首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nested effects models (NEMs) are a class of probabilistic models introduced to analyze the effects of gene perturbation screens visible in high-dimensional phenotypes like microarrays or cell morphology. NEMs reverse engineer upstream/downstream relations of cellular signaling cascades. NEMs take as input a set of candidate pathway genes and phenotypic profiles of perturbing these genes. NEMs return a pathway structure explaining the observed perturbation effects. Here, we describe the package nem, an open-source software to efficiently infer NEMs from data. Our software implements several search algorithms for model fitting and is applicable to a wide range of different data types and representations. The methods we present summarize the current state-of-the-art in NEMs. AVAILABILITY: Our software is written in the R language and freely avail-able via the Bioconductor project at http://www.bioconductor.org.  相似文献   

2.
Nested effects models (NEMs) are a class of probabilistic models that were designed to reconstruct a hidden signalling structure from a large set of observable effects caused by active interventions into the signalling pathway. We give a more flexible formulation of NEMs in the language of Bayesian networks. Our framework constitutes a natural generalization of the original NEM model, since it explicitly states the assumptions that are tacitly underlying the original version. Our approach gives rise to new learning methods for NEMs, which have been implemented in the /Bioconductor package nem. We validate these methods in a simulation study and apply them to a synthetic lethality dataset in yeast.  相似文献   

3.
Summary Gene co‐expressions have been widely used in the analysis of microarray gene expression data. However, the co‐expression patterns between two genes can be mediated by cellular states, as reflected by expression of other genes, single nucleotide polymorphisms, and activity of protein kinases. In this article, we introduce a bivariate conditional normal model for identifying the variables that can mediate the co‐expression patterns between two genes. Based on this model, we introduce a likelihood ratio (LR) test and a penalized likelihood procedure for identifying the mediators that affect gene co‐expression patterns. We propose an efficient computational algorithm based on iterative reweighted least squares and cyclic coordinate descent and have shown that when the tuning parameter in the penalized likelihood is appropriately selected, such a procedure has the oracle property in selecting the variables. We present simulation results to compare with existing methods and show that the LR‐based approach can perform similarly or better than the existing method of liquid association and the penalized likelihood procedure can be quite effective in selecting the mediators. We apply the proposed method to yeast gene expression data in order to identify the kinases or single nucleotide polymorphisms that mediate the co‐expression patterns between genes.  相似文献   

4.
5.
We consider a new frequentist gene expression index for Affymetrix oligonucleotide DNA arrays, using a similar probe intensity model as suggested by Hein and others (2005), called the Bayesian gene expression index (BGX). According to this model, the perfect match and mismatch values are assumed to be correlated as a result of sharing a common gene expression signal. Rather than a Bayesian approach, we develop a maximum likelihood algorithm for estimating the underlying common signal. In this way, estimation is explicit and much faster than the BGX implementation. The observed Fisher information matrix, rather than a posterior credibility interval, gives an idea of the accuracy of the estimators. We evaluate our method using benchmark spike-in data sets from Affymetrix and GeneLogic by analyzing the relationship between estimated signal and concentration, i.e. true signal, and compare our results with other commonly used methods.  相似文献   

6.
7.
Although two-color fluorescent DNA microarrays are now standard equipment in many molecular biology laboratories, methods for identifying differentially expressed genes in microarray data are still evolving. Here, we report a refined test for differentially expressed genes which does not rely on gene expression ratios but directly compares a series of repeated measurements of the two dye intensities for each gene. This test uses a statistical model to describe multiplicative and additive errors influencing an array experiment, where model parameters are estimated from observed intensities for all genes using the method of maximum likelihood. A generalized likelihood ratio test is performed for each gene to determine whether, under the model, these intensities are significantly different. We use this method to identify significant differences in gene expression among yeast cells growing in galactose-stimulating versus non-stimulating conditions and compare our results with current approaches for identifying differentially-expressed genes. The effect of sample size on parameter optimization is also explored, as is the use of the error model to compare the within- and between-slide intensity variation intrinsic to an array experiment.  相似文献   

8.
Until recently, phylogenetic analyses have been routinely based on homologous sequences of a single gene. Given the vast number of gene sequences now available, phylogenetic studies are now based on the analysis of multiple genes. Thus, it has become necessary to devise statistical methods to combine multiple molecular data sets. Here, we compare several models for combining different genes for the purpose of evaluating the likelihood of tree topologies. Three methods of branch length estimation were studied: assuming all genes have the same branch lengths (concatenate model), assuming that branch lengths are proportional among genes (proportional model), or assuming that each gene has a separate set of branch lengths (separate model). We also compared three models of among-site rate variation: the homogenous model, a model that assumes one gamma parameter for all genes, and a model that assumes one gamma parameter for each gene. On the basis of two nuclear and one mitochondrial amino acid data sets, our results suggest that, depending on the data set chosen, either the separate model or the proportional model represents the most appropriate method for branch length analysis. For all the data sets examined, one gamma parameter for each gene represents the best model for among-site rate variation. Using these models we analyzed alternative mammalian tree topologies, and we describe the effect of the assumed model on the maximum likelihood tree. We show that the choice of the model has an impact on the best phylogeny obtained.  相似文献   

9.
The phylogenetic mixed model is an application of the quantitative-genetic mixed model to interspecific data. Although this statistical framework provides a potentially unifying approach to quantitative-genetic and phylogenetic analysis, the model has been applied infrequently because of technical difficulties with parameter estimation. We recommend a reparameterization of the model that eliminates some of these difficulties, and we develop a new estimation algorithm for both the original maximum likelihood and new restricted maximum likelihood estimators. The phylogenetic mixed model is particularly rich in terms of the evolutionary insight that might be drawn from model parameters, so we also illustrate and discuss the interpretation of the model parameters in a specific comparative analysis.  相似文献   

10.
We present a new likelihood method for detecting constrained evolution at synonymous sites and other forms of nonneutral evolution in putative pseudogenes. The model is applicable whenever the DNA sequence is available from a protein-coding functional gene, a pseudogene derived from the protein-coding gene, and an orthologous functional copy of the gene. Two nested likelihood ratio tests are developed to test the hypotheses that (1) the putative pseudogene has equal rates of silent and replacement substitutions; and (2) the rate of synonymous substitution in the functional gene equals the rate of substitution in the pseudogene. The method is applied to a data set containing 74 human processed-pseudogene loci, 25 mouse processed-pseudogene loci, and 22 rat processed-pseudogene loci. Using the informatics resources of the Human Genome Project, we localized 67 of the human-pseudogene pairs in the genome and estimated the GC content of a large surrounding genomic region for each. We find that, for pseudogenes deposited in GC regions similar to those of their paralogs, the assumption of equal rates of silent and replacement site evolution in the pseudogene is upheld; in these cases, the rate of silent site evolution in the functional genes is approximately 70% the rate of evolution in the pseudogene. On the other hand, for pseudogenes located in genomic regions of much lower GC than their functional gene, we see a sharp increase in the rate of silent site substitutions, leading to a large rate of rejection for the pseudogene equality likelihood ratio test.  相似文献   

11.
MOTIVATION: We consider models useful for learning an evolutionary or phylogenetic tree from data consisting of DNA sequences corresponding to the leaves of the tree. In particular, we consider a general probabilistic model described in Siepel and Haussler that we call the phylogenetic-HMM model which generalizes the classical probabilistic models of Neyman and Felsenstein. Unfortunately, computing the likelihood of phylogenetic-HMM models is intractable. We consider several approximations for computing the likelihood of such models including an approximation introduced in Siepel and Haussler, loopy belief propagation and several variational methods. RESULTS: We demonstrate that, unlike the other approximations, variational methods are accurate and are guaranteed to lower bound the likelihood. In addition, we identify a particular variational approximation to be best-one in which the posterior distribution is variationally approximated using the classic Neyman-Felsenstein model. The application of our best approximation to data from the cystic fibrosis transmembrane conductance regulator gene region across nine eutherian mammals reveals a CpG effect.  相似文献   

12.
Wu R  Li B  Wu SS  Casella G 《Biometrics》2001,57(3):764-768
In this article, we present a maximum likelihood-based analytical approach for detecting a major gene of large effect on a quantitative trait in a progeny population derived from a mating design. Our analysis is based on a mixed genetic model specifying both major gene and background polygenic inheritance. The likelihood of the data is formulated by combining the information about population behaviors of the major gene during hybridization and its phenotypic distribution densities. The EM algorithm is implemented to obtain maximum likelihood estimates for population and quantitative genetic parameters of the major locus. This approach is applied to detect an overdominant gene governing stem volume growth in a factorial mating design of aspen trees. It is suggested that further molecular genetic research toward mapping single genes affecting aspen growth and production based on the same experimental data has a high probability of success.  相似文献   

13.
One important issue commonly encountered in the analysis of microarray data is to decide which and how many genes should be selected for further studies. For discriminant microarray data analyses based on statistical models, such as the logistic regression models, gene selection can be accomplished by a comparison of the maximum likelihood of the model given the real data, L(D|M), and the expected maximum likelihood of the model given an ensemble of surrogate data with randomly permuted label, L(D(0)|M). Typically, the computational burden for obtaining L(D(0)M) is immense, often exceeding the limits of available computing resources by orders of magnitude. Here, we propose an approach that circumvents such heavy computations by mapping the simulation problem to an extreme-value problem. We present the derivation of an asymptotic distribution of the extreme-value as well as its mean, median, and variance. Using this distribution, we propose two gene selection criteria, and we apply them to two microarray datasets and three classification tasks for illustration.  相似文献   

14.
In the past few years, case-control studies of common diseases have shifted their focus from single genes to whole exomes. New sequencing technologies now routinely detect hundreds of thousands of sequence variants in a single study, many of which are rare or even novel. The limitation of classical single-marker association analysis for rare variants has been a challenge in such studies. A new generation of statistical methods for case-control association studies has been developed to meet this challenge. A common approach to association analysis of rare variants is the burden-style collapsing methods to combine rare variant data within individuals across or within genes. Here, we propose a new hybrid likelihood model that combines a burden test with a test of the position distribution of variants. In extensive simulations and on empirical data from the Dallas Heart Study, the new model demonstrates consistently good power, in particular when applied to a gene set (e.g., multiple candidate genes with shared biological function or pathway), when rare variants cluster in key functional regions of a gene, and when protective variants are present. When applied to data from an ongoing sequencing study of bipolar disorder (191 cases, 107 controls), the model identifies seven gene sets with nominal p-values0.05, of which one MAPK signaling pathway (KEGG) reaches trend-level significance after correcting for multiple testing.  相似文献   

15.
A commonly used tool in disease association studies is the search for discrepancies between the haplotype distribution in the case and control populations. In order to find this discrepancy, the haplotypes frequency in each of the populations is estimated from the genotypes. We present a new method HAPLOFREQ to estimate haplotype frequencies over a short genomic region given the genotypes or haplotypes with missing data or sequencing errors. Our approach incorporates a maximum likelihood model based on a simple random generative model which assumes that the genotypes are independently sampled from the population. We first show that if the phased haplotypes are given, possibly with missing data, we can estimate the frequency of the haplotypes in the population by finding the global optimum of the likelihood function in polynomial time. If the haplotypes are not phased, finding the maximum value of the likelihood function is NP-hard. In this case, we define an alternative likelihood function which can be thought of as a relaxed likelihood function. We show that the maximum relaxed likelihood can be found in polynomial time and that the optimal solution of the relaxed likelihood approaches asymptotically to the haplotype frequencies in the population. In contrast to previous approaches, our algorithms are guaranteed to converge in polynomial time to a global maximum of the different likelihood functions. We compared the performance of our algorithm to the widely used program PHASE, and we found that our estimates are at least 10% more accurate than PHASE and about ten times faster than PHASE. Our techniques involve new algorithms in convex optimization. These algorithms may be of independent interest. Particularly, they may be helpful in other maximum likelihood problems arising from survey sampling.  相似文献   

16.
Zero‐truncated data arises in various disciplines where counts are observed but the zero count category cannot be observed during sampling. Maximum likelihood estimation can be used to model these data; however, due to its nonstandard form it cannot be easily implemented using well‐known software packages, and additional programming is often required. Motivated by the Rao–Blackwell theorem, we develop a weighted partial likelihood approach to estimate model parameters for zero‐truncated binomial and Poisson data. The resulting estimating function is equivalent to a weighted score function for standard count data models, and allows for applying readily available software. We evaluate the efficiency for this new approach and show that it performs almost as well as maximum likelihood estimation. The weighted partial likelihood approach is then extended to regression modelling and variable selection. We examine the performance of the proposed methods through simulation and present two case studies using real data.  相似文献   

17.
Ren F  Tanaka H  Yang Z 《Gene》2009,441(1-2):119-125
Supermatrix and supertree methods are two strategies advocated for phylogenetic analysis of sequence data from multiple gene loci, especially when some species are missing at some loci. The supermatrix method concatenates sequences from multiple genes into a data supermatrix for phylogenetic analysis, and ignores differences in evolutionary dynamics among the genes. The supertree method analyzes each gene separately and assembles the subtrees estimated from individual genes into a supertree for all species. Most algorithms suggested for supertree construction lack statistical justifications and ignore uncertainties in the subtrees. Instead of supermatrix or supertree, we advocate the use of likelihood function to combine data from multiple genes while accommodating their differences in the evolutionary process. This combines the strengths of the supermatrix and supertree methods while avoiding their drawbacks. We conduct computer simulation to evaluate the performance of the supermatrix, supertree, and maximum likelihood methods applied to two phylogenetic problems: molecular-clock dating of species divergences and reconstruction of species phylogenies. The results confirm the theoretical superiority of the likelihood method. Supertree or separate analyses of data of multiple genes may be useful in revealing the characteristics of the evolutionary process of multiple gene loci, and the information may be used to formulate realistic models for combined analysis of all genes by likelihood.  相似文献   

18.

Background

The abundance of new genomic data provides the opportunity to map the location of gene duplication and loss events on a species phylogeny. The first methods for mapping gene duplications and losses were based on a parsimony criterion, finding the mapping that minimizes the number of duplication and loss events. Probabilistic modeling of gene duplication and loss is relatively new and has largely focused on birth-death processes.

Results

We introduce a new maximum likelihood model that estimates the speciation and gene duplication and loss events in a gene tree within a species tree with branch lengths. We also provide an, in practice, efficient algorithm that computes optimal evolutionary scenarios for this model. We implemented the algorithm in the program DrML and verified its performance with empirical and simulated data.

Conclusions

In test data sets, DrML finds optimal gene duplication and loss scenarios within minutes, even when the gene trees contain sequences from several hundred species. In many cases, these optimal scenarios differ from the lca-mapping that results from a parsimony gene tree reconciliation. Thus, DrML provides a new, practical statistical framework on which to study gene duplication.
  相似文献   

19.
Nested effects models have been used successfully for learning subcellular networks from high-dimensional perturbation effects that result from RNA interference (RNAi) experiments. Here, we further develop the basic nested effects model using high-content single-cell imaging data from RNAi screens of cultured cells infected with human rhinovirus. RNAi screens with single-cell readouts are becoming increasingly common, and they often reveal high cell-to-cell variation. As a consequence of this cellular heterogeneity, knock-downs result in variable effects among cells and lead to weak average phenotypes on the cell population level. To address this confounding factor in network inference, we explicitly model the stimulation status of a signaling pathway in individual cells. We extend the framework of nested effects models to probabilistic combinatorial knock-downs and propose NEMix, a nested effects mixture model that accounts for unobserved pathway activation. We analyzed the identifiability of NEMix and developed a parameter inference scheme based on the Expectation Maximization algorithm. In an extensive simulation study, we show that NEMix improves learning of pathway structures over classical NEMs significantly in the presence of hidden pathway stimulation. We applied our model to single-cell imaging data from RNAi screens monitoring human rhinovirus infection, where limited infection efficiency of the assay results in uncertain pathway stimulation. Using a subset of genes with known interactions, we show that the inferred NEMix network has high accuracy and outperforms the classical nested effects model without hidden pathway activity. NEMix is implemented as part of the R/Bioconductor package ‘nem’ and available at www.cbg.ethz.ch/software/NEMix.  相似文献   

20.
Summary In the maximum likelihood (ML) method for estimating a molecular phylogenetic tree, the pattern of nucleotide substitutions for computing likelihood values is assumed to be simpler than that of the actual evolutionary process, simply because the process, considered to be quite devious, is unknown. The problem, however, is that there has been no guarantee to endorse the simplification.To study this problem, we first evaluated the robustness of the ML method in the estimation of molecular trees against different nucleotide substitution patterns, including Jukes and Cantor's, the simplest ever proposed. Namely, we conducted computer simulations in which we could set up various evolutionary models of a hypothetical gene, and define a true tree to which an estimated tree by the ML method was to be compared. The results show that topology estimation by the ML method is considerably robust against different ratios of transitions to transversions and different GC contents, but branch length estimation is not so. The ML tree estimation based on Jukes and Cantor's model is also revealed to be resistant to GC content, but rather sensitive to the ratio of transitions to transversions.We then applied the ML method with different substitution patterns to nucleotide sequence data ontax gene from T-cell leukemia viruses whose evolutionary process must have been more complicated than that of the hypothetical gene. The results are in accordance with those from the simulation study, showing that Jukes and Cantor's model is as useful as a more complicated one for making inferences about molecular phylogeny of the viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号