine, urea, and KIM-1 were almost normalized in the GM + BFT group. Benfotiamin treatment was significantly decreased necrotic tubuli and hyalen deposition in gentamisin plus benfotiamin group. CoQ10 given to GM rats did not cause any statistically significant alterations in these nephrotoxicity parameters when compared with GM group but histopathological examination of renal tissue in GM + CoQ10 administered group, CoQ10 treatment was decreased necrotic tubuli rate and hyalen accumulation in tubuli.

Conclusion

The results from our study indicate that BFT supplement attenuates gentamicin-induced renal injury via the amelioration of oxidative stress and inflammation of renal tubular cells.  相似文献   

20.
Gentamicin (GM)-induced nephrotoxicity limits its long-term clinical use. Several agents/strategies were attempted to prevent GM nephrotoxicity but were not found suitable for clinical practice. Dietary fish oil (FO) retard the progression of certain types of cancers, cardiovascular and renal disorders. We aimed to evaluate protective effect of FO on GM-induced renal proximal tubular damage. The rats were pre-fed experimental diets for 10 days and then received GM (80 mg/kg body weight/day) treatment for 10 days while still on diet. Serum/urine parameters, enzymes of carbohydrate metabolism, brush border membrane (BBM), oxidative stress and phosphate transport in rat kidney were analyzed. GM nephrotoxicity was recorded by increased serum creatinine and blood urea nitrogen. GM increased the activities of lactate and glucose-6-phosphate dehydrogenases whereas decreased malate, isocitrate dehydrogenases; glucose-6 and fructose-1,6-bisphosphatases; superoxide dismutase, catalase, glutathione peroxidase and BBM enzymes. In contrast, FO alone increased enzyme activities of carbohydrate metabolism, BBM and oxidative stress. FO feeding to GM treated rats markedly enhanced resistance to GM elicited deleterious effects and prevented GM-induced decrease in 32Pi uptake across BBM. Dietary FO supplementation ameliorated GM-induced specific metabolic alterations and oxidative damage due to its intrinsic biochemical/antioxidant properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号