首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The terminal enzyme of the heme biosynthetic pathway, ferrochelatase (protoheme ferrolyase EC 4.99.1.1), has been purified to apparent homogeneity from bovine liver mitochondria using a scheme similar to that reported by Taketani and Tokunaga (Taketani, S. and Tokunaga, R. (1981) J. Biol. Chem. 256, 12748-12753) for purification of the enzyme from rat liver. The final yield was 49% with a 2000-fold purification. Ferrochelatase has an apparent molecular weight of approximately 40,000 by both sodium dodecyl sulfate-polyacrylamide gel electrophoresis and column chromatography on Sepharose CL-6B in the presence of 0.5% sodium cholate. The purified enzyme was only slightly stimulated by added lipid and was inhibited by Mn2+, Pb2+, and Hg2+. Bovine ferrochelatase utilized proto-, meso-, and deuteroporphyrin, but not disubstituted porphyrins (2,4-disulfonic and 2,4-bisglycol deuteroporphyrin). N-Methylprotoporphyrin, a toxic by-product of the metabolism of some drugs, was found to inhibit ferrochelatase in a competitive fashion with respect to porphyrin with a Ki of 7 nM and uncompetitive with respect to iron. Manganese inhibits ferrochelatase competitively with respect to iron (Ki = 15 microM) and noncompetitively with respect to the porphyrin substrate. Heme, one of the products, is a noncompetitive inhibitor with respect to iron. These findings lead to a sequential Bi Bi kinetic model for ferrochelatase with iron binding occurring prior to porphyrin binding and heme being released prior to the release of two protons.  相似文献   

2.
5-Oxo-L-prolinase, an enzyme that catalyzes the conversion of 5-oxo-L-proline (L-pyroglutamate; L-2-pyrrolidone-5-carboxylate) to L-glutamate coupled with the cleavage of ATP to ADP and Pi, has been purified about 1600-fold from rat kidney. Purification was carried out in the presence of 5-oxo-L-proline which protects the enzyme under a variety of conditions. An estimate of the molecular weight (about 325,000) was made by gel filtration on Sephadex G-200. K+ (or NH4+) and Mg2+ were required for activity. GTP, ITP, CTP, and UTP were much less active than ATP; dATP was 43% as active as ATP. ADP inhibited and addition of pyruvate kinase and phosphoenolpyruvate activated the reaction. The enzyme, which is protected during storage by dithiothreitol, is inhibited by p-hydroxymercuribenzoate, N-ethylmaleimide, and iodoacetamide. The apparent Km values for 5-oxo-L-proline and ATP are, respectively, 0.05 and 0.17 mM. The pH profile indicates a broad range of activity from about pH 5.5 to pH 11.2 with apparent maxima at about pH 7 and pH 9.7. The formation of Pi and glutamate was equimolar over a wide pH range. When the enzyme was incubated with ATP, Mg2+, K+, and L-2-imidazolidone-4-carboxylate or L-dihydroorotate, cleavage of ATP to ADP and Pi occurred, but no cleavage of the imino acid substrates was observed; when the enzyme was incubated under these conditions with 2-piperidone-6-carboxylate, 4-oxy-5-oxoproline, and 3-oxy-5-oxoproline, the corresponding dicarboxylic amino acids were formed, but the molar ratio of Pi to amino acid formation was significantly greater than unity.  相似文献   

3.
Purification and characterization of a streptomycete collagenase   总被引:1,自引:0,他引:1  
A soil streptomycete designated as Streptomyces sp. A8 produced an extracellular collagen hydrolysing enzyme that appeared to be 'true collagenase' as it degraded native collagen under physiological conditions and cleaved the synthetic hexapeptide 4-phenylazobenzyloxycarbonyl-L-prolyl-L-leucyl-glycyl-L-prolyl-D-a rginine into two tripeptides. The enzyme was purified by diethyl aminoethyl cellulose chromatography and Sephadex G-150 gel filtration. The purified enzyme had an apparent molecular weight of about 75,000 by SDS-polyacrylamide gel electrophoresis. Treatment with lithium chloride did not dissociate it into subunits. A strong inhibition was observed with chelating agents such as alpha-alpha-dipyridyl and 8-hydroxyquinoline. Ethylene diamine tetraacetate completely inhibited the enzyme activity. Among the cations tested only Ca2+ and Mg2+ enhanced the collagenase activity. Heavy metal ions like Pb2+, Ag+, Cu2+ and Zn2+ strongly inhibited the enzyme. The EDTA inhibition could be reversed with Ca2+. Cysteine and reduced glutathione caused significant reduction in enzyme activity. Parachloromercuribenzoate and iodoacetamide had no effect on the collagenase. Amino acid analysis revealed the absence of cysteine and tyrosine. Many of the properties were the same as collagenases of Clostridium histolyticum and Vibrio alginolyticus.  相似文献   

4.
A soluble protein kinase from the promastigote form of the parasitic protozoon Leishmania donovani was partially purified using DEAE-cellulose, Sephadex G-200 and phosphocellulose columns. The enzyme preferentially utilized protamine as exogenous phosphate acceptor. The native molecular mass of the enzyme was about 85 kDa. Mg2+ ions were essential for enzyme activity; other metal ions, e.g. Ca2+, Co2+, Zn2+ and Mn2+, could not substitute for Mg2+. cAMP, cGMP, Ca2+/calmodulin and Ca2+/phospholipid did not stimulate enzyme activity. The pH optimum of the enzyme was 7.0-7.5, and the temperature optimum 37 degrees C. The apparent Km for ATP was 60 microM. Phosphoamino acid analysis revealed that the protein kinase transferred the gamma-phosphate of ATP to serine residues in protamine. The thiol reagents p-hydroxymercuribenzoic acid, 5-5'-dithio-bis(2-nitrobenzoic acid) and N-ethylmaleimide inhibited enzyme activity; the inhibition by p-hydroxymercuribenzoic acid and 5-5'-dithio-bis(2-nitrobenzoic acid) was reversed by dithiothreitol.  相似文献   

5.
The major nuclease from Mycoplasma penetrans has been purified to homogeneity. The enzyme seems to be present as a membrane-associated precursor of 50 kDa and as a peripheral membrane monomeric polypeptide of 40 kDa that is easily removed by washing of cells with isotonic buffers and in the aqueous phase upon Triton partitioning of Triton X-114-solubilized protein. The 40-kDa nuclease was extracted from M. penetrans cells by Triton X-114 and phase fractionation and was further purified by chromatography on Superdex 75 and chelating Sepharose (Zn2+ form) columns. By gel filtration, the apparent molecular mass was 40 kDa. The purified enzyme exhibits both a nicking activity on superhelical and linear double-stranded DNA and a nuclease activity on RNA and single-stranded DNA. No exonuclease activity was found for this enzyme. This nuclease required both Mg2+ (optimum, 5 mM) and Ca2+ (optimum, 2 mM) for activity and exhibited a pH optimum between pH 7 and 8 for DNase activity. It was inhibited by Zn2+, Mn2+, heparin, sodium dodecyl sulfate, and chelator agents such EDTA and EGTA, but no effect was observed with ATP, 2-mercaptoethanol, N-ethylmaleimide, dithiothreitol, nonionic detergents, phenylmethylsulfonyl fluoride, and iodoacetamide. Nuclease activity was inhibited by diethylpyrocarbonate at both pH 6 and 8 and by pepstatin, suggesting the involvement of a histidine and an aspartate in the active site. When added to human lymphoblast nuclei, the purified M. penetrans endonuclease induced internucleosomal fragmentation of the chomatin into oligonucleosomal fragments. On the basis of this result, and taking into account the fact that M. penetrans has the capacity to invade eucaryotic cells, one can suggest, but not assert, that produced Ca2+/Mg2+-dependent endonuclease may alter the nucleic acid metabolism of host cells by DNA and/or RNA degradation and may act as a potential pathogenic determinant.  相似文献   

6.
Both purified and functionally reconstituted bovine heart mitochondrial transhydrogenase were treated with various sulfhydryl modification reagents in the presence of substrates. In all cases, NAD+ and NADH had no effect on the rate of inactivation. NADP+ protected transhydrogenase from inactivation by 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) in both systems, while NADPH slightly protected the reconstituted enzyme but stimulated inactivation in the purified enzyme. The rate of N-ethylmaleimide (NEM) inactivation was enhanced by NADPH in both systems. The copper-(o-phenanthroline)2 complex [Cu(OP)2] inhibited the purified enzyme, and this inhibition was substantially prevented by NADP+. Transhydrogenase was shown to undergo conformational changes upon binding of NADP+ or NADPH. Sulfhydryl quantitation with DTNB indicated the presence of two sulfhydryl groups exposed to the external medium in the native conformation of the soluble purified enzyme or after reconstitution into phosphatidylcholine liposomes. In the presence of NADP+, one sulfhydryl group was quantitated in the nondenatured soluble enzyme, while none was found in the reconstituted enzyme, suggesting that the reactive sulfhydryl groups were less accessible in the NADP+-enzyme complex. In the presence of NADPH, however, four sulfhydryl groups were found to be exposed to DTNB in both the soluble and reconstituted enzymes. NEM selectively reacted with only one sulfhydryl group of the purified enzyme in the absence of substrates, but the presence of NADPH stimulated the NEM-dependent inactivation of the enzyme and resulted in the modification of three additional sulfhydryl groups. The sulfhydryl group not modified by NEM in the absence of substrates is not sterically hindered in the native enzyme as it can still be quantitated by DTNB or modified by iodoacetamide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Purified ferrochelatase (protoheme ferrolyase; EC 4.99.1.1) from the bacterium Rhodopseudomonas sphaeroides was examined to determine the roles of cationic and sulfhydryl residues in substrate binding. Reaction of the enzyme sulfhydryl residues with N-ethylmaleimide or monobromobimane resulted in a rapid loss of enzyme activity. Ferrous iron, but not porphyrin substrate, had a protective effect against inactivation by these two reagents. Quantitation with 3H-labeled N-ethylmaleimide revealed that inactivation required one to two sulfhydryl groups to be modified. Modification of arginyl residues with either 2,3-butanedione or camphorquinone 10-sulfonate resulted in a loss of ferrochelatase activity. A kinetic analysis of the modified enzyme showed that the Km for ferrous iron was not altered but that the Km for the porphyrin substrate was increased. These data suggested that arginyl residues may be involved in porphyrin binding, possibly via charge pair interactions between the arginyl residue and the anionic porphyrin propionate side chain. Modification of lysyl residues had no effect on enzyme activity. We also examined the ability of bacterial ferrochelatase to use various 2,4-disubstituted porphyrins as substrates. We found that 2,4-bis-acetal- and 2,4-disulfonate deuteroporphyrins were effective substrates for the purified bacterial enzyme and that N-methylprotoporphyrin was an effective inhibitor of the enzyme. Our data for the ferrochelatase of R. sphaeroides are compared with previously published data for the eucaryotic enzyme.  相似文献   

8.
Pz-peptidase was purified from chicken liver as a protein of Mr 80,000 and pI 5.2. The purified enzyme hydrolysed phenylazobenzyloxycarbonyl-Pro-Leu-Gly-Pro-D-Arg, 2,4-dinitrophenyl-Pro-Leu-Gly-Pro-Trp-D-Lys. 7-methoxycoumarin-3-carboxylyl-Pro-Leu-Gly-Pro-D-(2,4-dinitropheny l)Lys, benzoyl-Gly-Ala-Ala-Phe-p-aminobenzoate, Ac-Ala4 (at the Ala-1-Ala-2 bond) and bradykinin (at the Phe-5-Ser-6 bond). No hydrolysis of proteins was detected. Loss of activity in the presence of EDTA or 1,10-phenanthroline was time-dependent. Metal ions found to restore activity after treatment with EDTA were Zn2+, Mn2+, Ca2+, Co2+ and Cd2+, in decreasing order of effectiveness. Ni2+, Fe2+ and higher concentrations of Zn2+ were inhibitory. Inhibition by N-[1-(RS)-carboxy-3-phenylpropyl]-Ala-Ala-Tyr-p-aminobenzoate and related compounds showed Ki values (down to 5 nM) somewhat lower than those for the rat enzyme. Pz-peptidase was activated by low concentrations of 2-mercaptoethanol and dithiothreitol, but inhibited by higher concentrations. p-Chloromercuribenzoate and some other thiol-blocking reagents were inhibitory. Inactivation by diethyl pyrocarbonate that was reversible by hydroxylamine showed the presence of essential histidine residue(s). We conclude that chicken Pz-peptidase is a metallo-endopeptidase with thiol-dependence. Moreover, the properties of chicken Pz-peptidase agree with those described for mammalian soluble metallo-endopeptidase and endo-oligopeptidase A. consistent with the view that these three types of activity are all attributable to the single enzyme for which the name thimet peptidase has been proposed.  相似文献   

9.
Purification and characterization of ferro- and cobalto-chelatases   总被引:2,自引:0,他引:2  
Pig liver ferrochelatase was purified 465-fold with about 30% yield, to apparent homogeneity, by a procedure involving solubilization from mitochondria, ammonium sulfate fractionation, and Sephacryl S-300 chromatography. The fraction of each purification step had cobaltochelatase as well as ferrochelatase activity. A purified protein of molecular weight 40,000 was found by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. A molecular weight of approximately 240,000 was obtained by Sephacryl S-300 chromatography. Both activities of the purified fraction increased linearly with time until 2 h, but nonlinear plots were obtained with increasing concentrations of protein. Their optimum pH values were similar. Km values were, for ferrochelatase activity, 23.3 microM for the metal and 30.3 microM for mesoporphyrin, and for cobaltochelatase activity, 27 and 45.5 microM, respectively. Fe2+ and Co2+ each protected against inactivation by heat. Pb2+, Zn2+, Cu2+, or Hg2+ inhibited both activities, while Mn2+ slightly activated; Mg2+ had no effect, at the concentrations tested. There appeared to be an involvement of sulfhydryl groups in metal insertion. Lipids, in correlation with their degree of unsaturation, activated both purified activities; phospholipids also had activation effects. We conclude that a single protein catalyzes the insertion of Fe2+ or Co2+ into mesoporphyrin.  相似文献   

10.
Growth on phenol of two strains of Pseudomonas putida biotype A, NCIB 10015 and NCIB 9865, elicits the synthesis of an enzyme that hydrolyzes 2-hydroxy-6-oxo-2,4-heptadienoate to 2-oxopent-4-enoate. The purified enzyme from Pseudomonas NCIB 10015 has a molecular weight of 118,000 and dissociates in sodium dodecyl sulfate to a species of molecular weight 27,700; the enzyme from Pseudomonas NCIB 9865 has a molecular weight of 100,000 and dissociates to a species of 25,000 molecular weight. The hydrolases from both strains have similar Km values, pH optima, and thermal labilities and attack the same range of substrates. Neither hydrolase was stimulated by Mg2+ or Mn2+, and both were inhibited by p-chloromercuribenzoate and iodoacetamide. Immunodiffusion studies with the purified enzymes and antibodies formed against them show some cross-reaction of Pseudomonas NCIB 9865 enzymes with antibodies to Pseudomonas NCIB 10015, but not vice versa.  相似文献   

11.
A water-soluble Mg2+-ATPase previously reported (White, M.D. and Ralston, G.B. (1976) Biochim. Biophys. Acta 436, 567-576) has been purified from human erythrocyte membranes. The purified enzyme has a molecular weight of 575 000; the apparent minimum molecular weight was 100 000, corresponding to a soluble protein of the component 3 region. The Km value for ATP was 1 mM and apparent Km for Mg2+ was 3.6 mM. By means of histochemical activity staining in acrylamide gels it was shown that the purified ATPase preparation could be inhibited by Cd2+ and Zn2+ salts, p-chloromercuribenzoate and N-ethylmaleimide, known inhibitors of membrane endocytosis.  相似文献   

12.
The possibility that H+ might substitute for Na+ at Na+ sites of Na+,K+-ATPase was studied. Na+,K+-ATPase purified from pig kidney showed ouabain-sensitive K+-dependent ATPase activity in the absence of Na+ at acid pH (H+,K+-ATPase). The specific activity was 1.1 mumol Pi/mg/min at pH 5.7, whereas the specific activity of Na+,K+-ATPase was 14 mumol Pi/mg/min at pH 7.5. The enzyme was phosphorylated from ATP in the absence of Na+ at the acid pH. The initial rate of the phosphorylation was also accelerated at the acid pH in the absence of Na+, and the maximal rate obtained at pH 5.5 without Na+ was 9% of the rate at pH 7.0 with Na+. The phosphoenzyme was sensitive to K+ but almost insensitive to ADP. The phosphoenzyme was sensitive to hydroxylamine treatment and the alpha-subunit of the enzyme was found to be phosphorylated. H+,K+-ATPase was inhibited as effectively as Na+,K+-ATPase by N-ethylmaleimide but was less inhibited by oligomycin or dimethyl sulfoxide. These results indicate that protons have an Na+-like effect on the Na+ sites of Na+,K+-ATPase and suggest that protons can be transported by the sodium pump in place of Na+.  相似文献   

13.
The basic kinetic properties of the solubilized and purified Ca2+-translocating ATPase from human erythrocyte membranes were studied. A complex interaction between the major ligands (i.e., Ca2+, Mg2+, H+, calmodulin and ATP) and the enzyme was found. The apparent affinity of the enzyme for Ca2+ was inversely proportional to the concentration of free Mg2+ and H+, both in the presence or absence of calmodulin. In addition, the apparent affinity of the enzyme for Ca2+ was significantly increased by the presence of calmodulin at high concentrations of MgCl2 (5 mM), while it was hardly affected at low concentrations of MgCl2 (2 mM or less). In addition, the ATPase activity was inhibited by free Mg2+ in the millimolar concentration range. Evidence for a high degree of positive cooperativity for Ca2+ activation of the enzyme (Hill coefficient near to 4) was found in the presence of calmodulin in the slightly alkaline pH range. The degree of cooperativity induced by Ca2+ in the presence of calmodulin was decreased strongly as the pH decreased to acid values (Hill coefficient below 2). In the absence of calmodulin, the Hill coefficient was 2 or slightly below over the whole pH range tested. Two binding affinities of the enzyme for ATP were found. The apparent affinity of the enzyme for calmodulin was around 6 nM and independent of the Mg2+ concentration. The degree of stimulation of the ATPase activity by calmodulin was dependent on the concentrations of both Ca2+ and Mg2+ in the assay system.  相似文献   

14.
Activity of purified alanylaminopeptidase of Pseudomonas sp. measured in the presence of the alanine derivative of 2-naphthoic acid (NA-Ala) is inhibited by 1,10-phenanthroline, EDTA, bestatin and amastatin; this finding supports the conclusion that this enzyme is a metallo-aminopeptidase. A decrease of its activity in the presence of iodoacetamide and its activation by thiols points to the significant role of -SH groups in the regulation of its activity. Co2+, Ca2+ and Mg2+ ions increased the enzyme activity while Zn2+, Cd2+ and Pb2+ markedly inhibited the enzyme even at low concentrations. A high thermal stability of alanylaminopeptidase depended on the presence of 1 mmol/L Co2+ and of 1 mmol/L L-cysteine in the incubation mixture.  相似文献   

15.
1. Rat erythrocytes were fused by incubation with benzyl alcohol and Ca2+. 2. Cell fusion was inhibited by EGTA, N-ethylmaleimide, tetrathionate, iodoacetamide, cystamine, Tos-Lys-CH2Cl, and to a lesser extent by Tos-Phe-CH2Cl. Phenylmethanesulphonyl fluoride, Tos-Arg-OMe and histamine did not inhibit cell fusion. 3. Gel electrophoresis of membrane proteins from "ghosts" of the erythrocytes treated with benzyl alcohol showed that a high-molecular-weight polymer was present: this was consistent with the entry into the cells of Ca2+ and the activation of a transglutaminase enzyme. 4. In the treated cells the proteins corresponding to bands 2 and 3 in human erythrocytes were decreased, and a polypeptide with a slightly greater mobility than band 3 was produced. 5. These changes were inhibited by EGTA, N-ethylmaleimide, tetrathionate, iodoacetamide, cystamine, and Tos-Lys-CH2Cl, but not by phenylmethanesulphonyl fluoride, Tos-Arg-OMe, or histamine. 6. The intramembraneous particles of the P-fracture face of cells treated with benzyl alcohol to induce fusion were decreased in number and were susceptible to cold-induced aggregation; both of these phenomena were markedly inhibited to EGTA, and partially inhibited by Tos-Lys-CH2Cl and N-ethylmaleimide. 7. These several observations indicate that a Ca2+-activated thiol-proteinase, which acts to degrade membrane proteins and to give freedom of lateral movement to intramembranous particles, may be essential feature of membrane fusion in this system. 8. It is suggested that this proteinase may act to degrade spectrin-binding proteins that attach band-3 protein to the erythrocyte cytoskeleton.  相似文献   

16.
A cAMP-independent protamine kinase has been purified from extracts of the yeast Candida lipolytica by ion-exchange and affinity chromatography. Two subunits with apparent Mr's of 52,000 and 36,000 were resolved by SDS-PAGE. The purified kinase exhibited about 20% activity with casein and histone Type VII-S as substrates relative to protamine. The enzyme was inactive against other protein substrates tested, and was essentially insensitive to AMP, cAMP, cGMP up to 0.2 mM, the polyamines spermine and spermidine up to 1 mM, N-ethylmaleimide (5 mM), 2-mercaptoethanol (20 mM), or dithiothreitol (2 mM), and several cations like Zn2+, N1+, or Co2+ at 0.1 mM each. Ca2+ at 3 mM inhibited protamine kinase activity by 50%, which was reversed by EGTA.  相似文献   

17.
NADPH-linked alpha,beta-ketoalkene double bond reductase was purified from rat liver cytosol by fractionation with ammonium sulfate, and chromatography with DEAE-cellulose. AF-Blue Toyopearl and hydroxyapatite. The purified enzyme was homogeneous by the criterion of sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular weight of the enzyme was estimated to be 39,500 by the electrophoresis and by HPLC gel filtration on a TSK gel G3000 SWXL column. The double bond of 2-alkenals was also reduced by the enzyme, but to a lesser extent. The enzyme activity was inhibited by 5,5'-dithiobis(2-nitrobenzoic acid), p-chloromercuribenzoic acid, N-ethylmaleimide, iodoacetamide, dicumarol, quercitrin, and disulfirum. However, the enzyme was insensitive to oxygen.  相似文献   

18.
Poh R  Xia X  Bruce IJ  Smith AR 《Microbios》2001,105(410):43-63
2,4-Dichlorophenoxyacetate (2,4-D)/alpha-ketoglutarate (alpha-KG) dioxygenase has been purified to apparent homogeneity from Burkholderia cepacia strain 2a, which utilizes 2,4-D as sole carbon source. The enzyme required ferrous ions, and was a homodimer composed of subunits having an Mr of approximately 32,000. The reaction catalysed consumed one mol each of 2,4-D, alpha-KG and dioxygen, with the production of one mol each of succinate, 2,4-dichlorophenol and glyoxylate. Maximum activity was exhibited at pH 7.8 and 25 degrees C, and reactivity was enhanced by the presence of ascorbate and cysteine. Mn2+, Zn2+, Cu2+, Fe3+ and Co2+ were inhibitory, and chemical modification of the dioxygenase revealed that thiol groups were essential for activity. The enzyme was active towards other substituted phenoxyacetates, but reacted most rapidly with 2,4-D. The apparent Michaelis constants for 2,4-D and alpha-KG were 109 and 8.9 microM, respectively. The properties of this enzyme are compared with those of the 2,4-D/alpha-KG dioxygenase from Ralstonia eutropha JMP134, which exhibits a differing N-terminal amino-acid sequence, and a different temperature 'optimum', pH optimum, substrate specificity and sensitivity to thiol-binding reagents.  相似文献   

19.
Purification and properties of urease from bovine rumen.   总被引:5,自引:0,他引:5       下载免费PDF全文
Urease (urea amidohydrolase, EC 3.5.1.5) was extracted from the mixed rumen bacterial fraction of bovine rumen contents and purified 60-fold by (NH4)2SO4 precipitation, calcium phosphate-gel adsorption and chromatography on hydroxyapatite. The purified enzyme had maximum activity at pH 8.0. The molecular weight was estimated to be 120000-130000. The Km for urea was 8.3 X 10(-4) M+/-1.7 X 10(-4) M. The maximum velocity was 3.2+/-0.25 mmol of urea hydrolysed/h per mg of protein. The enzyme was stabilized by 50 mM-dithiothreitol. The enzyme was not inhibited by high concentrations of EDTA or phosphate but was inhibited by Mn2+, Mg2+, Ba2+, Hg2+, Cu2+, Zn2+, Cd2+, Ni2+ and Co2+. p-Chloromercuribenzenesulfphonate and N-ethylmaleimide inhibited the enzyme almost completely at 0.1 mM. Hydroxyurea and acetohydroxamate reversibly inhibited the enzyme. Polyacrylamide-gel electrophoresis showed that the mixed rumen bacteria produce ureases which have identical molecular weights and electrophoretic mobility. No multiple forms of urease were detected.  相似文献   

20.
A new extracellular protease having a prospective application in the food industry was isolated from Bacillus sUbtilis NCIM 2711 by (NH4)2SO4 precipitation from the cell broth. It was purified using DEAE-Cellulose and CM-Sephadex C-50 ion-exchange chromatography. With casein as a substrate, the proteolytic activity of the purified protease was found to be optimal at pH 7.0 and temperature 55 degrees C with Km 1.06 mg/ml. The enzyme was stable over a pH range 6.5-8.0 at 30 degrees C for 1 hr in presence of CaCl2 x 2H2O. At 55 degrees C, the enzyme retained 60% activity up to 15 min in presence of CaCl2 x 2H2O. EDTA and o-phenanthroline (OP) completely inhibited the enzyme activity while DFP, PMSF and iodoacetamide were ineffective. The enzyme was completely inhibited by Hg2+ and partially by Cd2+, Cu2+, Ni2+, Pb2+ and Fe2+. The OP inhibited enzyme could be reactivated by Zn2+ and Co2+ up to 75% and 69% respectively. It is a neutral metalloprotease showing a single band of 43 kDa on SDS-PAGE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号