首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Micelles of a model amphiphilic block copolymer, poly(hydroxyethyl acrylate)-block-poly(n-butyl acrylate) (PHEA-b-PBA), synthesized via the RAFT polymerization were cross-linked by copolymerization of a degradable cross-linker from the living RAFT-end groups of PBA chains, yielding a cross-linked core without affecting significantly the original micelle size. The cross-linker incorporation into the micelles was evidenced via physicochemical analysis of the copolymer unimers formed upon acidic cleavage of the cross-linked micelles. High doxorubicin loading capacities (60 wt %) were obtained. Hydrolysis of less than half of the cross-links in the core was found to be sufficient to release doxorubicin faster at acidic pH compared to neutral pH. The system represents the first example of core-cross-linked micelles that can be destabilized (potentially both above and below CMC) by the pH-dependent cleavage of the cross-links and the subsequent polarity change in the core to enable the release of hydrophobic drugs entrapped inside the micelle.  相似文献   

2.
Recently, the polyion complex (PIC) micelle has been suggested as a promising carrier system for peptide and proteins. However, its utilities are limited by its sensitivity to the environment such as dilution and ionic strength of the solution. In this study, to overcome these obstructions, PIC micelles prepared from an anionic block copolymer, poly(ethylene glycol)-poly(alpha,beta-aspartic acid), and a cationic protein, trypsin, were cross-linked with glutaraldehyde through the Schiff base formation. On the basis of a light scattering technique, the results revealed an efficient resistance of the cross-linked PIC micelle to a high salt concentration, which was a key parameter controlling the structure of the PIC micelles. Moreover, the stability of trypsin after cross-linking was remarkably improved. Evidently, as a bionanoreactor and/or bionanoreservoir, the PIC micelles entrapping protein molecules in the cross-linked core reveal an improved stability, allowing their wide application in the fields of biotechnology and pharmaceutical sciences.  相似文献   

3.
Amphiphilic core-shell nanoparticles have drawn considerable interest in biomedical applications. The precise control over their physicochemical parameters and the ability to attach various ligands within specific domains suggest shell cross-linked (SCK) nanoparticles may be used as multi-/polyvalent scaffolds for drug delivery. In this study, the biodistribution of four SCKs, differing in size, core composition, and surface PEGylation, was evaluated. To facilitate in-vivo tracking of the SCKs, the positron-emitting radionuclide copper-64 was used. By using biodistribution and microPET imaging approaches, we found that small diameter (18 nm) SCKs possessing a polystyrene core showed the most favorable biological behavior in terms of prolonged blood retention and low liver accumulation. The data demonstrated that both core composition, which influenced the SCK flexibility and shape adaptability, and hydrodynamic diameter of the nanoparticle play important roles in the respective biodistributions. Surface modification with poly(ethylene glycol) (PEG) had no noticeable effects on SCK behavior.  相似文献   

4.
Supramolecular structures formed by self-assembly of diblock copolymers in solution are stable over restricted environmental conditions: concentration, temperature, pH, or ion strength among others. To enlarge their domain of application, it appears necessary to develop stabilization strategies. We report here different strategies to stabilize the shell of micelles formed by self-assembly of amphiphilic polydiene-b-polypeptide diblock copolymers. For this purpose, covalent bonds can be formed between either amine or carboxylic acid groups distributed along the soluble peptide block and a cross-linking agent that contains respectively aldehyde or amine functions. Shell stabilization affords systems with unique properties that combine three main advantages: shape persistence, control of the porosity, and stimuli-responsive behavior. The covalent capture of such macromolecular objects has been studied by light scattering, AFM, and conductimetry measurements.  相似文献   

5.
Saccharide-functionalized shell cross-linked (SCK) polymer micelles designed as polyvalent nanoscaffolds for selective interactions with receptors on Gram negative bacteria were constructed from mixed micelles composed of poly(acrylic acid-b-methyl acrylate) and mannosylated poly(acrylic acid-b-methyl acrylate). The mannose unit was conjugated to the hydrophilic chain terminus of the amphiphilic diblock copolymer precursor, from which the SCK nanoparticles were derived, by the growth of the diblock copolymer from a mannoside functionalized atom transfer radical polymerization (ATRP) initiator. Mixed micelle formation between the amphiphilic diblock copolymer and mannosylated amphiphilic diblock copolymer was followed by condensation-based cross-linking between the acrylic acid residues present in the periphery of the polymer micelles to afford SCK nanoparticles. SCKs presenting variable numbers of mannose functionalities were prepared from mixed micelles of controlled stoichiometric ratios of mannosylated and nonmannosylated diblock copolymers. The polymer micelles and SCKs were characterized by dynamic light scattering (DLS), electrophoretic light scattering, atomic force microscopy (AFM), transmission electron microscopy (TEM), and analytical ultracentrifugation (AU). Surface availability and bioactivity of the mannose units were evaluated by interactions of the nanostructures with the model lectin Concanavalin A via DLS studies, with red blood cells (rabbit) via agglutination inhibition assays and with bacterial cells (E. coli) via TEM imaging.  相似文献   

6.
Encapsulation of enzymes by polymers is a promising method to influence their activity and stability. Here, we explore the use of complex coacervate core micelles for encapsulation of enzymes. The core of the micelles consists of negatively charged blocks of the diblock copolymer PAA42PAAm417 and the positively charged homopolymer PDMAEMA150. For encapsulation, part of the positively charged homopolymer was replaced by the positively charged globular protein lysozyme. We have studied the formation, structure, and stability of the resulting micelles for three different mixing ratios of homopolymer and lysozyme: a system predominantly consisting of homopolymer, a system predominantly consisting of lysozyme, and a system where the molar ratio between the two positively charged molecules was almost one. We also studied complexes made of only lysozyme and PAA42PAAm417. Complex formation and the salt-induced disintegration of the complexes were studied using dynamic light-scattering titrations. Small-angle neutron scattering was used to investigate the structures of the cores. We found that micelles predominantly consisting of homopolymer are spherical but that complex coacervate core micelles predominantly consisting of lysozyme are nonspherical. The stability of the micelles containing a larger fraction of lysozyme is lower.  相似文献   

7.
Graft-copolymers, containing poly(ethylene glycol) (PEG) and polyethyleneimine (PEI) chains have been proposed as carriers for delivery of phosphorothioate oligonucleotides (SODNs). Complexes of such copolymers with SODN self-assemble into particles having a core of neutralized PEI and SODN and a corona of PEG. Transferrin molecules are attached to the PEG corona using avidin/biotin construct. For this purpose, biotin moieties are covalently linked to the free ends of the PEG chains in the PEG-g-PEI copolymer. SODNs are reacted with mixtures of biotinylated and biotin-free PEG-g-PEI copolymers of various compositions to adjust the number of the biotin moieties in the complex. Resulting complexes have small size (ca. 40 nm) and do not aggregate in aqueous solutions for at least several days. To attach transferrin, they are supplemented first with avidin and then with biotin-transferrin conjugate. This increases the effective diameter of the particles to ca. 75-103 nm, depending on the composition of the complex. Cellular accumulation and fluorescence microscopy studies characterize the effects of these modifications on interaction of fluorescently labeled SODNs with KBv cell monolayers. The data suggest significant enhancement of SODN association with cells resulting from modification of the complex with transferrin. SODN complimentary to the site 546-565 of human mdr 1-mRNA was used to inhibit expression of the drug efflux transporter, P-glycoprotein (P-gp), in multiple drug resistant (MDR) cancer cells (KBv, MCF-7 ADR). Accumulation of a P-gp specific probe, rhodamine 123, in the cell monolayers is used to characterize the effects on P-gp efflux system following the treatment of the cells with antisense SODN or its complexes. This study suggests that antisense SODN incorporated in the complexes retain the ability to inhibit P-gp efflux system, while complexes of the randomized control SODN are inactive. Therefore, the antisense SODN is released from the complex and interacts with its intracellular target upon interaction of the complexes with the cells. Furthermore, modification of the complexes with transferrin leads to a significant increase of the effects of the antisense SODN on the P-gp efflux system in the cells. Overall, this study suggests that polyion complex micelles with protein-modified corona are promising tools for the delivery of antisense SODN.  相似文献   

8.
Electrically active magnetic nanocomposites (EAMNCs), Au nanoparticles/self-doped polyaniline@Fe3O4 (AuNPs/SPAN@Fe3O4) with well-defined core/shell structure, were first synthesized by a simple method. The morphology and composition of the as-synthesized AuNPs/SPAN@Fe3O4 nanocomposite have been characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared (FT–IR), ultraviolet–visible (UV–Vis), X-ray powder diffraction (XRD), and thermogravimetric analysis (TGA). Horseradish peroxidase (HRP)–AuNPs/SPAN@Fe3O4 biocomposites were immobilized onto the surface of indium tin oxide (ITO) electrode to construct an amperometric hydrogen peroxide (H2O2) biosensor. The effects of HRP dosage, solution pH, and the working potential on the current response toward H2O2 reduction were optimized to obtain the maximal sensitivity. Under the optimal conditions, the proposed biosensor exhibited a linear calibration response in the range of 0.05 to 0.35 mM and 0.35 to 1.85 mM, with a detection limit of 0.01 mM (signal-to-noise ratio = 3). The modified electrode could virtually eliminate the interference of ascorbic acid (AA) and uric acid (UA) during the detection of H2O2. Furthermore, the biosensor was applied to detect H2O2 concentration in real samples, which showed acceptable accuracy with the traditional potassium permanganate titration.  相似文献   

9.
Bae KH  Lee Y  Park TG 《Biomacromolecules》2007,8(2):650-656
PEO-PPO-PEO/PEG shell cross-linked nanocapsules encapsulating an oil phase in their nanoreservoir structure was developed as a target-specific carrier for a water-insoluble drug, paclitaxel. Oil-encapsulating PEO-PPO-PEO/PEG composite nanocapsules were synthesized by dissolving an oil (Lipiodol) and an amine-reactive PEO-PPO-PEO derivative in dichloromethane and subsequently dispersing in an aqueous solution containing amine-functionalized six-arm-branched poly(ethylene glycol) by ultrasonication. The resultant shell cross-linked nanocapsules had a unique core/shell architecture with an average size of 110.7 +/- 9.9 nm at 37 degrees C, as determined by dynamic light scattering and transmission electron microscopy. Paclitaxel could be effectively solubilized in the inner Lipiodol phase surrounded by a cross-linked PEO-PPO-PEO/PEG shell layer. The paclitaxel-loaded nanocapsules were further conjugated with folic acid to achieve folate receptor targeted delivery. Confocal microscopy and flow cytometric analysis revealed that folate-mediated targeting significantly enhanced the cellular uptake and apoptotic effect against folate receptor overexpressing cancer cells. The present study suggested that these novel nanomaterials encapsulating an oil reservoir could be potentially applied for cancer cell targeted delivery of various water-insoluble therapeutic and diagnostic agents.  相似文献   

10.
In the experiments with seeds of Ericaceae, gemmuls of Spongia, statoblasts of Bryozoa, resting eggs and ephippia of Crustacea the hypothesis on selective permeability of propagule shells was tested. It was shown that the propagules are activated and develop until the moment of destruction of shell in the solutions of phenols, formaldehyde, CuSO4, K2Cr2O7, HgCl2, Ag2SO4, AgNO3, CoCl2 and NiSO4. It means that propagule shell is impermeable for these poisons but permeable for water and oxygen. The effectiveness of barrier can be various in different species but in some cases it is very high. The development of resistance to poisons of anthropogenic origin that were not familiar to organism earlier can be considered as an example of the rule (Rasnitzyn, 1971) according which relation between environmental variability and power of regulator is shifted to the priority of regulator. Selectively permeable shell for many organisms is a common adaptation that allows colonization of land and continental waters.  相似文献   

11.
The in vivo behavior of shell cross-linked knedel-like (SCK) nanoparticles is shown to be tunable via a straightforward and versatile process that advances SCKs as attractive nanoscale carriers in the field of nanomedicine. Tuning of the pharmacokinetics was accomplished by grafting varied numbers of methoxy-terminated poly(ethylene glycol) (mPEG) chains to the amphiphilic block copolymer precursors, together with chelators for the radioactive tracer and therapeutic agent (64)Cu, followed by self-assembly into block copolymer micelles and chemical cross-linking throughout the shell regions. (64)Cu-radiolabeling was then performed to evaluate the SCKs in vivo by means of biodistribution experiments and positron emission tomography (PET). It was found that the blood retention of PEGylated SCKs could be tuned, depending on the mPEG grafting density and the nanoparticle surface properties. A semiquantitative model of the density of mPEG surface coverage as a function of in vivo behavior was applied to enhance the understanding of this system.  相似文献   

12.
A suitable approach which combines nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations have been used to study the structure and the dynamics of the glycosylphosphatidylinositol (GPI) anchor Manalphal-2Manalpha1-6Manalphal -4GlcNalpha1-6myo-inositol-1-OPO(3)-sn-1,2-dimyristoylglycerol (1) incorporated into dodecylphosphatidylcholine (DPC) micelles. The results have been compared to those previously obtained for the products obtainable from (1) after phospholipase cleavage, in aqueous solution. Relaxation and diffusion NMR experiments were used to establish the formation of stable aggregates and the insertion of (1) into the micelles. MD calculations were performed including explicit water, sodium and chloride ions and using the Particle Mesh Ewald approach for the evaluation of the electrostatic energy term. The MD predicted three dimensional structure and dynamics were substantiated by nuclear overhauser effect (NOE) measurements and relaxation data. The pseudopentasaccharide structure, which was not affected by incorporation of (1) into the micelle, showed a complex dynamic behaviour with a faster relative motion at the terminal mannopyranose unit and decreased mobility close to the micelle. This motion may be better described as an oscillation relative to the membrane rather than a folding event.  相似文献   

13.
Oh KS  Lee KE  Han SS  Cho SH  Kim D  Yuk SH 《Biomacromolecules》2005,6(2):1062-1067
A novel preparation method for core/shell nanoparticles with a drug-loaded lipid core was designed and characterized. The lipid core is composed of lecithin and a drug, and the polymeric shell is composed of Pluronics (poly(ethylene oxide)-poly (propylene oxide)-poly(ethylene oxide) triblock copolymer, F-127). For the formation of stabilized core/shell nanoparticles, freeze-drying was performed in the presence of trehalose used as a cryoprotectant. Cryogenic transmittance electron microscopy (cryo-TEM), differential scanning calorimetry (DSC), and a particle size analyzer were used to observe the formation of the stabilized core/shell nanoparticles. For the application of the core/shell nanoparticles as a drug carrier, paclitaxel, a potent anticancer drug, was loaded into the core/shell nanoparticles, and the drug loading amount and the drug release pattern were observed.  相似文献   

14.
An intein-mediated approach was developed for expression and affinity purification of a protein that is lethal to Escherichia coli. The protein, I-TevI, is an intron-encoded endonuclease. The approach involved the insertional inactivation of I-TevI with a controllable mini-intein placed in front of a cysteine required for splicing (an I-TevI::intein fusion). The purification was facilitated by a chitin-binding domain inserted into the mini-intein. Affinity purification of the I-TevI::intein fusion precursor on a chitin column was followed by pH-controllable splicing to restore the structure and function of I-TevI. To study the impact of the insertion context on I-TevI inactivation, the chimeric intein was inserted independently in front of seven cysteines of I-TevI. One of the seven intein integrants yielded I-TevI of high activity. This technique is, in principle, generalizable to the expression and purification of other cytotoxic proteins and is amenable to scale-up.  相似文献   

15.
Polymeric structures, namely, micelles, membranes and globular proteins share the property of two distinct regions: a hydrophobic core and a hydrophilic exterior. The dynamics of these regions of the polymeric structures were probed using selective fluorophores 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-anilinonaphthalene-8-sulfonate (ANS), respectively. Perturbation of the polymers by external osmotic pressure, ionic strength and temperature was monitored in the two regions using steady state measurements of fluorescence intensity and anisotropy. While the fluorescence lifetime of DPH and ANS did not change significantly, parallel change in steady state anisotropy values and the rotational correlation time indicated mobility in the probe/probe-domain. Osmotic perturbation of the polymers in electrolyte media led to decreased DPH mobility. Enhanced ellipticity at 222 nm in bovine serum albumin was observed in 1.5 M NaCl and sucrose media. ANS exhibited a decreased anisotropy with progressive dehydration in proteins in NaCl media, in dimyristoylphosphatidylcholine (DMPC) vesicles in sucrose media, and in neutral laurylmaltoside micelles in both NaCl and sucrose media. Thus, ANS showed responses opposite to that of DPH in these systems. A comparison with several domain selective probes indicated that DPH reported findings common to depth probes while ANS reported data common to interfacial probes used for voltage monitoring.  相似文献   

16.
We previously reported on a novel system termed Lipobead that consists of hydrogel beads encased within an anchored lipid bilayer. The hydrogel particles are formed by inverse suspension polymerization of dimethylacrylamide with N,N'-ethylenebis(acrylamide). During the polymerization stage, the water in oil emulsion is interfacially stabilized by small molecule surfactants as well as a small percentage of lipid functionalized with a vinyl group. The functionalized lipid becomes tethered to the bead surface and promotes the assembly of a lipid bilayer on the surface of the hydrogel beads. The presence of the functionalized lipid during polymerization dramatically alters the yield, average size, and size distribution of beads produced. This paper examines the effect of various chemical and physical processing parameters on the average size and size distribution of beads produced when lipid is a component of the surfactant mixture. Relationships between the processing parameters, average bead size, and size distribution were established. Macroscopic properties of the lipid bilayers of Lipobeads were also evaluated including phase transition temperature as well as permeability to the small polar molecule, adenosine triphosphate. It was established that the presence of functionalized lipid improves the organization of the bilayer on the Lipobead surface.  相似文献   

17.
Zhang Y  Tao L  Li S  Wei Y 《Biomacromolecules》2011,12(8):2894-2901
An inexpensive, facile, and environmentally benign method has been developed for the preparation of multiresponsive, dynamic, and self-healing chitosan-based hydrogels. A dibenzaldehyde-terminated telechelic poly(ethylene glycol) (PEG) was synthesized and was allowed to form Schiff base linkages between the aldehyde groups and the amino groups in chitosan. Upon mixing the telechelic PEG with chitosan at 20 °C, hydrogels with solid content of 4-8% by mass were generated rapidly in <60 s. Because of the dynamic equilibrium between the Schiff base linkage and the aldehyde and amine reactants, the hydrogels were found to be self-healable and sensitive to many biochemical-stimuli, such as pH, amino acids, and vitamin B6 derivatives. In addition, chitosan could be digested by enzymes such as papain, leading to the decomposition of the hydrogels. Encapsulation and controlled release of small molecules such as rhodamine B and proteins such as lysozyme have been successfully carried out, demonstrating the potential biomedical applications of these chitosan-based dynamic hydrogels.  相似文献   

18.
Gudkov  A. V.  Massino  J. S.  Chernova  O. B.  Kopnin  B. P. 《Chromosoma》1985,92(1):16-24
By multistep selection a set of clones and sublines possessing different levels of resistance to colchicine or adriablastin was obtained from the SV40-transformed Djungarian hamster cell lines, DM-15 and DMcap. Resistance to both colchicine and adriablastin is associated with an alteration of plasma membrane permeability leading to a decreased uptake of various drugs (3H-colchicine, 3H-cytochalasin B, 3H-actinomycin D, 3H-puromycin, 3H-vinblastine, 14C-chloramphenicol). The DNA of cells highly resistant to cholchicine can transmit resistance only to low dosages of the drug. Comparison of DNAs from wild-type and resistant cells digested by restriction endonucleases revealed new classes of repeated DNA sequences in resistant cell lines. The degree of DNA repetition was correlated with the level of drug resistance. The repeated DNA sequences evidently represent parts of the genome that are amplified in resistant cells. The size of the amplified sequences is 200–250 kilobase pairs (kb). Cell lines highly resistant to colchicine contain amplified DNA, which like mitochondrial DNA replicate asynchronously with the main portion of the cellular DNA and related but not identical DNA sequences are amplified in independent cell lines selected for resistance to colchicine, adriablastin, and actinomycin D. These cell lines display similar patterns of alterations of plasma membrane permeability. The amplified DNA sequences may contain a gene or genes the overexpression of which leads to change in plasma membrane permeability and a development of resistance to various drugs.  相似文献   

19.
A cyclic RGD peptide-conjugated block copolymer, cyclo[RGDfK(CX-)]-poly(ethylene glycol)-polylysine (c(RGDfK)-PEG-PLys), was synthesized from acetal-PEG-PLys under mild acidic conditions and spontaneously associated with plasmid DNA (pDNA) to form a polyplex micelle in aqueous solution. The cyclic RGD peptide recognizes alphavbeta3 and alphavbeta5 integrin receptors, which play a pivotal role in angiogenesis, vascular intima thickening, and the proliferation of malignant tumors. The c(RGDfK)-PEG-PLys/pDNA polyplex micelle showed a remarkably increased transfection efficiency (TE) compared to the PEG-PLys/pDNA polyplex micelle for the cultured HeLa cells possessing alphavbeta3 and alphavbeta5 integrins. On the other hand, in the transfection against the 293T cells possessing no alphavbeta3 and a few alphavbeta5 integrins, the TE of the c(RGDfK)-PEG-PLys/pDNA micelle showed no increase compared to the TE of the PEG-PLys/pDNA micelle. Flow cytometric analysis revealed a higher uptake of the c(RGDfK)-PEG-PLys/pDNA micelle than the PEG-PLys/pDNA micelle against HeLa cells, consistent with the transfection results. Furthermore, a confocal laser scanning microscopic observation revealed that the pDNA in the c(RGDfK)-PEG-PLys micelle preferentially accumulated in the perinuclear region of the HeLa cells within 3 h of incubation. No such fast and directed accumulation of pDNA to the perinuclear region was observed for the micelles without c(RGDfK) ligands. These results indicate that the increase in the TE induced by the introduction of the c(RGDfK) peptide ligand was due to an increase in cellular uptake as well as facilitated intracellular trafficking of micelles toward the perinuclear region via alphavbeta3 and alphavbeta5 integrin receptor-mediated endocytosis, suggesting that the cyclic RGD peptide-conjugated polyplex micelle has promising feasibility as a site-specifically targetable gene delivery system.  相似文献   

20.
The interaction between the carbon nanotubes (CNTs) and platinum (Pt) nanowires (NWs) was investigated using forced field-based molecular dynamics (MD) simulations. Our results display that the Pt NW can induce the self-assembly of the CNTs to form a shell-core structure, this is because of the van der Waals interaction and the offset face-to-face ππ stacking interaction. The diameter of the CNT plays a major role in the formation of shell–core structure. Furthermore, the position of the CNT on the Pt NW also affects the formation of shell–core configuration, whereas the cross section of the NWs has a negligible effect on the fabrication process. Moreover, the interaction between multi-wall carbon nanotube and Pt nanowires was also discussed in detail, it is worth noting that the formation conformation of the CNT is also much more stable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号