首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Fan X  Gao Q  Fu R 《Microbiological research》2009,164(4):374-382
BALB/c mice were vaccinated three times (2-week intervals) with plasmid DNA separately encoding antigen Ag85B, ESAT-6 or Ag85A from Mycobacterium tuberculosis. The protective efficacy of these DNA vaccines against intravenous M. tuberculosis H37Rv challenge infection was measured by counting bacterial loads in spleen and lung and recording changes in lung pathology. The splenocyte proliferative response to the corresponding antigens and antigen-specific interferon (IFN)-γ secreted by splenocytes of the vaccinated mice were also detected. We found a clear hierarchy of protective efficacies among the three DNA vaccines tested in this study. Plasmid DNA encoding Ag85A provided the strongest protection and showed the least change in lung pathology, followed by plasmid DNAs encoding Ag85B and ESAT-6. However, DNA-85B reduced comparative bacterial load in lung tissue, as did DNA-85A. Compared to the control group, protective efficacies conferred by different DNA vaccines were consistent with the lymphoproliferative responses to the corresponding antigens as well as the secretions of antigen-specific IFN-γ. Our study demonstrates that both Ag85A and Ag85B are the most promising of the candidate antigens tested for future TB vaccine development.  相似文献   

2.
Previously we have shown that Ag85B-ESAT-6 is a highly efficient vaccine against tuberculosis. However, because the ESAT-6 Ag is also an extremely valuable diagnostic reagent, finding a vaccine as effective as Ag85B-ESAT-6 that does not contain ESAT-6 is a high priority. Recently, we identified a novel protein expressed by Mycobacterium tuberculosis designated TB10.4. In most infected humans, TB10.4 is strongly recognized, raising interest in TB10.4 as a potential vaccine candidate and substitute for ESAT-6. We have now examined the vaccine potential of this protein and found that vaccination with TB10.4 induced a significant protection against tuberculosis. Fusing Ag85B to TB10.4 produced an even more effective vaccine, which induced protection against tuberculosis comparable to bacillus Calmette-Guerin vaccination and superior to the individual Ag components. Thus, Ag85B-TB10 represents a new promising vaccine candidate against tuberculosis. Furthermore, having now exchanged ESAT-6 for TB10.4, we show that ESAT-6, apart from being an excellent diagnostic reagent, can also be used as a reagent for monitoring vaccine efficacy. This may open a new way for monitoring vaccine efficacy in clinical trials.  相似文献   

3.
Vaccination is expected to make a major contribution to the goal of eliminating tuberculosis worldwide by 2050. Because the protection afforded by the currently available tuberculosis vaccine, BCG, is insufficient, new vaccine strategies are urgently needed. Protective immunity against MTB depends on generation of a Th1-type cellular immune response characterized by secretion of IFN-γ from antigen-specific T cells. Epitope-driven vaccines are created from sub-sequences of proteins (epitopes) derived by scanning the protein sequences of pathogens and selecting epitopes with patterns of amino acids which permit binding to human MHC molecules. Guided by the crystal structure of HSP65 and its characteristics, four functional T cell epitopes elaborately elicited from ESAT-6, Ag85A, CFP-10 and Ag85B were cast into the intermediate domain of HSP65. A panel of a novel chimeric vaccine, ECANS, expressing HSP65 and combined T cell epitopes was created. Gene cloning and sequencing, DNA vaccination and humoral and cellular responses were studied. After being immunized with DNA vaccine three times, all mice injected with ECANS had specific cellular immune responses. In addition, lymphocytes obtained from the spleen of ECANS immunized mice at week eight exhibited significantly greater specific lymphocyte proliferation, IFN-γ secretion and CTL activity than those of mice that had been immunized with BCG. DNA vaccine with ECANS can successfully induce enhanced specific cellular immune response to PPD, and further study of its protective effects against Mycobacterium tuberculosis in vivo is needed.  相似文献   

4.
5.
There is increasing evidence to implicate a role for CD8(+) T cells in protective immunity against tuberculosis. Recombinant vaccinia (rVV) expressing Mycobacterium tuberculosis (MTB) proteins can be used both as tools to dissect CD8(+) T-cell responses and, in attenuated form, as candidate vaccines capable of inducing a balanced CD4(+)/CD8(+) T-cell response. A panel of rVV was constructed to express four immunodominant secreted proteins of MTB: 85A, 85B and 85C and ESAT-6. A parallel group of rVV was constructed to include the heterologous eukaryotic tissue plasminogen activator (tPA) signal sequence to assess if this would enhance expression and immunogenicity. Clear expression was obtained for 85A, 85B and ESAT-6 and the addition of tPA resulted in N-glycosylation and a 4-10-fold increase in expression. Female C57BL/6 mice were immunised using the rVV-Ag85 constructs, and interleukin-2 and gamma-interferon were assayed using a co-culture of immune splenocytes and recall antigen. There was a marked increase in cytokine production in mice immunised with the tPA-containing constructs. We report the first data demonstrating enhanced immunogenicity of rVV using a tPA signal sequence, which has significant implications for future vaccine design.  相似文献   

6.
Tuberculosis (TB) remains to be a major challenge tothe public health in the world. It is estimated that, through-out the world, 15 individuals are affected by TB and 6 ofthem die from it every minute [1]. Drug resistance andcoinfection with HIV, which ut…  相似文献   

7.
Vaccination with plasmid DNA encoding Ag85A from M. bovis BCG can partially protect C57BL/6 mice against a subsequent footpad challenge with M. ulcerans. Unfortunately, this cross-reactive protection is insufficient to completely control the infection. Although genes encoding Ag85A from M. bovis BCG (identical to genes from M. tuberculosis) and from M. ulcerans are highly conserved, minor sequence differences exist, and use of the specific gene of M. ulcerans could possibly result in a more potent vaccine. Here we report on a comparison of immunogenicity and protective efficacy in C57BL/6 mice of Ag85A from M. tuberculosis and M. ulcerans, administered as a plasmid DNA vaccine, as a recombinant protein vaccine in adjuvant or as a combined DNA prime-protein boost vaccine. All three vaccination formulations induced cross-reactive humoral and cell-mediated immune responses, although species-specific Th1 type T cell epitopes could be identified in both the NH2-terminal region and the COOH-terminal region of the antigens. This partial species-specificity was reflected in a higher--albeit not sustained--protective efficacy of the M. ulcerans than of the M. tuberculosis vaccine, particularly when administered using the DNA prime-protein boost protocol.  相似文献   

8.
The ESX systems from Mycobacterium tuberculosis are responsible for the secretion of highly immunogenic proteins of key importance for bacterial survival and growth. The two prototypic proteins, ESAT-6 (EsxA from ESX-1) and TB10.4 (EsxH from ESX-3) share a lot of characteristics regarding genome organization, size, antigenic properties, and vaccine potential but the two molecules clearly have very different roles in bacterial physiology. To further investigate the role of ESAT-6 and TB10.4 as preventive and post-exposure tuberculosis vaccines, we evaluated four different fusion-protein vaccines; H1, H4, H56 and H28, that differ only in these two components. We found that all of these vaccines give rise to protection in a conventional prophylactic vaccination model. In contrast, only the ESAT-6-containing vaccines resulted in significant protection against reactivation, when administered post-exposure. This difference in post-exposure activity did not correlate with a difference in gene expression during infection or a differential magnitude or quality of the vaccine-specific CD4 T cells induced by ESAT-6 versus TB10.4-containing vaccines. The post-exposure effect of the ESAT-6 based vaccines was found to be influenced by the infectious load at the time-point of vaccination and was abolished in chronically infected animals with high bacterial loads at the onset of vaccination. Our data demonstrate that there are specific requirements for the immune system to target an already established tuberculosis infection and that ESAT-6 has a unique potential in post-exposure vaccination strategies.  相似文献   

9.
The possibility of expression of genes encoding mycobacterial antigens in Francisella tularensis 15/10 vaccine strain cells has been shown for the first time. To obtain stable and effective expression of mycobacterial antigens in the F. tularensis cells, the plasmid vector pPMC1 and hybrid genes consisting of the leader part FL of the F. tularensis membrane protein FopA and structural moieties of the mature protein Ag85B or the fused protein Ag85B-ESAT-6 were constructed. Recombinant strains F. tularensis RVp17 and RVp18 expressing protective mycobacterial antigens in the fused proteins FL-Ag85B and FL-Ag85B-ESAT-6, respectively, were obtained. Expression of the protective mycobacterial antigens in F. tularensis was analyzed using specific antisera to the recombinant proteins Ag85-(His)6 and ESAT-6-(His)6 isolated from Escherichia coli producer strains created on the basis of the pET23b(+) and pET24b(+) vectors. The expression of heterologous protective antigens in F. tularensis 15/10 is promising for creation of live recombinant anti-tuberculosis vaccines on the basis of the tularemia vaccine strain.  相似文献   

10.
IFN-gamma responses to Mycobacterium tuberculosis antigens ESAT-6 and CFP-10 have been proposed as specific markers of M. tuberculosis infection. Monokine induced by gamma interferon (MIG/CXCL9) has been shown to be expressed by IFN-gamma stimulated mononuclear cells and to attract activated T-cells through the chemokine receptor CXCR3. Since MIG is induced early in the response to IFN-gamma, measuring MIG may provide an interesting marker to assess downstream IFN-gamma induced responses, in contrast to assays that mainly focus on quantifying production of IFN-gamma per se. We, therefore, investigated MIG and IFN-gamma responses to a fusion protein of ESAT-6 and CFP-10, and compared responses to the conserved mycobacterial antigen 85B (Ag85B) and purified protein derivative (PPD) of M. tuberculosis, in 29 BCG vaccine controls and 24 TB patients. IFN-gamma secreting cells were determined by ELISPOT, and MIG production was measured by ELISA and flow cytometry. Production of MIG in response to ESAT-6/CFP-10, Ag85B and PPD correlated overall with increased numbers of IFN-gamma secreting cells (r=0.55, P<0.0001). A significant increase was noted among patients compared to controls in the secretion of IFN-gamma and MIG following stimulation with ESAT-6/CFP-10 or PPD (P<0.05). Moreover, MIG intracellular expression was higher in TB patients compared to BCG vaccines (P<0.05) in response to ESAT-6/CFP-10 or PPD. We conclude that MIG production correlates significantly with enhanced T-cell IFN-gamma production induced by M. tuberculosis-specific antigens ESAT-6/CFP-10. These results point to MIG as a potential novel biomarker that may be helpful in assessing downstream responses induced by IFN-gamma in TB.  相似文献   

11.
In this study, the protective efficacy of a novel recombinant bacille Calmette Géurin (BCG) strain (rBCG-AEI) expressing fusion protein the antigen 85B (Ag85B)- the 6-kDa early secreted antigen target (ESAT-6)-IFN-gamma against Mycobacterium tuberculosis H37Rv in mice was evaluated. The immunogenicity study showed that rBCG-AEI could induce higher specific antibody titers and significantly increase cellular immune response than BCG, or rBCG-A strain (expressing Ag85B), or rBCG-AE strain (expressing fusion protein Ag85B-ESAT-6). The protective experiment demonstrated that rBCG-AEI could confer similar or even better protective efficacy against M. tuberculosis infection compared with others in organ bacterial loads, lung histopathology and net weight gain or loss. The results suggested that rBCG-AEI is a potential candidate for further study.  相似文献   

12.
Protein antigens have drawn a lot of attention from investigators working on tuberculosis vaccines. These proteins can be used to improve the immunogenicity of the new generation BCG vaccines or even replace them completely. Recombinant technology is used to insure the production of pure mycobacterial antigens in high quantities. Mycolyl transferase 85B (Ag85B) is a potent, mycobacterial antigen that significantly stimulates immune responses. Since Ag85B is an apolar protein, production of the water-soluble antigen is of interest. In this work, we report a systematic optimization strategy concerning cloning systems and purification methods, aiming at increasing the yield of recombinant Ag85B. Our optimized method resulted in a yield of 8 mg of recombinant Ag85B from 1 liter of induced culture (400 μg/ml) by using pET32a(+), Escherichia coli Rosseta-gami?(DE3) pLysS and a Ni–NTA agarose-based procedure and on-column re-solubilization. The purified recombinant Ag85B showed strong immunostimulating properties by inducing high levels of TNF-α, IFN-γ, IL-12, and IgG2a in immunized mice, therefore it can effectively be applied in TB vaccine researches.  相似文献   

13.
In the present work, we evaluated a new TB vaccine approach based on a combination of the Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccine and a subunit vaccine consisting of the proteins Ag85B and ESAT-6. We demonstrate that in addition to its vaccine efficacy BCG is an immune modulator that can potentiate a Th1 immune response better than the well-known adjuvant mono phosphoryl lipid A, leading to enhanced recognition of the subunit vaccine Ag85B-ESAT-6. Importantly, adding a vehicle to the vaccine, such as the cationic liposome dimethyl dioctadecyl ammonium bromide (DDA), significantly increased the potentiating effect of BCG. This synergistic effect between BCG and Ag85B-ESAT-6/liposome required drainage to the same lymph node of all vaccine components but did not require direct mixing of the components and was therefore also observed when BCG and Ag85B-ESAT-6/liposome were given as separate injections at sites draining to the same lymph node. The resulting optimized vaccine protocol consisting of BCG and subunit in liposomes (injected side by side) followed by boosting with the subunit in conventional adjuvant resulted in an impressive increase in the protective efficacy of up to 7-fold compared with BCG alone and 3-fold compared with unaugmented BCG boosted by the subunit vaccine. Thus, these studies suggest an immunization strategy where a novel TB subunit vaccine is administered as part of the child vaccination program together with BCG in neonates and followed by subunit boosting.  相似文献   

14.
There is an urgent need for effective prophylactic measures against Mycobacterium tuberculosis (Mtb) infection, particularly given the highly variable efficacy of Bacille Calmette-Guerin (BCG), the only licensed vaccine against tuberculosis (TB). Most studies indicate that cell-mediated immune responses involving both CD4+ and CD8+ T cells are necessary for effective immunity against Mtb. Genetic vaccination induces humoral and cellular immune responses, including CD4+ and CD8+ T-cell responses, against a variety of bacterial, viral, parasitic and tumor antigens, and this strategy may therefore hold promise for the development of more effective TB vaccines. Novel formulations and delivery strategies to improve the immunogenicity of DNA-based vaccines have recently been evaluated, and have shown varying degrees of success. In the present study, we evaluated DNA-launched Venezuelan equine encephalitis replicons (Vrep) encoding a novel fusion of the mycobacterial antigens α-crystallin (Acr) and antigen 85B (Ag85B), termed Vrep-Acr/Ag85B, for their immunogenicity and protective efficacy in a murine model of pulmonary TB. Vrep-Acr/Ag85B generated antigen-specific CD4+ and CD8+ T cell responses that persisted for at least 10 wk post-immunization. Interestingly, parenterally administered Vrep-Acr/Ag85B also induced T cell responses in the lung tissues, the primary site of infection, and inhibited bacterial growth in both the lungs and spleens following aerosol challenge with Mtb. DNA-launched Vrep may, therefore, represent an effective approach to the development of gene-based vaccines against TB, particularly as components of heterologous prime-boost strategies or as BCG boosters.  相似文献   

15.
DNA vaccines encoding the human papillomavirus type-16 (HPV-16) E6 and E7 oncoproteins genetically fused to the human herpes simplex virus type 1 (HSV-1) gD protein were tested in mice for induction of T cell-mediated immunity and protection against tumor cell challenge. Hybrid genes, generated after insertion of E6 or E7-encoding sequences into internal sites of the gD-encoding gene, were transcribed in vitro and the chimeric proteins were expressed at the surface of in vitro-transfected mammalian cells. Female C57BL/6 mice immunized with 4 intramuscular doses (100 microg of DNA/dose) of the DNA vaccines encoding E7 efficiently generated E7-specific CD8(+) T cells. Vaccination of mice with the DNA vaccines encoding the E7, or both E6 and E7, conferred complete protection to challenges from TC-1 tumor cells and partial therapeutic effect (40%) in mice inoculated with TC-1 cells on the same day or 5 days prior to the first vaccine dose.  相似文献   

16.
A polytope DNA vaccine (pCI/pt10) was used that encodes within a 106-residue sequence 10-well characterized epitopes binding MHC class I molecules encoded by the K, D, or L locus (of H-2(d), H-2(b), and H-2(k) haplotype mice). The pCI/pt10 DNA vaccine efficiently primed all four K(b)/D(b)-restricted CD8(+) T cell responses in H-2(b) mice, but was deficient in stimulating most CD8(+) T cell responses in H-2(d) mice. Comparing CD8(+) T cell responses elicited with the pCI/pt10 DNA vaccine in L(d+) BALB/c and L(d-) BALB/c(dm2) (dm2) mice revealed that L(d)-restricted CD8(+) T cell responses down-regulated copriming of CD8(+) T cell responses to other epitopes regardless of their restriction or epitope specificity. Although the pt10 vaccine could thus efficiently co prime multispecific CD8(+) T cell responses, this priming was impaired by copriming L(d)-restricted CD8(+) T cell responses. When the pt10 sequence was fused to a 77-residue DnaJ-homologous, heat shock protein 73-binding domain (to generate a 183-residue cT(77)-pt10 fusion protein), expression and immunogenicity (for CD8(+) T cells) of the chimeric Ag were greatly enhanced. Furthermore, priming of multispecific CD8(+) T cell responses was readily elicited even under conditions in which the suppressive, L(d)-dependent immunodominance operated. The expression of polytope vaccines as chimeric peptides that endogenously capture stress proteins during in situ production thus facilitates copriming of CD8(+) T cell populations with a diverse repertoire.  相似文献   

17.
Tuberculosis is an ancient scourge of mankind. According to statistics, there are more than 10 million new cases of tuberculosis each year and the annual death toll for tuberculosis exceeds three millions. The current available BCG is of questionable efficacy, and its protection ranges from 0 to 85%. Therefore, developing a safe and effective vaccine against this scourge is very important. Previous studies have shown that the secreted proteins of Mycobacterium tuberculosis (M. TB) can induc…  相似文献   

18.
Immune response and protective efficacy for the combination of four tuberculosis DNA vaccines were evaluated in this study. We obtained 1:200 antibody titers against Ag85B 21d after mice were vaccinated for the first time by four recombinant eukaryotic expression vectors containing coding sequences for Ag85B, MPT-64, MPT-63 and ESAT-6. The titers of Ag85B were elevated to 1:102400 after the second injection and decreased to 1:12800 after the third injection. Antibody titers for MPT-64 and MPT-63 reached 1:25600 21 d after the first vaccination, and were then decreased following the second and third injections. No antigen-specific antibody titer against ESAT-6 was detected in sera harvested from immunized mice at any time. These DNA vaccines evoked specific IFN-λ responses in the spleens of vaccinated mice as well. When challenged with M. tuberculosis H37Rv, we found that the lungs of the vaccinated mice produced 99.8% less bacterial counts than that of the empty-vector control group and the bacterial counts were also significantly less than that of the BCG group. Histopathological analyses showed that the lungs of vaccinated mice produced no obvious caseation while over 50%-70% of the pulmonary parenchyma tissue produced central caseation in the vector control group. Our results indicated that the combination of four tuberculosis DNA vaccines may generate high levels of immune responses and result in better animal protection.  相似文献   

19.
J Davila  LA McNamara  Z Yang 《PloS one》2012,7(7):e40882
The Bacille-Calmette Guérin (BCG) vaccine does not provide consistent protection against adult pulmonary tuberculosis (TB) worldwide. As novel TB vaccine candidates advance in studies and clinical trials, it will be critically important to evaluate their global coverage by assessing the impact of host and pathogen variability on vaccine efficacy. In this study, we focus on the impact that host genetic variability may have on the protective effect of TB vaccine candidates Ag85B-ESAT-6, Ag85B-TB10.4, and Mtb72f. We use open-source epitope binding prediction programs to evaluate the binding of vaccine epitopes to Class I HLA (A, B, and C) and Class II HLA (DRB1) alleles. Our findings suggest that Mtb72f may be less consistently protective than either Ag85B-ESAT-6 or Ag85B-TB10.4 in populations with a high TB burden, while Ag85B-TB10.4 may provide the most consistent protection. The findings of this study highlight the utility of bioinformatics as a tool for evaluating vaccine candidates before the costly stages of clinical trials and informing the development of new vaccines with the broadest possible population coverage.  相似文献   

20.
ESAT-6 protein of Mycobacterium tuberculosis is absent in Mycobacterium bovis BCG and Mycobacterium microti and has been demonstrated to stimulate strong cell-mediated immunity. IL-12 can play crucial roles in regulating IFN-γ production and Th1 effectors production. In this study, we constructed three rBCG vaccines that could express proteins of human IL-12p70 and/or ESAT-6 and evaluated their immunogenicity and protective efficacy in mice. Our experiments illustrated that the rBCG-IE (expressing a fusion protein of human IL-12p70 and ESAT-6) was capable of inducing stronger Th1 type cell-mediated immune responses than conventional BCG, or rBCG-I (expressing human IL-12p70), or rBCG-E (expressing ESAT-6). However, the results of protective experiments showed that rBCG-IE could only confer similar and even lower protective efficacy against M. tuberculosis H37Rv infection compared with BCG vaccine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号