首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report here the role of one of the less studied members of the family of suppressors of cytokine signaling (SOCS), namely SOCS-7, in cytokine signaling. We demonstrate that SOCS-7 inhibits prolactin (PRL), growth hormone (GH), or leptin (LEP) signaling mediated through STAT3 and STAT5 in a dose-dependent manner. SOCS-7 also attenuated STAT3 and STAT5 signaling induced by overexpression of JH1, the catalytic subdomain of JAK2. Since SOCS-7 interacted with phosphorylated STAT3 or STAT5, we assumed that SOCS-7 acts at the level of STAT proteins. Indeed, we showed that SOCS-7 inhibits PRL- and leptin-induced STAT5 and STAT3 phosphorylation and prevented the nuclear translocation of activated STAT3. Taken together, our results indicate that SOCS-7 is a physiological dysregulator of PRL, leptin, and probably also GH signaling and that its mode of action is a novel variation of SOCS protein inhibition of cytokine-inducible STAT-mediated signal transduction.  相似文献   

2.
Growth and function of the mammary gland is regulated by cytokines and modulated by suppressor of cytokine signalling (SOCS) proteins. In vitro experiments demonstrated that SOCS3 can inhibit PRL induction of milk protein gene expression and STAT5 activation. We explored the SOCS3 expression pattern during mouse mammary development and its regulation by PRL and GH in wild-type and STAT5a-null mammary tissue. Our results suggest that, in vivo, PRL stimulates SOCS3 expression in stromal adipocytes, independently of STAT5a stimulation. In mammary epithelial cells, SOCS3 expression appears to be related to STAT3 activation. Together, our results are consistent with a role of SOCS3 in the mammary gland by promoting apoptosis of differentiated cells (adipocytes during gestation and epithelial cells during involution).  相似文献   

3.
Prolactin and growth hormone in the regulation of the immune system   总被引:12,自引:0,他引:12  
Evidence implicating prolactin (PRL) and growth hormone (GH) in the regulation of the immune system has been reviewed. Hypophysectomized animals have deficiencies in both cell-mediated and humoral immunological functions and either PRL or GH corrects these deficiencies. Animals administered bromocryptine, a drug that specifically blocks PRL release, have impaired immune responses similar to hypophysectomized animals, and again both PRL and GH correct these deficiencies. Genetically dwarf animals, which lack both PRL and GH, are also immunocompromised, and once again PRL and GH can correct the deficiencies. In dwarf animals, however, fewer studies have examined PRL actions. In growth-deficient children, immune function is not dramatically altered and basal secretion of GH has been reported. Very few clinical studies have examined whether PRL secretion is also deficient, and this may explain why a clear loss in immune function is not evident in growth-deficient children. In a number of species, including man, both PRL and GH stimulate thymic function and increase the secretion of thymulin, a thymic hormone. No studies, however, have reported on the effects of PRL and GH on other thymic hormones. A number of studies have reported in vitro effects of PRL and GH on cells involved with immunity, and the presence of high-affinity PRL and GH receptors have been observed on a number of these cells. The action of GH on the proliferative response of cells involved with immunity in vitro appears to be mediated by the production of insulin-like growth factor I. The effect of PRL on insulin-like growth factor I production by these cells has not been examined. One of the most consistent findings from in vitro studies is that prolactin antisera blocked a number of immune reactions. This led to the discovery that cells involved with immunity appear capable of producing PRL and GH, but the physiological significance of these observations have not been explored. There is a great need to identify the cell types responding to PRL and GH and this should be a goal of future investigations. There is also a need for investigators to be aware that both PRL and GH are involved in the regulation of the immune system and to design experiments to elucidate where each functions in the maturation cascade of cells involved with immunity. From the evidence available, it is apparent that PRL and GH have an important function in the immune system and future investigations should be directed toward elucidating their site(s) of action.  相似文献   

4.
5.
6.
SOCS (suppressors of cytokine signaling) proteins are negative regulators of cytokine signaling that function primarily at the receptor level. Remarkably, in vitro and in vivo observations revealed both inhibitory and stimulatory effects of SOCS2 on growth hormone signaling, suggesting an additional regulatory level. In this study, we examined the possibility of direct cross-modulation between SOCS proteins and found that SOCS2 could interfere with the inhibitory actions of other SOCS proteins in growth hormone, interferon, and leptin signaling. This SOCS2 effect was SOCS box-dependent, required recruitment of the elongin BC complex, and coincided with degradation of target SOCS proteins. Detailed mammalian protein-protein interaction trap (MAPPIT) analysis indicated that SOCS2 can interact with all members of the SOCS family. SOCS2 may thus function as a molecular bridge between a ubiquitin-protein isopeptide ligase complex and SOCS proteins, targeting them for proteasomal turnover. We furthermore extended these observations to SOCS6 and SOCS7. Our findings point to a unique regulatory role for SOCS2, SOCS6, and SOCS7 within the SOCS family and provide an explanation for the unexpected phenotypes observed in SOCS2 and SOCS6 transgenic mice.  相似文献   

7.
The suppressor of cytokine signaling (SOCS) group of proteins has been implicated in regulation of various cytokine signaling and in a negative crosstalk between distinct signaling pathways. Interleukin-10 (IL-10) and LPS were known to induce expression of SOCS-3 in neutrophils and monocytes/macrophages. IL-10 was also reported to inhibit a proinflammatory signal-induced NF-kappaB activation in monocytes and peripheral T lymphocytes. The effects of increased SOCS-3 expression upon IL-10 regulation of NF-kappaB activation have not yet been demonstrated. Here we examined the effects of SOCS-3 on NF-kappaB activity. SOCS-3 did not induce any alterations in NF-kappaB activity induced by LPS or TNF-alpha. However, it enhanced RelA-dependent kappaB promoter activity when cotransfected with RelA. Similar results were observed with SOCS-1. In contrast, SOCS-2 did not show any regulatory effects on RelA activity. Analysis of C-terminal truncation mutants of SOCS-1 and SOCS-3 demonstrated that the SOCS box and its N-terminal region, a less well-conserved linker region were important for SOCS-3 activation of RelA. In contrast, the SOCS box itself was critical for SOCS-1 to activate RelA. These results suggest that SOCS proteins can enhance the effects of NF-kappaB/Rel proteins, and therefore, further modulate immune and inflammatory responses.  相似文献   

8.
Anterior pituitary hormones, stress, and immune system homeostasis   总被引:5,自引:0,他引:5  
An extensive, and controversial, literature concluding that prolactin (PRL), growth hormone (GH), insulin-like growth factor-I (IGF-I), and thyroid hormones are critical immunoregulatory factors has accumulated. However, recent studies of mice deficient in the production of these hormones or expression of their receptors indicate that there are only a few instances in which these hormones are required for lymphocyte development or antigen responsiveness. Instead, a case is made that their primary role is to counteract the effects of negative immunoregulatory factors, such as glucocorticoids, which are produced when the organism is subjected to major stressors. The immunoprotective actions of PRL, GH, IGF-I, and/or thyroid hormones in these instances may ensure immune system homeostasis and reduce the susceptibility to stress-induced disease. These immuno-enhancing effects could be exploited clinically in instances where the immune system is depressed due to illness or various treatment regimens.  相似文献   

9.
Leptin is an adipokine that regulates food intake and energy expenditure by activating its hypothalamic leptin receptor (LR). Members of the insulin receptor substrate (IRS) family serve as adaptor proteins in the signaling pathways of several cytokines and hormones and a role for IRS2 in central leptin physiology is well established. Using mammalian protein-protein interaction trap (MAPPIT), a cytokine receptor-based two-hybrid method, in the N38 hypothalamic cell line, we here demonstrate that also IRS4 interacts with the LR. This recruitment is leptin dependent and requires phosphorylation of the Y1077 motif of the LR. Domain mapping of IRS4 revealed the critical role of the pleckstrin homology domain for full interaction. In line with its function as an adaptor protein, IRS4 interacted with the regulatory p85 subunit of the phosphatidylinositol 3-kinase, phospholipase Cgamma, and the suppressor of cytokine signaling (SOCS) family members SOCS2, SOCS6, and SOCS7 and thus can modulate LR signaling.  相似文献   

10.
11.
12.
Suppressor of cytokine signaling proteins (SOCS) are a family of intracellular cytokine inducible proteins, consisting of eight members. They are involved in the complex control of the inflammatory response through their actions on various signaling pathways, including the JAK/STAT and NF-κB pathways. A series of studies has shown that SOCS proteins are involved in the regulation and progression of immune responses in microglia cells. The accumulated data suggest that modulation of SOCS expression could be a target for drug development aimed at controlling inflammation in the brain. This review focuses on the current understanding of SOCS proteins involvement in inflammation-based neurodegenerative diseases and their role as therapeutic targets in future approaches.  相似文献   

13.
14.
Growth hormone GH stimulates lipolysis in mature adipocytes and primary preadipocytes but promotes adipogenesis in preadipocyte cell lines. The lactogenic hormones (prolactin PRL and placental lactogen) also stimulate adipogenesis in preadipocyte cell lines but have variable lipolytic and lipogenic effects in mature adipose tissue. We hypothesized that differences in expression of GH receptors GHR and PRL receptors PRLR during adipocyte development might explain some of the differential effects of the somatogens and lactogens on fat metabolism. To that end, we compared: (a) the expression of GHR and PRLR mRNAs in 3T3-L1 preadipocytes during the course of adipocyte differentiation; (b) the induction of STAT-5 activity by GH and PRL during adipogenesis; and (c) the acute effects of GH and PRL on the suppressors of cytokine signaling (SOCS-1-3 and cytokine-inducible SH2-domain-containing protein CIS) and IGF-I. In confluent, undifferentiated 3T3-L1 cells, the levels of GHR mRNA were approximately 250-fold higher than the levels of PRLR mRNA. Following induction of adipocyte differentiation the levels of PRLR mRNA rose 90-fold but GHR mRNA increased only 0.8-fold. Expression of both full-length (long) and truncated (short) isoforms of the PRLR increased during differentiation but the long isoform predominated at all time points. Mouse GH mGH stimulated increases in STAT-5a and 5b activity in undifferentiated as well as differentiating 3T3-L1 cells; mouse PRL mPRL had little or no effect on STAT-5 activity in undifferentiated cells but stimulated increases in STAT-5a and 5b activity in differentiating cells. mGH stimulated increases in SOCS-2 and SOCS-3 mRNAs in undifferentiated cells and SOCS-1-3 and CIS mRNAs in differentiating cells; mPRL induced CIS in differentiating cells but had no effect on SOCS-1-3. mPRL and mGH stimulated increases in IGF-I mRNA in differentiating cells but not in undifferentiated cells; the potency of mGH (3-6-fold increase, p < 0.01) exceeded that of mPRL (40-90% increase, p < 0.05). Our findings reveal disparities in the expression of PRLR and GHR during adipocyte development and differential effects of the hormones on STAT-5, the SOCS proteins, CIS, and IGF-I. These observations suggest that somatogens and lactogens regulate adipocyte development and fat metabolism through distinct but overlapping cellular mechanisms.  相似文献   

15.
Growth Hormone is essential for the regulation of growth and the homeostatic control of intermediary metabolism. GH actions are mediated by the Growth Hormone Receptor; a member of the cytokine receptor super family that signals chiefly through the JAK2/STAT5 pathway. Target tissue responsiveness to GH is under regulatory control to avoid excessive and off-target effects upon GHR activation. The suppressor of cytokine signalling 2 (SOCS) is a key regulator of GHR sensitivity. This is clearly shown in mice where the SOCS2 gene has been inactivated, which show 30–40% increase in body length, a phenotype that is dependent on endogenous GH secretion. SOCS2 is a GH-stimulated, STAT5b-regulated gene that acts in a negative feedback loop to downregulate GHR signalling. Since the biochemical basis for these actions is poorly understood, we studied the molecular function of SOCS2. We demonstrated that SOCS2 is part of a multimeric complex with intrinsic ubiquitin ligase activity. Mutational analysis shows that the interaction with Elongin B/C controls SOCS2 protein turnover and affects its molecular activity. Increased GHR levels were observed in livers from SOCS2−/− mice and in the absence of SOCS2 in in vitro experiments. We showed that SOCS2 regulates cellular GHR levels through direct ubiquitination and in a proteasomally dependent manner. We also confirmed the importance of the SOCS-box for the proper function of SOCS2. Finally, we identified two phosphotyrosine residues in the GHR to be responsible for the interaction with SOCS2, but only Y487 to account for the effects of SOCS2. The demonstration that SOCS2 is an ubiquitin ligase for the GHR unveils the molecular basis for its physiological actions.  相似文献   

16.
17.
18.
19.
20.
Over the past decade, a family of host proteins known as suppressors of cytokine signaling (SOCS) have emerged as frequent targets of viral exploitation. Under physiologic circumstances, SOCS proteins negatively regulate inflammatory signaling pathways by facilitating ubiquitination and proteosomal degradation of pathway machinery. Their expression is tightly regulated to prevent excessive inflammation while maintaining protective antipathogenic responses. Numerous viruses, however, have developed mechanisms to induce robust host SOCS protein expression following infection, essentially "hijacking" SOCS function to promote virus survival. To date, SOCS proteins have been shown to inhibit protective antiviral signaling pathways, allowing viruses to evade the host immune response, and to ubiquitinate viral proteins, facilitating intracellular viral trafficking and progeny virus assembly. Importantly, manipulation of SOCS proteins not only facilitates progression of the viral life cycle but also powerfully shapes the presentation of viral disease. SOCS proteins can define host susceptibility to infection, contribute to peripheral disease manifestations such as immune dysfunction and cancer, and even modify the efficacy of therapeutic interventions. Looking toward the future, it is clear that a better understanding of the role of SOCS proteins in viral diseases will be essential in our struggle to modulate and even eliminate the pathogenic effects of viruses on the host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号