首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gp130 cytokine receptor is involved in the formation of multimeric functional receptors for interleukin-6 (IL-6), IL-11, leukemia inhibitory factor (LIF), oncostatin M (OSM), ciliary neurotrophic factor, and cardiotrophin-1. Cloning of the epitope recognized by an OSM-neutralizing anti-gp130 monoclonal antibody identified a portion of gp130 receptor localized in the EF loop of the cytokine binding domain. Site-directed mutagenesis of the corresponding region was carried out by alanine substitution of residues 186-198. To generate type 1 or type 2 OSM receptors, gp130 mutants were expressed together with either LIF receptor beta or OSM receptor beta. When positions Val-189/Tyr-190 and Phe-191/Val-192 were alanine-substituted, Scatchard analyses indicated a complete abrogation of OSM binding to both type receptors. Interestingly, binding of LIF to type 1 receptor was not affected, corroborating the notion that in this case gp130 mostly behaves as a converter protein rather than a binding receptor. The present study demonstrates that positions 189-192 of gp130 cytokine binding domain are essential for OSM binding to both gp130/LIF receptor beta and gp130/OSM receptor beta heterocomplexes.  相似文献   

2.
Hui W  Bell M  Carroll G 《Cytokine》2000,12(2):151-155
Oncostatin M (OSM) and leukaemia inhibitory factor (LIF) exhibit pleiotropic biological activities and share many structural and genetic features. The two cytokines bind with high affinity to the same receptor (LIF/OSM receptor), which consists of the LIF receptor alpha chain (LIFRalpha) and the signal transduction unit gp130. A soluble form of the beta chain of the receptor complex called soluble gp130 (sgp130) has been cloned. In this study, we sought to determine whether recombinant sgp130 or anti-gp130 Ab could attenuate the resorption of proteoglycans induced by OSM and LIF in articular cartilage explants. The results show that at high concentrations sgp130 is capable of attenuating both LIF and OSM mediated resorption. In contrast, anti-gp130 Ab selectively inhibited the stimulation of proteoglycan (PG) release by OSM, albeit minimally. The failure of anti-gp130 to attenuate LIF stimulated PG resorption may be due to the normal interaction of LIF with LIFRalpha and unfettered heterodimerization of LIFRalpha with gp130 in the presence of the antibody. The results indicate that sgp130 and anti-gp130 can modulate cartilage PG metabolism in vitro. Whether sgp130 may have therapeutic activity in models of arthritis or indeed in arthritic diseases remains to be determined.  相似文献   

3.
Analysis of the IL-6 Receptor beta chain (gp130) mRNA expression on the two human epithelial cell lines UAC and Hep3B reveals that it is enhanced by IL-6, IL-1 and TNF treatment. In the case of UAC cells, TNF action might be mediated by IL-6. For Hep3B cells, TNF seems to exert a direct effect on gp130, as no IL-6 expression is detected after stimulation by this cytokine. On the same cells, increase of the binding of an anti-gp130 monoclonal antibody was observed after treatment by TNF, which denotes the effective appearance of new gp130 molecules on the cell surface. All this cytokines seem to act selectively on the beta chain of the IL-6 receptor. This probably reflects the importance for some cells to have gp130 represented on their membrane in inflammatory contexts.  相似文献   

4.
Interleukin-6 (IL-6) and ciliary neurotrophic factor (CNTF) are "4-helical bundle" cytokines of the IL-6 type family of neuropoietic and hematopoietic cytokines. IL-6 signals by induction of a gp130 homodimer (e.g. IL-6), whereas CNTF and leukemia inhibitory factor (LIF) signal via a heterodimer of gp130 and LIF receptor (LIFR). Despite binding to the same receptor component (gp130) and a similar protein structure, IL-6 and CNTF share only 6% sequence identity. Using molecular modeling we defined a putative LIFR binding epitope on CNTF that consists of three distinct regions (C-terminal A-helix/N-terminal AB loop, BC loop, C-terminal CD-loop/N-terminal D-helix). A corresponding gp130-binding site on IL-6 was exchanged with this epitope. The resulting IL-6/CNTF chimera lost the capacity to signal via gp130 on cells without LIFR, but acquired the ability to signal via the gp130/LIFR heterodimer and STAT3 on responsive cells. Besides identifying a specific LIFR binding epitope on CNTF, our results suggest that receptor recognition sites of cytokines are organized as modules that are exchangeable even between cytokines with limited sequence homology.  相似文献   

5.
6.
Abstract: Leukemia inhibitory factor (LIF) and ciliary neurotrophic factor (CNTF) share common components in their multimeric receptors. Both cytokine receptors contain gp130/interleukin-6-receptor transducer as well as gp190/low-affinity LIF receptor. For CNTF, addition of a third subunit, or α subunit, defines the high-affinity CNTF receptor. In the present study, we analyzed the binding interactions of LIF and CNTF in human cell lines and showed a mutual displacement for LIF and CNTF toward the trimeric high-affinity CNTF receptor. Similar results were obtained in the JEG cell line, which only expressed the gp130/gp190 high-affinity LIF receptor, by adding a soluble form of the αCNTF receptor to the system to reconstitute the high-affinity-type CNTF receptor. The different receptor subunits were then expressed separately in transfected cells and their binding capacities analyzed. The results showed that the heterocomplex CNTF/αCNTF receptor bound to gp130 with an affinity of 3–5 × 10−10 M , whereas LIF interacted mainly with gp190. In summary, the observed competition between LIF and CNTF does not result from the binding to a common site or receptor subunit, but rather to the interaction of the three receptor components to create a conformational site common to both LIF and CNTF.  相似文献   

7.
gp130 is the common signal transducing receptor subunit of interleukin (IL)-6-type cytokines. gp130 either homodimerizes in response to IL-6 and IL-11 or forms heterodimers with the leukemia inhibitory factor (LIF) receptor (LIFR) in response to LIF, oncostatin M (OSM), ciliary neurotrophic factor (CNTF), cardiotrophin-1 (CT-1) or cardiotrophin-like cytokine resulting in the onset of cytoplasmic tyrosine phosphorylation cascades. The extracellular parts of both gp130 and LIFR consist of several Ig-like and fibronectin type III-like domains. The role of the membrane-distal domains of gp130 (D1, D2, D3) and LIFR in ligand binding is well established. In this study we investigated the functional significance of the membrane-proximal domains of gp130 (D4, D5, D6) in respect to heterodimerization with LIFR. Deletion of each of the membrane-proximal domains of gp130 (Delta 4, Delta 5 and Delta 6) leads to LIF unresponsiveness. Replacement of the gp130 domains by the corresponding domains of the related GCSF receptor either restores weak LIF responsiveness (D4-GCSFR), leads to constitutive activation of gp130 (D5-GCSFR) or results in an inactive receptor (D6-GCSFR). Mutation of a specific cysteine in D5 of gp130 (C458A) leads to constitutive heterodimerization with the LIFR and increased sensitivity towards LIF stimulation. Based on these findings, a functional model of the gp130-LIFR heterodimer is proposed that includes contacts between D5 of gp130 and the corresponding domain D7 of the LIFR and highlights the requirement for both receptor dimerization and adequate receptor orientation as a prerequisite for signal transduction.  相似文献   

8.
Leukemia inhibitory factor (LIF) is a cytokine with a broad range of activities that in many cases parallel those of interleukin-6 (IL-6) although LIF and IL-6 appear to be structurally unrelated. A cDNA clone encoding the human LIF receptor was isolated by expression screening of a human placental cDNA library. The LIF receptor is related to the gp130 'signal-transducing' component of the IL-6 receptor and to the G-CSF receptor, with the transmembrane and cytoplasmic regions of the LIF receptor and gp130 being most closely related. This relationship suggests a common signal transduction pathway for the two receptors and may help to explain similar biological effects of the two ligands. Murine cDNAs encoding soluble LIF receptors were isolated by cross-hybridization and share 70% amino acid sequence identity to the human sequence.  相似文献   

9.
The biological actions of interleukin-6 (IL-6), leukemia inhibitory factor (LIF), and ciliary neurotrophic factor (CNTF) are mediated via respective functional receptor complexes consisting of a common signal-transducing component, gp130, and other specific receptor components, IL-6 receptor alpha (IL-6R), LIF receptor beta (LIFR), and CNTF receptor alpha (CNTFR). IL-6, LIF, and CNTF are implicated in skeletal muscle regeneration. However, the cell populations that express these receptor components in regenerating muscles are unknown. Using in situ hybridization histochemistry, we examined spatiotemporal expression patterns of gp130, IL-6R, LIFR, and CNTFR mRNAs in regenerating muscles after muscle contusion. At the early stages of regeneration (from 3 hr to Day 2 post contusion), significant signals for gp130 and LIFR mRNAs were detected in myonuclei and/or nuclei of muscle precursor cells (mpcs) and in mononuclear cells located in extracellular spaces between myofibers after muscle contusion, but IL-6R mRNA was expressed only in mononuclear cells. At Day 7 post contusion, signals for gp130, LIFR, and IL-6R mRNAs were not detected in newly formed myotubes, whereas the CNTFR mRNA level was upregulated in myotubes. These findings suggest that the upregulation of receptor subunits in distinct cell populations plays an important role in the effective regeneration of both myofibers and motor neurons. (J Histochem Cytochem 48:1203-1213, 2000)  相似文献   

10.
11.
Signal transduction in response to interleukin-6 (IL-6) requires binding of the cytokine to its receptor (IL-6R) and subsequent homodimerization of the signal transducer gp130. The complex of IL-6 and soluble IL-6R (sIL-6R) triggers dimerization of gp130 and induces responses on cells that do not express membrane bound IL-6R. Naturally occurring soluble gp130 (sgp130) can be found in a ternary complex with IL-6 and sIL-6R. We created recombinant sgp130 proteins that showed binding to IL-6 in complex with sIL-6R and inhibited IL-6/sIL-6R induced proliferation of BAF/3 cells expressing gp130. Surprisingly, sgp130 proteins did not affect IL-6 stimulated proliferation of BAF/3 cells expressing gp130 and membrane bound IL-6R, indicating that sgp130 did not interfere with IL-6 bound to IL-6R on the cell surface. Additionally, sgp130 partially inhibited proliferation induced by leukemia inhibitory factor (LIF) and oncostatin M (OSM) albeit at higher concentrations. Recombinant sgp130 protein could be used to block the anti-apoptotic effect of sIL-6R on lamina propria cells from Crohn disease patients. We conclude that sgp130 is the natural inhibitor of IL-6 responses dependent on sIL-6R. Furthermore, recombinant sgp130 is expected to be a valuable therapeutic tool to specifically block disease states in which sIL-6R transsignaling responses exist, e.g. in morbus Crohn disease.  相似文献   

12.
Ciliary neurotrophic factor (CNTF) has a variety of actions within the nervous system. While some of the actions of leukemia inhibitory factor (LIF) on neurons resemble those of CNTF, LIF also has broad actions outside of the nervous system that in many cases mimic those of interleukin-6 (IL-6). Comparison of the tyrosine phosphorylations and gene activations induced by CNTF and LIF in neuron cell lines reveals that they are indistinguishable and also very similar to signaling events that characterize LIF and IL-6 responses in hematopoietic cells. We provide a basis for the overlapping actions of these three factors by demonstrating that the shared CNTF and LIF signaling pathways involve the IL-6 signal transducing receptor component gp130. Thus, the receptor system for CNTF is surprisingly unlike those used by the nerve growth factor family of neurotrophic factors, but is instead related to those used by a subclass of hematopoietic cytokines.  相似文献   

13.
Cross-talk among gp130 cytokines in adipocytes   总被引:3,自引:0,他引:3  
  相似文献   

14.
Leukemia inhibitory factor (LIF) is a multifunctional cytokine belonging to the interleukin-6 subfamily of helical cytokines, all of which use the glycoprotein (gp) 130 subunit for signal transduction. The specific receptor for LIF, gp190, binds this cytokine with low affinity and is also required for signal transduction. We have recently reported that glycosylated LIF produced by transfected Chinese hamster ovary cells also binds to a lectin-like receptor, mannose 6-phosphate/insulin-like growth factor II receptor (Man-6-P/IGFII-R) (Blanchard, F., Raher, S., Duplomb, L., Vusio, P., Pitard, V., Taupin, J. L., Moreau, J. F., Hoflack, B., Minvielle, S., Jacques, Y., and Godard, A. (1998) J. Biol. Chem. 273, 20886-20893). The present study shows that (i) mannose 6-phosphate-containing LIF is naturally produced by a number of normal and tumor cell lines; (ii) other cytokines in the interleukin-6 family do not bind to Man-6-P/IGFII-R; and (iii) another unrelated cytokine, macrophage-colony-stimulating factor, is also able to bind to Man-6-P/IGFII-R in a mannose 6-phosphate-sensitive manner. No functional effects or signal transductions mediated by this lectin-like receptor were observed in various biological assays after LIF binding, and mannose 6-phosphate-containing LIF was as active as non-glycosylated LIF. However, mannose 6-phosphate-sensitive LIF binding resulted in rapid internalization and degradation of the cytokine on numerous cell lines, which suggests that Man-6-P/IGFII-R plays an important role in regulating the amounts of LIF available in vivo.  相似文献   

15.
The related cytokines, interleukin-6 (IL-6), oncostatin M (OSM), and leukemia inhibitory factor (LIF) direct the formation of specific heteromeric receptor complexes to achieve signaling. Each complex includes the common signal-transducing subunit gp130. OSM and LIF also recruit the signaling competent, but structurally distinct OSMRbeta and LIFRalpha subunits, respectively. To test the hypothesis that the particularly prominent cell regulation by OSM is due to signals contributed by OSMRbeta, we introduced stable expression of human or mouse OSMRbeta in rat hepatoma cells which have endogenous receptors for IL-6 and LIF, but not OSM. Both mouse and human OSM engaged gp130 with their respective OSMRbeta subunits, but only human OSM also acted through LIFR. Signaling by OSMRbeta-containing receptors was characterized by highest activation of STAT5 and ERK, recruitment of the insulin receptor substrate and Jun-N-terminal kinase pathways, and induction of a characteristic pattern of acute phase proteins. Since LIF together with LIFRalpha appear to form a more stable complex with gp130 than OSM with gp130 and OSMRbeta, co-activation of LIFR and OSMR resulted in a predominant LIF-like response. These results suggest that signaling by IL-6 cytokines is not identical, and that a hierarchical order of cytokine receptor action exists in which LIFR ranks as dominant member.  相似文献   

16.
The common cytokine receptor chain, gp130, controls the activity of a group of cytokines, namely, IL-6, IL-11, IL-27, ciliary neurotrophic factor (CNTF), leukemia inhibitory factor (LIF), oncostatin M (OSM), cardiotrophin-1 (CT-1), cardiotrophin-like cytokine (CLC) and neuropoietin (NPN). This family of cytokines is involved in multiple different biological processes, including inflammation, acute phase response, immune responses and cell survival. To analyze the different components of the gp130 network, mouse mutants for the single cytokine were generated by conventional gene targeting. However, since the cytokines of the IL-6 family show redundancy, it does not reveal the complete picture. Therefore, the study of mice with a cell type specific inactivation of the gp130 receptor chain is an approach that will subsequently allow the dissection of the cellular cytokine network. Here, we summarize the experimental results of the conditional gp130 mutants published so far.  相似文献   

17.
18.
This study was designed to investigate whether angiotensin II induces the interleukin (IL)-6 family of cytokines in cardiac fibroblasts and, if so, whether these cytokines can augment cardiac hypertrophy. Angiotensin II increased IL-6, leukemia inhibitory factor (LIF) and cardiotrophin-1 mRNA by 6.5-, 10.2-, and 2.0-fold, respectively, but did not affect IL-11, ciliary neurotrophic factor, or oncostatin M in cardiac fibroblasts. Enzyme-linked immunosorbent assay revealed that angiotensin II-stimulated conditioned medium from cardiac fibroblasts contained 9.3 ng/ml IL-6 at 24 h, which was 24-fold higher than the control. It phosphorylated gp130 and STAT3 in cardiomyocytes, which was reduced with RX435 (anti-gp130 blocking antibody). It increased [(3)H]phenylalanine uptake and cell area by 44% and 86% in cardiomyocytes compared with mock medium. RX435 suppressed these increases by 26% and 38%, while TAK044 (endothelin-A/B-R blocker) suppressed them by 52% and 52%, respectively. Antisense oligonucleotides against LIF and cardiotrophin-1 blocked their up-regulation, and attenuated the conditioned medium-induced increase in [(3)H]phenylalanine uptake by 21% and 13%, respectively. The combination of antisense oligonucleotides to LIF and cardiotrophin-1 decreased their uptake by 33%. These results indicated that angiotensin II induced IL-6, LIF, and cardiotrophin-1 in cardiac fibroblasts, and that these cytokines, particularly LIF and cardiotrophin-1, activated gp130-linked signaling and contributed to angiotensin II-induced cardiomyocyte hypertrophy.  相似文献   

19.
Oncostatin M is a differentiation factor for myeloid leukemia cells.   总被引:11,自引:0,他引:11  
Oncostatin M (OSM) is a 28-kDa glycoprotein produced by stimulated macrophages and T lymphocytes that inhibits the proliferation of a number of different cell lines derived from solid tumors. Analysis of both amino acid sequence and gene structure has demonstrated that OSM is a member of a cytokine family that includes leukemia inhibitory factor (LIF), IL-6, and granulocyte colony-stimulating factor (G-CSF). We demonstrate that, like LIF, IL-6 and G-CSF, OSM can induce the differentiation of the myeloblastic M1 murine leukemia cells into macrophage-like cells. The morphologic and functional changes induced by OSM are more similar to those observed with LIF and IL-6 than those induced with G-CSF. OSM can also induce the differentiation of the histiocytic U937 human leukemia cells in the presence of granulocyte-macrophage CSF, a property shared with LIF and IL-6. In murine M1 cells, binding of labeled OSM is completely inhibited by excess LIF or OSM, reflecting the binding of OSM to the high affinity form of the murine LIF receptor. In contrast, the binding of labeled OSM to human U937 leukemia cells is inhibited by OSM, but the inhibition by LIF is significantly less. These results suggest that, in human leukemia cells, OSM may act through the LIF receptor and an OSM-specific receptor. The existence of an OSM-specific receptor was confirmed by both growth inhibition and competition binding assays on A375 human melanoma cells. The growth of human A375 cells was inhibited by OSM and IL-6 but not LIF or G-CSF. Neither LIF, G-CSF, nor IL-6 could compete with the binding of labeled OSM to A375 cells.  相似文献   

20.
In contrast to other hematopoietic cytokine receptors, the leukemia inhibitory factor receptor (LIFR) possesses two cytokine binding modules (CBMs). Previous studies suggested that the NH(2)-terminal CBM and the Ig-like domain of the LIFR are most important for LIF binding and activity. Using the recently engineered designer cytokine IC7, which induces an active heterodimer of the LIFR and gp130 after binding to the IL-6R, and several receptor chimeras of the LIFR and the interleukin-6 receptor (IL-6R) carrying the CBM of the IL-6R in place of the COOH-terminal LIFR CBM, we could assign individual receptor subdomains to individual binding sites of the ligand. The NH(2)-terminal CBM and the Ig-like domain of the LIFR bind to ligand site III, whereas the COOH-terminal CBM contacts site I. Furthermore, we show that LIFR mutants carrying the IL-6R CBM instead of the COOH-terminal CBM can replace the IL-6R by acting as an alpha-receptor for IL-6. However, in situations where a signaling competent receptor is bound at IL-6 site I, ligand binding to site III is an absolute requirement for participation of the receptor in a signaling heterodimer with gp130; i.e., a functional receptor complex of IL-6 type cytokines cannot be assembled solely via site I and II as in the growth hormone receptor complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号