首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation of growth factor receptors by ligand binding initiates a cascade of events leading to cell growth and division. Progression through the cell cycle is controlled by cyclin-dependent protein kinases (Cdks), but the mechanisms that link growth factor signaling to the cell cycle machinery have not been established. We report here that Ras proteins play a key role in integrating mitogenic signals with cell cycle progression through G1. Ras is required for cell cycle progression and activation of both Cdk2 and Cdk4 until approximately 2 h before the G1/S transition, corresponding to the restriction point. Analysis of Cdk-cyclin complexes indicates that Ras signaling is required both for induction of cyclin D1 and for downregulation of the Cdk inhibitor p27KIP1. Constitutive expression of cyclin D1 circumvents the requirement for Ras signaling in cell proliferation, indicating that regulation of cyclin D1 is a critical target of the Ras signaling cascade.  相似文献   

2.
Families of cyclin-like proteins have emerged that bind and activate cyclin dependent kinases (Cdk)s, directing the phosphorylation of noncanonical Cdk substrates. One of these proteins, Spy1, has demonstrated the unique ability to directly bind and activate both Cdk1 and Cdk2, as well as binding and promoting the degradation of at least one Cdk inhibitor, p27Kip1. Spy1 accelerates somatic cell growth and proliferation and is implicated in a number of human cancers including the breast, brain and liver. Herein we isolate key residues mediating the direct interaction with p27. We use mutants of Spy1 to determine the physiological role of direct interactions with distinct binding partners Cdk2 and p27. We demonstrate that disrupting the direct interaction with either Spy1 binding partner decreased endogenous activity of Cdk2, as well as Spy1-mediated proliferation. However, only the direct interaction with p27 was essential for Spy1-mediated effects on p27 stability. In vivo neither mutation completely prevented tumorigenesis, although each mutation slowed the rate of Spy1-mediated tumorigenesis and decreased overall tumor volumes. This work supports the conclusion that direct interaction with both p27 and Cdk2 contribute to Spy1-mediated effects on cell growth. It is important to elucidate the dynamics of these interactions and to consider these data when assessing functional outcomes.  相似文献   

3.
4.
In this study, we report a novel role of FAK as a regulator of Cdk2 in anchorage‐dependent primary cultured hepatocytes. In response to EGF, we found that S‐phase entry was reduced upon FAK inhibition. This correlated with decreased protein expression and nuclear accumulation of the G1/S‐phase regulator Cdk2. Further, nuclear accumulation of the Cdk2 partner cyclinE, was reduced, but not its protein level. Also, protein levels of Cdk2 were inversely linked with increased expression of the Cdk2 inhibitor p27, known to be degraded in a Cdk2‐dependent manner. Also, cyclinD1 was regulated by FAK, but to a lesser extent than Cdk2. To assess the mechanism in which FAK mediates Cdk2‐regulation, FAK mutants were used: FAKY397F, mutated at its integrin‐regulated site, and two others mutated at docking sites for Grb2‐ERK‐activation (FAKY925F) and for p130Cas‐Rac1‐activation (FAKY861F). All three sites were central for EGF‐induced ERK‐activity and Cdk2 expression. In addition, FAK was important for HGF‐mediated proliferation, suggesting a general mechanism for anchorage‐dependent growth. Moreover, growth factor‐induced cell spreading, but not survival, required FAK. Hence, integrins and growth factors cooperate in anchorage‐dependent signaling events leading to proliferation and motility. In conclusion, our data suggest that FAK acts as a central coordinator of integrin and growth factor‐mediated S‐phase entry by its ability to regulate Cdk2. J. Cell. Physiol. 228: 1304–1313, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
The steroid hormone progesterone regulates proliferation and differentiation in the mammary gland and uterus by cell cycle phase-specific actions. The long-term effect of progestins on T-47D breast cancer cells is inhibition of cellular proliferation. This is accompanied by decreased G(1) cyclin-dependent kinase (CDK) activities, redistribution of the CDK inhibitor p27(Kip1) among these CDK complexes, and alterations in the elution profile of cyclin E-Cdk2 upon gel filtration chromatography, such that high-molecular-weight complexes predominate. This study aimed to determine the relative contribution of CDK inhibitors to these events. Following progestin treatment, the majority of cyclin E- and D-CDK complexes were bound to p27(Kip1) and few were bound to p21(Cip1). In vitro, recombinant His(6)-p27 could quantitatively reproduce the effects on cyclin E-Cdk2 kinase activity and the shift in molecular weight observed following progestin treatment. In contrast, cyclin D-Cdk4 was not inhibited by His(6)-p27 in vitro or p27(Kip1) in vivo. However, an increase in the expression of the Cdk4/6 inhibitor p18(INK4c) and its extensive association with Cdk4 and Cdk6 were apparent following progestin treatment. Recombinant p18(INK4c) led to the reassortment of cyclin-CDK-CDK inhibitor complexes in vitro, with consequent decrease in cyclin E-Cdk2 activity. These results suggest a concerted model of progestin action whereby p27(Kip1) and p18(INK4c) cooperate to inhibit cyclin E-Cdk2 and Cdk4. Since similar models have been developed for growth inhibition by transforming growth factor beta and during adipogenesis, interaction between the Cip/Kip and INK4 families of inhibitors may be a common theme in physiological growth arrest and differentiation.  相似文献   

6.
7.
In the process of cardiac remodeling, connective tissue growth factor (CTGF/CCN2) is secreted from cardiac myocytes. Though CTGF is well known to promote fibroblast proliferation, its pathophysiological effects in cardiac myocytes remain to be elucidated. In this study, we examined the biological effects of CTGF in rat neonatal cardiomyocytes. Cardiac myocytes stimulated with full length CTGF and its C-terminal region peptide showed the increase in cell surface area. Similar to hypertrophic ligands for G-protein coupled receptors, such as endothelin-1, CTGF activated amino acid uptake; however, CTGF-induced hypertrophy is not associated with the increased expression of skeletal actin or BNP, analyzed by Northern-blotting. CTGF treatment activated ERK1/2, p38 MAPK, JNK and Akt. The inhibition of Akt by transducing dominant-negative Akt abrogated CTGF-mediated increase in cell size, while the inhibition of MAP kinases did not affect the cardiac hypertrophy. These findings indicate that CTGF is a novel hypertrophic factor in cardiac myocytes.  相似文献   

8.
ErbB2/Neu destabilizes the cyclin-dependent kinase (Cdk) inhibitor p27 and increases expression of cyclin D1. Therefore, we studied the roles of p27 and cyclin D1 in ErbB2-mediated mammary epithelial cell transformation. Overexpression of ErbB2 or cyclin D1 in p27(+/-) primary murine mammary epithelial cells resulted in increased proliferation, cyclin D1 nuclear localization, and colony formation in soft agar compared to those in p27(+/+) cells. In contrast, ErbB2- or cyclin D1-overexpressing p27(-/-) cells displayed reduced proliferation, anchorage-independent growth, Cdk4 activity, cyclin D1 expression, and cyclin D1 nuclear localization compared to wild-type cells. A cyclin D1 mutation in its nuclear export sequence (T286A) partially rescued nuclear localization of cyclin D1 in p27(-/-) cells but did not increase proliferation or Cdk4 kinase activity. Overexpression of E2F1, however, increased proliferation to the same degree in p27(+/+), p27(+/-), and p27(-/-) cells. Mammary glands from MMTV (mouse mammary tumor virus)-neu/p27(+/-) mice exhibited alveolar hyperplasia, enhanced proliferation, decreased apoptosis, and accelerated tumor formation compared to MMTV-neu/p27(+/+) glands. However, MMTV-neu/p27(-/-) glands showed decreased proliferation, cyclin D1 expression, and Cdk4 activity, as well as markedly prolonged tumor latency, compared to MMTV-neu/p27(+/+) glands. These results suggest that p27(+/-) mammary epithelium may be more susceptible to oncogene-induced tumorigenesis, whereas p27-null glands, due to severely impaired cyclin D1/Cdk4 function, are more resistant to transformation.  相似文献   

9.
Transforming growth factor beta (TGF-beta) potently suppresses Mv1Lu mink epithelial cell growth, whereas hepatocyte growth factor (HGF) counteracts TGF-beta-mediated growth inhibition and induces Mv1Lu cell proliferation (J. Taipale and J. Keski-Oja, J. Biol. Chem. 271:4342-4348, 1996). By addressing the cell cycle regulatory mechanisms involved in HGF-mediated release of Mv1Lu cells from TGF-beta inhibition, we show that increased DNA replication is accompanied by phosphorylation of the retinoblastoma protein and alternative regulation of cyclin-Cdk-inhibitor complexes. While TGF-beta treatment decreased the expression of Cdk6, this effect was counteracted by HGF, followed by partial restoration of cyclin D2-associated kinase activity. Notably, HGF failed to prevent TGF-beta induction of p15 and its association with Cdk6. However, HGF reversed the TGF-beta-mediated decrease in Cdk6-associated p27 and cyclin D2-associated Cdk6, suggesting that HGF modifies the TGF-beta response at the level of G1 cyclin complex formation. Counteraction of TGF-beta regulation of Cdk6 by HGF may in turn affect the association of p27 with Cdk2-cyclin E complexes. Though HGF did not differentially regulate the total levels of p27 in TGF-beta-treated cells, p27 immunodepletion experiments suggested that upon treatment with both growth factors, less p27 is associated with Cdk2-cyclin E complexes, in parallel with restoration of the active form of Cdk2 and the associated kinase activity. The results demonstrate that HGF intercepts TGF-beta cell cycle regulation at multiple points, affecting both G1 and G1-S cyclin kinase activities.  相似文献   

10.
Exposure of hematopoietic cells to DNA-damaging agents induces p53-independent cell cycle arrest at a G(1) checkpoint. Previously, we have shown that this growth arrest can be overridden by cytokine growth factors, such as erythropoietin or interleukin-3, through activation of a phosphatidylinositol 3-kinase (PI 3-kinase)/Akt-dependent signaling pathway. Here, we show that gamma-irradiated murine myeloid 32D cells arrest in G(1) with active cyclin D-cyclin-dependent kinase 4 (Cdk4) but with inactive cyclin E-Cdk2 kinases. The arrest was associated with elevated levels of the Cdk inhibitors p21(Cip1) and p27(Kip1), yet neither was associated with Cdk2. Instead, irradiation-induced inhibition of cyclin E-Cdk2 correlated with absence of the activating threonine-160 phosphorylation on Cdk2. Cytokine treatment of irradiated cells induced Cdk2 phosphorylation and activation, and cells entered into S phase despite sustained high-level expression of p21 and p27. Notably, the PI 3-kinase inhibitor, LY294002, completely blocked cytokine-induced Cdk2 activation and cell growth in irradiated 32D cells but not in nonirradiated cells. Together, these findings demonstrate a novel mechanism underlying the DNA damage-induced G(1) arrest of hematopoietic cells, that is, inhibition of Cdk2 phosphorylation and activation. These observations link PI 3-kinase signaling pathways with the regulation of Cdk2 activity.  相似文献   

11.
Transforming growth factor beta (TGF-beta) induces cell cycle arrest of most nontransformed epithelial cell lines. In contrast, many human carcinomas are refractory to the growth-inhibitory effect of TGF-beta. TGF-beta overexpression inhibits tumorigenesis, and abolition of TGF-beta signaling accelerates tumorigenesis, suggesting that TGF-beta acts as a tumor suppressor in mouse models of cancer. A screen to identify agents that potentiate TGF-beta-induced growth arrest demonstrated that the potential anticancer agent rapamycin cooperated with TGF-beta to induce growth arrest in multiple cell lines. Rapamycin also augmented the ability of TGF-beta to inhibit the proliferation of E2F1-, c-Myc-, and (V12)H-Ras-transformed cells, even though these cells were insensitive to TGF-beta-mediated growth arrest in the absence of rapamycin. Rapamycin potentiation of TGF-beta-induced growth arrest could not be explained by increases in TGF-beta receptor levels or rapamycin-induced dissociation of FKBP12 from the TGF-beta type I receptor. Significantly, TGF-beta and rapamycin cooperated to induce growth inhibition of human carcinoma cells that are resistant to TGF-beta-induced growth arrest, and arrest correlated with a suppression of Cdk2 kinase activity. Inhibition of Cdk2 activity was associated with increased binding of p21 and p27 to Cdk2 and decreased phosphorylation of Cdk2 on Thr(160). Increased p21 and p27 binding to Cdk2 was accompanied by decreased p130, p107, and E2F4 binding to Cdk2. Together, these results indicate that rapamycin and TGF-beta cooperate to inhibit the proliferation of nontransformed cells and cancer cells by acting in concert to inhibit Cdk2 activity.  相似文献   

12.
13.
Defining the roadblocks responsible for cell cycle arrest in adult cardiomyocytes lies at the core of developing cardiac regenerative therapies. p53 and Mdm2 are crucial mediators of cell cycle arrest in proliferative cell types, however, little is known about their function in regulating homeostasis and proliferation in terminally differentiated cell types, like cardiomyocytes. To explore this, we generated a cardiac-specific conditional deletion of p53 and Mdm2 (DKO) in adult mice. Herein we describe the development of a dilated cardiomyopathy, in the absence of cardiac hypertrophy. In addition, DKO hearts exhibited a significant increase in cardiomyocyte proliferation. Further evaluation showed that proliferation was mediated by a significant increase in Cdk2 and cyclin E with downregulation of p21Cip1 and p27Kip1. Comparison of miRNA expression profiles from DKO mouse hearts and controls revealed 11 miRNAs that were downregulated in the DKO hearts and enriched for mRNA targets involved in cell cycle regulation. Knockdown of these miRNAs in neonatal rat cardiomyocytes significantly increased cytokinesis with an upregulation in the expression of crucial cell cycle regulators. These results illustrate the importance of the cooperative activities of p53 and Mdm2 in a network of miRNAs that function to impose a barrier against aberrant cardiomyocyte cell cycle re-entry to maintain cardiac homeostasis.  相似文献   

14.
The mechanism by which the bradykininB1 receptor (B1R) inhibits platelet-derived growth factor(PDGF)-stimulated proliferation was investigated in cultured ratmesenteric arterial smooth muscle cells. The B1R agonistdes-Arg9-bradykinin (DABK) was found to inhibitPDGF-mediated activation of the cyclin E-cyclin-dependent kinase 2 (Cdk2) complex and to prevent hyperphosphorylation of retinoblastomaprotein. DABK did not inhibit upregulation of cyclin E expression butincreased expression of the Cdk2 inhibitor p27Kip1 and the associationof p27Kip1 with the cyclin E-Cdk2 complex. In addition, DABK inhibited the PDGF-stimulated expression of cyclin D that would otherwise siphonp27Kip1 away from inhibition of cyclin E-Cdk2. The signaling mechanismby which DABK regulated p27Kip1 was explored. DABK was found tostimulate the activity of mitogen-activated protein kinase kinase (MEK)and extracellular signal-regulated kinase (ERK) and to prolongactivation of MEK and ERK by PDGF. Inhibition of ERK activation withthe MEK inhibitors PD-98059 and U-0126 as well as the Src family kinaseinhibitor PP2 completely blocked the effect of DABK to increase p27Kip1and partially reversed the DABK-mediated inhibition of PDGF-stimulatedproliferation. These studies demonstrate that the B1R inhibitsPDGF-stimulated mitogenesis in part by prolonged activation of ERKleading to increased expression of p27Kip1.

  相似文献   

15.
During endochondral ossification, two secreted signals, Indian hedgehog (Ihh) and parathyroid hormone-related protein (PTHrP), have been shown to form a negative feedback loop regulating the onset of hypertrophic differentiation of chondrocytes. Bone morphogenetic proteins (BMPs), another family of secreted factors regulating bone formation, have been implicated as potential interactors of the Ihh/PTHrP feedback loop. To analyze the relationship between the two signaling pathways, we used an organ culture system for limb explants of mouse and chick embryos. We manipulated chondrocyte differentiation by supplementing these cultures either with BMP2, PTHrP and Sonic hedgehog as activators or with Noggin and cyclopamine as inhibitors of the BMP and Ihh/PTHrP signaling systems. Overexpression of Ihh in the cartilage elements of transgenic mice results in an upregulation of PTHrP expression and a delayed onset of hypertrophic differentiation. Noggin treatment of limbs from these mice did not antagonize the effects of Ihh overexpression. Conversely, the promotion of chondrocyte maturation induced by cyclopamine, which blocks Ihh signaling, could not be rescued with BMP2. Thus BMP signaling does not act as a secondary signal of Ihh to induce PTHrP expression or to delay the onset of hypertrophic differentiation. Similar results were obtained using cultures of chick limbs. We further investigated the role of BMP signaling in regulating proliferation and hypertrophic differentiation of chondrocytes and identified three functions of BMP signaling in this process. First we found that maintaining a normal proliferation rate requires BMP and Ihh signaling acting in parallel. We further identified a role for BMP signaling in modulating the expression of IHH: Finally, the application of Noggin to mouse limb explants resulted in advanced differentiation of terminally hypertrophic cells, implicating BMP signaling in delaying the process of hypertrophic differentiation itself. This role of BMP signaling is independent of the Ihh/PTHrP pathway.  相似文献   

16.
Peripheral homeostasis and tolerance requires the suppression or removal of excessive or harmful T lymphocytes. This can occur either by apoptosis through active antigen-induced death or cytokine withdrawal. Alternatively, T cell activation can be suppressed by agents that activate the cAMP-dependent protein kinase (PKA) signaling pathway, such as prostaglandin E2. Stimulation of PKA inhibits lymphocyte proliferation and immune effector functions. Here we have investigated the mechanism by which activation of PKA induces inhibition of proliferation in human leukemic T cell lines. Using a variety of agents that stimulate PKA, we can arrest Jurkat and H9 leukemic T cells in the G(1) phase of the cell cycle, whereas cell viability is hardly affected. This G(1) arrest is associated with an inhibition of cyclin D/Cdk and cyclin E/Cdk kinase activity. Interestingly, expression of cyclin D3 is rapidly reduced by PKA activation, whereas expression of the Cdk inhibitor p27(kip1) is induced. Ectopic expression of cyclin D3 can override the growth suppression induced by PKA activation to some extent, indicating that growth inhibition of leukemic T cells by PKA activation is partially dependent on down-regulation of cyclin D3 expression. Taken together our data suggest that immunosuppression by protein kinase A involves regulation of both cyclin D3 and p27(kip1) expression.  相似文献   

17.
Tightly controlled termination of proliferation determines when oligodendrocyte progenitor cells (OPCs) can initiate differentiation and mature into myelin-forming cells. Protein-tyrosine phosphatase α (PTPα) promotes OPC differentiation, but its role in proliferation is unknown. Here we report that loss of PTPα enhanced in vitro proliferation and survival and decreased cell cycle exit and growth factor dependence of OPCs but not neural stem/progenitor cells. PTPα(-/-) mice have more oligodendrocyte lineage cells in embryonic forebrain and delayed OPC maturation. On the molecular level, PTPα-deficient mouse OPCs and rat CG4 cells have decreased Fyn and increased Ras, Cdc42, Rac1, and Rho activities, and reduced expression of the Cdk inhibitor p27Kip1. Moreover, Fyn was required to suppress Ras and Rho and for p27Kip1 accumulation, and Rho inhibition in PTPα-deficient cells restored expression of p27Kip1. We propose that PTPα-Fyn signaling negatively regulates OPC proliferation by down-regulating Ras and Rho, leading to p27Kip1 accumulation and cell cycle exit. Thus, PTPα acts in OPCs to limit self-renewal and facilitate differentiation.  相似文献   

18.
An intermediate population has been identified among prostate glands called transiently amplifying (TA) cells, which are characterized by coexpression of basal and luminal cytokeratins (CKs), high proliferation, and lack of p27 expression. These cells are rare in the normal adult prostate and increase in pretumoral conditions, but their importance in the developing gland remains unknown. We analyzed fetal prostates for the expression of CKs (5/6, 18, 19) and factors involved in proliferation and apoptosis: p63, Ki67, p27, epidermal growth factor (EGFR), Bcl2, androgen receptor (AR). Immunostaining was performed on a tissue microarray, including 40 prostates from fetuses aged 13-42 weeks and normal prostate tissue from 10 adults. In both solid buds and the basal compartment of canalized glands, cells expressed p63, CK5/6, CK19, CK18, BCL2, EGFR and were p27 negative. Luminal cells of fetal canalized glands continue to express CK19, EGFR, and BCL2, without p27 expression. In contrast, adult epithelial luminal cells showed diffuse AR and p27 expression, without CK19, BCL2, and EGFR staining. Proliferation was high and diffuse in fetal glands and rare and restricted to basal cells in adult glands. These results indicate that most fetal epithelial prostatic cells exhibit the phenotype of TA cells, suggesting their regulatory function in prostate development.  相似文献   

19.
Cell cycle inhibitors, such as the cyclin-dependent kinase (Cdk) inhibitor proteins and retinoblastoma (Rb) family members, control exit from the cell cycle during the development of a variety of terminally differentiated tissues. It is unclear whether sustained expression of these proteins is required to prevent cell cycle re-entry in quiescent and terminally differentiated cells. The organ of Corti (cochlear sensory epithelium) and pars intermedia (intermediate lobe of the pituitary) are two tissues that share the characteristic of ongoing cell division in mice lacking either the p27Kip1 Cdk inhibitor, Ink4 proteins or Rb. Here, we use tamoxifen-inducible mouse models to delete p27Kip1 in postnatal animals and show this is sufficient to induce proliferation in both the organ of Corti and pars intermedia. Thus, these tissues remain sensitive to the presence of p27Kip1 even after their developmental exit from the cell cycle. The neonatal cochlea displayed heightened sensitivity to changes in p27Kip1 expression, with a proliferative response higher than that of constitutive null mice. In adults, the proliferative response was reduced but was accompanied by increased cell survival. In contrast, re-establishment of normal p27Kip1 expression in animals with established pituitary tumors, in an inducible “knock-on” model, led to cessation of pituitary tumor growth, indicating the cells had maintained their susceptibility to p27-mediated growth suppression. Although restoration of p27Kip1 did not induce apoptosis, it did lead to resolution of pathological features and normalization of gene expression. Our data underscore the importance of p27Kip1 expression in the maintenance of cellular quiescence and terminal differentiation.Key words: proliferation, cell cycle, p27, Cdk inhibitor, auditory, cochlea, pituitary  相似文献   

20.
The cyclin-dependent kinase (CDK) inhibitor p27 binds and inhibits the kinase activity of several CDKs. Here we report an analysis of the behavior and partners of p27 in Swiss 3T3 mouse fibroblasts during normal mitotic cell cycle progression, as well as in cells arrested at different stages in the cycle by growth factor deprivation, lovastatin treatment, or ultraviolet (UV) irradiation. We found that the level of p27 is elevated in cells arrested in G0 by growth factor deprivation or contact inhibition. In G0, p27 was predominantly monomeric, although some portion was associated with residual cyclin A.Cdk2. During G1, all of p27 was associated with cyclin D1.Cdk4 and was then redistributed to cyclin A.Cdk2 as cells entered S phase. The loss of the monomeric p27 pool as cyclins accumulate in G1 is consistent with the in vivo and in vitro data showing that p27 binds better to cyclin.CDK complexes than to monomeric CDKs. In growing cells, the majority of p27 was associated with cyclin D1 and the level of p27 was significantly lower than the level of cyclin D1. In cells arrested in G1 with lovastatin, cyclin D1 was degraded and p27 was redistributed to cyclin A.Cdk2. In contrast to p21 (which is a p27-related CDK inhibitor and is induced by UV irradiation), the level of p27 was reduced after UV irradiation, but because cyclin D1 was degraded more rapidly than p27, there was a transient increase in binding of p27 to cyclin A.Cdk2. These data suggest that cyclin D1.Cdk4 acts as a reservoir for p27, and p27 is redistributed from cyclin D1.Cdk4 to cyclin A.Cdk2 complexes during S phase, or when cells are arrested by growth factor deprivation, lovastatin treatment, or UV irradiation. It is likely that a similar principle of redistribution of p27 is used by the cell in other instances of cell cycle arrest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号