共查询到20条相似文献,搜索用时 0 毫秒
1.
Cation/proton antiport systems in escherichia coli: properties of the sodium/proton antiporter. 总被引:9,自引:0,他引:9
The sodium/proton antiport system of Escherichia coli has been characterized by the effect of Na+ on the pH gradient established by respiration in everted membrane vesicles. The system has equal affinity for Na+ and Li+. Between pH 7 and 9 dissipation of Δψ, membrane potential, has no effect on the affinity for Na+ but decreases the V of the antiport reaction. Uptake of 22Na+ by everted membrane vesicles was observed using flow dialysis. 相似文献
2.
The sodium/proton antiport system in a newly isolated alkalophilic Bacillus sp. 总被引:1,自引:3,他引:1 下载免费PDF全文
The pH homeostasis and the sodium/proton antiport system have been studied in the newly isolated alkalophilic Bacillus sp. strain N-6, which could grow on media in a pH range from 7 to 10, and in its nonalkalophilic mutant. After a quick shift in external pH from 8 to 10 by the addition of Na2CO3, the delta pH (inside acid) in the cells of strain N-6 was immediately established, and the pH homeostatic state was maintained for more than 20 min in an alkaline environment. However, under the same conditions, the pH homeostasis was not observed in the cells of nonalkalophilic mutant, and the cytoplasmic pH immediately rose to pH 10. On the other hand, the results of the rapid acidification from pH 9 to 7 showed that the internal pH was maintained as more basic than the external pH in a neutral medium in both strains. The Na+/H+ antiport system has been characterized by either the effect of Na+ on delta pH formation or 22Na+ efflux in Na+-loaded right-side-out membrane vesicles of strain N-6. Na+- or Li+-loaded vesicles exhibited a reversed delta pH (inside acid) after the addition of electron donors (ascorbate plus tetramethyl-p-phenylenediamine) at both pH 7 and 9, whereas choline-loaded vesicles generated delta pHs of the conventional orientation (inside alkaline). 22Na+ was actively extruded from 22Na+-loaded vesicles whose potential was negative at pH 7 and 9. The inclusion of carbonyl cyanide m-chlorophenylhydrazone inhibited 22Na+ efflux in the presence of electron donors. These results indicate that the Na+/H+ antiport system in this strain operates electrogenically over a range of external pHs from 7 to 10 and plays a role in pH homeostasis at the alkaline pH range. The pH homeostasis at neutral ph was studied in more detail. K+ -depleted cells showed no delta pH (acid out) in the neutral conditions in the absence of K+, whereas these cells generated a delta pH if K+ was present in the medium. This increase of internal pH was accompanied by K+ uptake from the medium. These results suggest that electrogenic K+ entry allows extrusion of H+ from cells by the primary proton pump at neutral pH. 相似文献
3.
Salinity is one of the major abiotic constraints to agriculture. The physiological and molecular mechanisms of salt tolerance have been studied in plants for many years. The regulation of osmosis and ion homeostasis is crucial. A lot of important components involved in plant responses to salt stress have been identified. Among them, ion transporters and channels take an essential role in ion homeostasis, mainly for Na+, Cl-, and K+. Until now, many cation antiporters important for salt tolerance in plants have been characterized. Among them, the monovalent cation/proton antiporters (CPA) family is one of the most important families, including sodium proton exchangers (NHXs), K+-efflux antiporters (KEAs), and cation/H+ exchangers (CHXs). Here, the current knowledge of the plant CPA family in responses to salt stress is reviewed. The regulation mechanisms were also included and discussed. 相似文献
4.
5.
Swartz TH Ito M Ohira T Natsui S Hicks DB Krulwich TA 《Journal of bacteriology》2007,189(8):3081-3090
Monovalent cation proton antiporter-3 (Mrp) family antiporters are widely distributed and physiologically important in prokaryotes. Unlike other antiporters, they require six or seven hydrophobic gene products for full activity. Standard fluorescence-based assays of Mrp antiport in membrane vesicles from Escherichia coli transformants have not yielded strong enough signals for characterization of antiport kinetics. Here, an optimized assay protocol for vesicles of antiporter-deficient E. coli EP432 transformants produced higher levels of secondary Na(+)(Li(+))/H(+) antiport than previously reported. Assays were conducted on Mrps from alkaliphilic Bacillus pseudofirmus OF4 and Bacillus subtilis and the homologous antiporter of Staphylococcus aureus (Mnh), all of which exhibited Na(+)(Li(+))/H(+) antiport. A second paralogue of S. aureus (Mnh2) did not. K(+), Ca(2+), and Mg(2+) did not support significant antiport by any of the test antiporters. All three Na(+)(Li(+))/H(+) Mrp antiporters had alkaline pH optima and apparent K(m) values for Na(+) that are among the lowest reported for bacterial Na(+)/H(+) antiporters. Using a fluorescent probe of the transmembrane electrical potential (DeltaPsi), Mrp Na(+)/H(+) antiport was shown to be DeltaPsi consuming, from which it is inferred to be electrogenic. These assays also showed that membranes from E. coli EP432 expressing Mrp antiporters generated higher DeltaPsi levels than control membranes, as did membranes from E. coli EP432 expressing plasmid-borne NhaA, the well-characterized electrogenic E. coli antiporter. Assays of respiratory chain components in membranes from Mrp and control E. coli transformants led to a hypothesis explaining how activity of secondary, DeltaPsi-consuming antiporters can elicit increased capacity for DeltaPsi generation in a bacterial host. 相似文献
6.
Effect of bile on the cell surface permeability barrier and efflux system of Vibrio cholerae 下载免费PDF全文
Gram-negative bacteria are inherently impermeable to hydrophobic compounds, due to the synergistic activity of the permeability barrier imposed by the outer membrane and energy dependent efflux systems. The gram-negative, enteric pathogen Vibrio cholerae appears to be deficient in both these activities; the outer membrane is not an effective barrier to hydrophobic permeants, presumably due to the presence of exposed phospholipids on the outer leaflet of the outer membrane, and efflux systems are at best only partially active. When V. cholerae was grown in the presence of bile, entry of hydrophobic compounds into the cells was significantly reduced. No difference was detected in the extent of exposed phospholipids on the outer leaflet of the outer membrane between cells grown in the presence or absence of bile. However, in the presence of energy uncouplers, uptake of hydrophobic probes was comparable between cells grown in the presence or absence of bile, indicating that energy-dependent efflux processes may be involved in restricting the entry of hydrophobic permeants into bile grown cells. Indeed, an efflux system(s) is essential for survival of V. cholerae in the presence of bile. Expression of acrAB, encoding an RND family efflux pump, was significantly increased in V. cholerae cells grown in vitro in the presence of bile and also in cells grown in rabbit intestine. 相似文献
7.
The facultative human pathogen Vibrio cholerae can be isolated from estuarine and aquatic environments. V. cholerae is well recognized and extensively studied as the causative agent of the human intestinal disease cholera. In former centuries cholera was a permanent threat even to the highly developed populations of Europe, North America, and the northern part of Asia. Today, cholera still remains a burden mainly for underdeveloped countries, which cannot afford to establish or to maintain necessary hygienic and medical facilities. Especially in these environments, cholera is responsible for significant mortality and economic damage. During the last three decades, intensive research has been undertaken to unravel the virulence properties and to study the epidemiology of this significant human pathogen. More recently, researchers have been elucidating the environmental lifestyle of V. cholerae. This review provides an overview of the current knowledge of both the host- and environment-specific physiological attributes of V. cholerae. 相似文献
8.
Isolation and characterization of a putative multidrug resistance pump from Vibrio cholerae 总被引:1,自引:0,他引:1
Multidrug-resistant strains of Vibrio cholerae (the causative agent of the diarrhoeal disease cholera) have recently been described. In an attempt to identify a homologue of the Escherichia coli TolC in V . cholerae , we isolated a DNA fragment (pVC) that enabled an E . coli tolC mutant to grow in the presence of 0.05% deoxycholate (DOC). However, other TolC defects were not complemented. Nucleotide sequence analysis of this fragment revealed the presence of two open reading frames (ORF1 and ORF2) separated by 9 bp and encoding 42.4 and 55.8 kDa proteins respectively. The translational products of these two ORFs correlated closely with the molecular weights of the predicted proteins. The deduced amino acid sequences of ORF1 and ORF2 showed a high degree of similarity with conserved regions of the E . coli efflux pump proteins, EmrA and EmrB. The presence of pVC2 within the E . coli efflux pump mutants defective in either the emrAB or the acrAB genes provided the mutants with resistance against several antibiotics. A V . cholerae isogenic mutant defective in ORF2 was constructed by gene replacement. Characterization of this mutant has shown it to be more sensitive to CCCP, PMA, PCP, nalidixic acid and DOC than the parent strain. These results suggest that ORF1 and ORF2 constitute an operon encoding two components of a putative multidrug resistance pump in V . cholerae . In addition, the presence of both structural and functional similarities between VceAB and EmrAB suggests that VceAB is a homologue of EmrAB. 相似文献
9.
Vibrio cholerae, the causative agent of cholera, has an absolute requirement for iron. It transports the catechol siderophores vibriobactin, which it synthesizes and secretes, and enterobactin. These siderophores are transported across the inner membrane by one of two periplasmic binding protein-dependent ABC transporters, VctPDGC or ViuPDGC. We show here that one of these inner membrane transport systems, VctPDGC, also promotes iron acquisition in the absence of siderophores. Plasmids carrying the vctPDGC genes stimulated growth in both rich and minimal media of a Shigella flexneri mutant that produces no siderophores. vctPDGC also stimulated the growth of an Escherichia coli enterobactin biosynthetic mutant in low iron medium, and this effect did not require feoB, tonB or aroB. A tyrosine to phenylalanine substitution in the periplasmic binding protein VctP did not alter enterobactin transport, but eliminated growth stimulation in the absence of a siderophore. These data suggest that the VctPDGC system has the capacity to transport both catechol siderophores and a siderophore-free iron ligand. We also show that VctPDGC is the previously unidentified siderophore-independent iron transporter in V. cholerae, and this appears to complete the list of iron transport systems in V. cholerae. 相似文献
10.
Increased salt tolerance with overexpression of cation/proton antiporter 1 genes: a meta‐analysis 下载免费PDF全文
Yuan‐Chun Ma Robert M. Augé Chao Dong Zong‐Ming Cheng 《Plant biotechnology journal》2017,15(2):162-173
Cation/proton antiporter 1 (CPA1) genes encode cellular Na+/H+ exchanger proteins, which act to adjust ionic balance. Overexpression of CPA1s can improve plant performance under salt stress. However, the diversified roles of the CPA1 family and the various parameters used in evaluating transgenic plants over‐expressing CPA1s make it challenging to assess the complex functions of CPA1s and their physiological mechanisms in salt tolerance. Using meta‐analysis, we determined how overexpression of CPA1s has influenced several plant characteristics involved in response and resilience to NaCl stress. We also evaluated experimental variables that favour or reduce CPA1 effects in transgenic plants. Viewed across studies, overexpression of CPA1s has increased the magnitude of 10 of the 19 plant characteristics examined, by 25% or more. Among the ten moderating variables, several had substantial impacts on the extent of CPA1 influence: type of culture media, donor and recipient type and genus, and gene family. Genes from monocotyledonous plants stimulated root K+, root K+/Na+, total chlorophyll, total dry weight and root length much more than genes from dicotyledonous species. Genes transformed to or from Arabidopsis have led to smaller CPA1‐induced increases in plant characteristics than genes transferred to or from other genera. Heterogeneous expression of CPA1s led to greater increases in leaf chlorophyll and root length than homologous expression. These findings should help guide future investigations into the function of CPA1s in plant salt tolerance and the use of genetic engineering for breeding of resistance. 相似文献
11.
The type VI secretion system (T6SS) is a proteinaceous weapon used by many Gram-negative bacteria to deliver toxins into adjacent target cells. Vibrio cholerae, the bacterium responsible for the fatal water-borne cholera disease, uses the T6SS to evade phagocytic eukaryotes, cause intestinal inflammation, and compete against other bacteria with toxins that disrupt lipid membranes, cell walls and actin cytoskeletons. The control of T6SS genes varies among V. cholerae strains and typically includes inputs from external signals and cues, such as quorum sensing and chitin availability. In the following review, we highlight the repertoire of toxic T6SS effectors and the diverse genetic regulation networks among different isolates of V. cholerae. Finally, we discuss the roles played by the T6SS of V. cholerae in both natural environments and hosts. 相似文献
12.
Emergence of tetracycline resistance due to a multiple drug resistance plasmid in Vibrio cholerae O139 总被引:2,自引:0,他引:2
Tatsuo Yamamoto G.Balakrish Nair Yoshifumi Takeda 《FEMS immunology and medical microbiology》1995,11(2):131-136
Abstract Of the 173 clinical strains of Vibrio cholerae O139 isolated from India, Bangladesh, and Thailand tested, six strains from India were resistant to tetracycline, ampicillin, chloramphenicol, kanamycin, and gentamicin. These six strains harbored a self-transmissible plasmid that mediated resistance to tetracycline, ampicillin, chloramphenicol, kanamycin, gentamicin, sulfamethoxazole, trimethoprim, and O/129. The multiple drug resistance plasmids were 200 kb in size and belonged to the incompatibility group C. Although a majority of the O139 strains (94.8%) were highly resistant to streptomycin, sulfamethoxazole, trimethoprim, and O/129, the tetracycline-susceptible strains so far tested were plasmid-negative. The data suggest the existence of two distinct multiple antimicrobial agent resistance (MAR) patterns in V. cholerae O139. 相似文献
13.
Growth experiments were conducted on Lactobacillus amylovorus DN-112 053 in batch culture, with or without pH regulation. Conjugated bile salt hydrolase (CBSH) activity was examined as a function of culture growth. The CBSH activity increased during growth but its course depended on bile salts type and culture conditions. A Lact. amylovorus mutant was isolated from the wild-type strain of Lact. amylovorus DN-112 053 after mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine. An agar plate assay was used to detect mutants without CBSH activity. In resting cell experiments, the strain showed reduced activity. Differences between growth parameters determined for wild-type and mutant strains were not detected. Comparative native gel electrophoresis followed by CBSH activity staining demonstrated the loss of proteins harbouring this activity in the mutant. Four protein bands corresponding to CBSH were observed in the wild-type strain but only one was detected in the mutant. The specific growth rate of the mutant strain was affected more by bile salts than the wild-type strain. Nevertheless, bile was more toxic for the wild-type strain. In viability studies in the presence of nutrients, it was demonstrated that glycodeoxycholic acid exerted a higher toxicity than taurodeoxycholic acid in a pH-dependent manner. No difference was apparent between the two strains. In the absence of nutrients, the wild-type strain died after 2 h whereas no effect was observed for the mutant. The de-energization experiments performed using the ionophores nigericin and valinomycin suggested that the chemical potential of protons (ZDeltapH) was involved in Lactobacillus bile salt resistance. 相似文献
14.
15.
Uptake of 22Na+ and 45Ca2+ into everted membrane vesicles from Escherichia coli was measured with imposed transmembrane pH gradients, acid interior, as driving force. Vesicles loaded with 0.5 M KCl were diluted into 0.5 M choline chloride to create a potassium gradient. Addition of nigericin to produce K+/H+ exchange resulted in formation of a pH gradient. This imposed gradient was capable of driving 45Ca2+ accumulation. In another method vesicles loaded with 0.5 M NH4Cl were diluted into 0.5 M choline chloride, creating an ammonium diffusion potential. A gradient of H+ was produced by passive efflux of NH3. With an ammonium gradient as driving force, everted vesicles accumulated both 45Ca2+ and 22Na+. The data suggest that 22Na+ uptake was via the sodium/proton antiporter and 45Ca2+ via the calcium/proton antiporter. Uptake of both cations required alkaline pHout. A minimum pH gradient of 0.9 unit was needed for transport of either ion, suggesting gating of the antiporters. Octyl glucoside extracts of inner membrane were reconstituted with E. coli phospholipids in 0.5 M NH4Cl. NH4+-loaded proteoliposomes accumulated both 22Na+ and 45Ca2+, demonstrating that the sodium/proton and calcium/proton antiporters could be solubilized and reconstituted in a functional form. 相似文献
16.
Atsuko Naka Koichiro Yamamoto M. John Albert Takeshi Honda 《FEMS immunology and medical microbiology》1995,11(2):87-90
Abstract Haemaglutinin/protease (HA/P) is one of the virulence factors of Vibrio cholerae O1 and pathogenic strains of V. cholerae non-O1. In this study, we examined protease activity of a new serogroup of Vibrio cholerae recently designated as O139 synonym Bengal. The protease activity was produced by all eight isolates of V. cholerae O139 from Bangladeshi patients. Purification and partial characterization of the protease from V. cholerae O139 demonstrated the purified protease (O139-P) was indistinguishable from that previously reported for HA/P of V. cholerae non-O1 (NAG-HA/P) and V. cholerae O1 (Vc-HA/P). These results prove that V. cholerae O139 produces a protease belonging to solHA/P, and suggest that the protease is another virulence factor found in newly emerged V. cholerae O139, as in V. cholerae O1. 相似文献
17.
While numerous studies have characterized the distribution and/or ecology of various pathogenic Vibrio spp., here we have simultaneously examined several estuarine sites for Vibrio vulnificus, V. cholerae, and V. parahaemolyticus. For a one year period, waters and sediment were monitored for the presence of these three pathogens at six different sites
on the east coast of North Carolina in the United States. All three pathogens, identified using colony hybridization and PCR
methods, occurred in these estuarine environments, although V. cholerae occurred only infrequently and at very low levels. Seventeen chemical, physical, and biological parameters were investigated,
including salinity, water temperature, turbidity, dissolved oxygen, levels of various inorganic nutrients and dissolved organic
carbon, as well as total vibrios, total coliforms, and E. coli. We found each of the Vibrio spp. in water and sediment to correlate to several of these environmental measurements, with water temperature and total
Vibrio levels correlating highly (P<0.0001) with occurrence of the three pathogens. Thus, these two parameters may represent simple assays for characterizing
the potential public health hazard of estuarine waters. 相似文献
18.
Distinguishing between the extracellular DNases of Vibrio cholerae and development of a transformation system 总被引:8,自引:3,他引:5
Vibrio cholerae is known to secrete DNase(s) into the extracellular environment. These proteins have been thought to be responsible for the difficulties in transforming this organism. In this work we demonstrate that the dns and xds genes differ and that their products are solely responsible for the extracellular DNase activity. By site-directed mutagenesis, strains have been constructed which are mutant in one or both genes. These strains have been assessed for their ability to be transformed with plasmid DNA and for their virulence in the infant mouse cholera model. DNase-deficient mutants can be readily transformed and the product of dns appears to be the more significant barrier. No effect on virulence was observed with the mutants. 相似文献
19.
R. K. Ghosh K. A. I. Siddiqui G. Mukhopadhyay Amit Ghosh 《Molecular & general genetics : MGG》1985,200(3):439-441
Summary Two lines of evidence suggest that a gene analogous to the recA gene of Escherichia coli exists in Vibrio cholerae and that its product serves a proteolytic function in the SOS response. Firstly, Southern blot hybridization using the recA gene of E. coli as a probe revealed a genomic sequence in V. cholerae which hybridized with the probe. Secondly, the SOS-like response in V. cholerae (as measured by beta phage induction) triggered by DNA damaging agents like Furazolidone could be blocked by Antipain, a protease inhibitor known to inhibit RecA protease action in E. coli. Maximal blocking effect of Antipain on beta phage induction occurred at 1 mM. At this concentration neither the viability of the host bacterium nor the lytic growth of a clear plaque mutant of the phage was affected by Antipain. 相似文献
20.
Cholera toxin, hemolysin, dermonecrotic and proteolytic factors have been detected and identified in V. cholerae O139. The production of these substances has been found to depend on the conditions of the cultivation of vibrios, and the types of proteases have been determined. 相似文献