首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The human pathogen Neisseria meningitidis is capable of growth using the denitrification of nitrite to nitrous oxide under microaerobic conditions. This process is catalyzed by two reductases: nitrite reductase (encoded by aniA) and nitric oxide (NO) reductase (encoded by norB). Here, we show that in N. meningitidis MC58 norB is regulated by nitric oxide via the product of gene NMB0437 which encodes NsrR. NsrR is a repressor in the absence of NO, but norB expression is derepressed by NO in an NsrR-dependent manner. nsrR-deficient mutants grow by denitrification more rapidly than wild-type N. meningitidis, and this is coincident with the upregulation of both NO reductase and nitrite reductase even under aerobic conditions in the absence of nitrite or NO. The NsrR-dependent repression of aniA (unlike that of norB) is not lifted in the presence of NO. The role of NsrR in the control of expression of aniA is linked to the function of the anaerobic activator protein FNR: analysis of nsrR and fnr single and nsrR fnr double mutants carrying an aniA promoter lacZ fusion indicates that the role of NsrR is to prevent FNR-dependent aniA expression under aerobic conditions, indicating that FNR in N. meningitidis retains considerable activity aerobically.  相似文献   

3.
4.
Wan C  Yang X  Lee DJ  Du M  Wan F  Chen C 《Bioresource technology》2011,102(15):7244-7248
Biological denitrification reaction can be achieved under aerobic environment. Few aerobic denitrifiers using nitrite as sole nitrogen source were identified. Using nitrite as the sole nitrogen source, this work assessed the denitrification activity of yy7, an aerobic heterotrophic denitrifier identified as Pseudomonas sp. (94% similarity) by 16S rRNA sequencing analysis. The logistic equation describes the cell growth curve, yielding a generation time of 2.9h at an initial 18 mg l(-1)NO(-)?-N. Reduction of NO(-)?-N was primarily achieved during its logarithmic growth phase, and was accompanied by an increase in suspension pH and near complete consumption of dissolved oxygen. Three genes relating to nirK, norB, and nosZ were noted to involve in isolate strain. Isolate yy7 can survive and remove up to 40 mg l(-1)NO(-)?-N and, hence, can be applied as an effective aerobic denitrifier during simultaneous nitrification and denitrification via nitrite processes.  相似文献   

5.
The redox proteins and enzymes involved in denitrification inThiosphaera pantotropha exhibited a differential expression in response to oxygen. Pseudoazurin was completely repressed during batch or continuous culture under oxic conditions. Cytochromecd 1 nitrite reductase was also heavily repressed after aerobic growth. Nitrite, nitric oxide, and nitrous oxide reductase activities were detected in intact cells under some conditions of aerobic growth, indicating that aerobic denitrification might occur in some circumstances. However, the rates of denitrification were much lower after aerobic growth than after anaerobic growth. Growth with nitrous oxide as sole electron acceptor mimicked aerobic growth in some respects, implying that expression of parts of the denitrification apparatus might be controlled by the redox state of a component of the electron transport chain rather than by oxygen itself. Nevertheless, the regulation of expression of nitrous oxide reductase was linked to the oxygen concentration.  相似文献   

6.
7.
Neisseria meningitidis, the causative agent of meningococcal disease in humans, is likely to be exposed to nitrosative stress during natural colonization and disease. The genome of N. meningitidis includes the genes aniA and norB, predicted to encode nitrite reductase and nitric oxide (NO) reductase, respectively. These gene products should allow the bacterium to denitrify nitrite to nitrous oxide. We show that N. meningitidis can support growth microaerobically by the denitrification of nitrite via NO and that norB is required for anaerobic growth with nitrite. NorB and, to a lesser extent, the cycP gene product cytochrome c' are able to counteract toxicity due to exogenously added NO. Expression of these genes by N. meningitidis during colonization and disease may confer protection against exogenous or endogenous nitrosative stress.  相似文献   

8.
Ammonia-oxidizing bacteria are believed to be an important source of the climatically important trace gas nitrous oxide (N(2)O). The genes for nitrite reductase (nirK) and nitric oxide reductase (norB), putatively responsible for nitrous oxide production, have been identified in several ammonia-oxidizing bacteria, but not in Nitrosospira strains that may dominate ammonia-oxidizing communities in soil. In this study, sequences from nirK and norB genes were detected in several cultured Nitrosospira species and the diversity and phylogeny of these genes were compared with those in other ammoniaoxidizing bacteria and in classical denitrifiers. The nirK and norB gene sequences obtained from Nitrosospira spp. were diverse and appeared to be less conserved than 16S rRNA genes and functional ammonia monooxygenase (amoA) genes. The nirK and norB genes from some Nitrosospira spp. were not phylogenetically distinct from those of denitrifiers, and phylogenetic analysis suggests that the nirK and norB genes in ammonia-oxidizing bacteria have been subject to lateral transfer.  相似文献   

9.
Induction and repression of denitrification activity were studied in a continuous culture of Paracoccus denitrificans during changes from aerobic to anaerobic growth conditions and vice versa. The denitrification activity of the cells was monitored by measuring the formation of denitrification products (nitrite, nitric oxide, nitrous oxide, and dinitrogen), individual mRNA levels for the nitrate, nitrite, and nitrous oxide reductases, and the concentration of the nitrite reductase enzyme with polyclonal antibodies against the cd1-type nitrite reductase. On a change from aerobic to anaerobic respiration, the culture entered an unstable transition phase during which the denitrification pathway became induced. The onset of this phase was formed by a 15- to 45-fold increase of the mRNA levels for the individual denitrification enzymes. All mRNAs accumulated during a short period, after which their overall concentration declined to reach a stable value slightly higher than that observed under aerobic steady-state conditions. Interestingly, the first mRNAs to be formed were those for nitrate and nitrous oxide reductase. The nitrite reductase mRNA appeared significantly later, suggesting different modes of regulation for the three genes. Unlike the mRNA levels, the level of the nitrite reductase protein increased slowly during the anaerobic period, reaching a stable value about 30 h after the switch. All denitrification intermediates could be observed transiently, but when the new anaerobic steady state was reached, dinitrogen was the main product. When the anaerobic cultures were switched back to aerobic respiration, denitrification of the cells stopped at once, although sufficient nitrite reductase was still present. We could observe that the mRNA levels for the individual denitrification enzymes decreased slightly to their aerobic, uninduced levels. The nitrite reductase protein was not actively degraded during the aerobic period.  相似文献   

10.
Production and consumption of nitric oxide by three methanotrophic bacteria   总被引:2,自引:0,他引:2  
We studied nitrogen oxide production and consumption by methanotrophs Methylobacter luteus (group I), Methylosinus trichosporium OB3b (group II), and an isolate from a hardwood swamp soil, here identified by 16S ribosomal DNA sequencing as Methylobacter sp. strain T20 (group I). All could consume nitric oxide (nitrogen monoxide, NO), and produce small amounts of nitrous oxide (N(2)O). Only Methylobacter strain T20 produced large amounts of NO (>250 parts per million by volume [ppmv] in the headspace) at specific activities of up to 2.0 x 10(-17) mol of NO cell(-1) day(-1), mostly after a culture became O(2) limited. Production of NO by strain T20 occurred mostly in nitrate-containing medium under anaerobic or nearly anaerobic conditions, was inhibited by chlorate, tungstate, and O(2), and required CH(4). Denitrification (methanol-supported N(2)O production from nitrate in the presence of acetylene) could not be detected and thus did not appear to be involved in the production of NO. Furthermore, cd(1) and Cu nitrite reductases, NO reductase, and N(2)O reductase could not be detected by PCR amplification of the nirS, nirK, norB, and nosZ genes, respectively. M. luteus and M. trichosporium produced some NO in ammonium-containing medium under aerobic conditions, likely as a result of methanotrophic nitrification and chemical decomposition of nitrite. For Methylobacter strain T20, arginine did not stimulate NO production under aerobiosis, suggesting that NO synthase was not involved. We conclude that strain T20 causes assimilatory reduction of nitrate to nitrite, which then decomposes chemically to NO. The production of NO by methanotrophs such as Methylobacter strain T20 could be of ecological significance in habitats near aerobic-anaerobic interfaces where fluctuating O(2) and nitrate availability occur.  相似文献   

11.
Denitrification is a facultative respiratory pathway in which nitrite (NO2(-)), nitric oxide (NO), and nitrous oxide (N2O) are successively reduced to nitrogen gas (N(2)), effectively closing the nitrogen cycle. The ability to denitrify is widely dispersed among prokaryotes, and this polyphyletic distribution has raised the possibility of horizontal gene transfer (HGT) having a substantial role in the evolution of denitrification. Comparisons of 16S rRNA and denitrification gene phylogenies in recent studies support this possibility; however, these results remain speculative as they are based on visual comparisons of phylogenies from partial sequences. We reanalyzed publicly available nirS, nirK, norB, and nosZ partial sequences using Bayesian and maximum likelihood phylogenetic inference. Concomitant analysis of denitrification genes with 16S rRNA sequences from the same organisms showed substantial differences between the trees, which were supported by examining the posterior probability of monophyletic constraints at different taxonomic levels. Although these differences suggest HGT of denitrification genes, the presence of structural variants for nirK, norB, and nosZ makes it difficult to determine HGT from other evolutionary events. Additional analysis using phylogenetic networks and likelihood ratio tests of phylogenies based on full-length sequences retrieved from genomes also revealed significant differences in tree topologies among denitrification and 16S rRNA gene phylogenies, with the exception of the nosZ gene phylogeny within the data set of the nirK-harboring genomes. However, inspection of codon usage and G + C content plots from complete genomes gave no evidence for recent HGT. Instead, the close proximity of denitrification gene copies in the genomes of several denitrifying bacteria suggests duplication. Although HGT cannot be ruled out as a factor in the evolution of denitrification genes, our analysis suggests that other phenomena, such gene duplication/divergence and lineage sorting, may have differently influenced the evolution of each denitrification gene.  相似文献   

12.
13.
Nitrous oxide can be a harmful by-product in nitrogen removal from wastewater. Since wastewater treatment systems operate under different aeration regimens, the influence of different oxygen concentrations and oxygen fluctuations on denitrification was studied. Continuous cultures of Alcaligenes faecalis TUD produced N2O under anaerobic as well as aerobic conditions. Below a dissolved oxygen concentration of 5% air saturation, the relatively highest N2O production was observed. Under these conditions, significant activities of nitrite reductase could be measured. After transition from aerobic to anaerobic conditions, there was insufficient nitrite reductase present to sustain growth and the culture began to wash out. After 20 h, nitrite reductase became detectable and the culture started to recover. Nitrous oxide reductase became measurable only after 27 h, suggesting sequential induction of the denitrification reductases, causing the transient accumulation of N2O. After transition from anaerobic conditions to aerobic conditions, nitrite reduction continued (at a lower rate) for several hours. N2O reduction appeared to stop immediately after the switch, indicating inhibition of nitrous oxide reductase, resulting in high N2O emissions (maximum, 1.4 mmol liter-1 h-1). The nitrite reductase was not inactivated by oxygen, but its synthesis was repressed. A half-life of 16 to 22 h for nitrite reductase under these conditions was calculated. In a dynamic aerobic-anaerobic culture of A. faecalis, a semisteady state in which most of the N2O production took place after the transition from anaerobic to aerobic conditions was obtained. The nitrite consumption rate in this culture was equal to that in an anaerobic culture (0.95 and 0.92 mmol liter-1 h-1, respectively), but the production of N2O was higher in the dynamic culture (28 and 26% of nitrite consumption, respectively).  相似文献   

14.
A lab-scale sequencing batch reactor fed with real municipal wastewater was used to study nitrous oxide (N(2)O) emissions from simulated wastewater treatment processes. The experiments were performed under four different controlled conditions as follows: (1) fully aerobic, (2) anoxic-aerobic with high dissolved oxygen (DO) concentration, (3) anoxic-aerobic with low DO concentration, and 4) intermittent aeration. The results indicated that N(2)O production can occur from both incomplete nitrification and incomplete denitrification. N(2)O production from denitrification was observed in both aerobic and anoxic phases. However, N(2)O production from aerobic conditions occurred only when both low DO concentrations and high nitrite concentration existed simultaneously. The magnitude of N(2) O produced via anoxic denitrification was lower than via oxic denitrification and required the presence of nitrite. Changes in DO, ammonium, and nitrite concentrations influenced the magnitude of N(2)O production through denitrification. The results also suggested that N(2)O can be produced from incomplete denitrification and then released to the atmosphere during aeration phase due to air stripping. Therefore, biological nitrogen removal systems should be optimized to promote complete nitrification and denitrification to minimize N(2)O emissions.  相似文献   

15.
16.
Biological reduction of nitric oxide (NO) in aqueous solutions of EDTA chelated Fe(II) is one of the main steps in the BioDeNOx process, a novel bioprocess for the removal of nitrogen oxides (NOx) from polluted gas streams. Since NOx contaminated gases usually also contain sulfurous pollutants, the possible interferences of these sulfur compounds with the BioDeNOx process need to be identified. Therefore, the effect of the sulfur compounds Na2SO4, Na2SO3, and H2S on the biological NO reduction in aqueous solutions of Fe(II)EDTA2- (25 mM, pH 7.2, 55 degrees C) was studied in batch experiments. Sulfate and sulfite were found to not affect the reduction rate of Fe(II)EDTA2- complexed NO under the conditions tested. Sulfide, either dosed externally or formed during the batch incubation out of endogenous sulfur sources or the supplied sulfate or sulfite, influences the production and consumption of the intermediate nitrous oxide (N2O) during Fe(II)EDTA2- bound NO reduction. At low concentrations (0.2 g VSS/l) of denitrifying sludge, 0.2 mM free sulfide completely inhibited the nitrosyl-complex reduction. At higher biomass concentrations (1.3-2.3 g VSS/l), sulfide (from 15 microM to 0.8 mM) induced an incomplete NO denitrification with N2O accumulation. The reduction rates of NO to N2O were enhanced by anaerobic sludge, presumably because it kept FeEDTA in the reduced state.  相似文献   

17.
Nitric oxide (NO) is an important host defence molecule that varies its immune stimulatory effects depending on the concentrations at which it is produced, with low concentrations (< 1 microM) promoting an anti-inflammatory host response while higher concentrations (>1 microM) lead to inflammatory responses. Neisseria gonorrhoeae grows anaerobically by anaerobic respiration using nitrite reductase (Nir) to convert nitrite to NO and nitric oxide reductase (Nor) to convert NO to nitrous oxide. As N. gonorrhoeae can both produce and degrade NO, we have begun a study of NO metabolism in this bacterium to understand how gonococcal manipulation of NO concentration may influence the inflammatory response during infection. N. gonorrhoeae has an apparent Nir Km of 33 microM nitrite and an apparent Nor Km of 1.2 microM NO. The maximum specific activities for Nir and Nor were 135 nmoles nitrite reduced per minute per OD600 (pH 6.7) and 270 nmoles NO reduced per minute per OD600 (pH 7.5) respectively. N. gonorrhoeae established a steady-state concentration of NO after nitrite addition that was dependent on the nitrite concentration until saturation at 1 mM nitrite. The NO steady-state level decreased as pH increased, and the ratio of activities of Nir and Nor correlated to the NO steady-state level. When the NO donor DETA/NO was used to simulate host NO production, N. gonorrhoeae also established a NO steady-state level. The concentration of NO at steady state was found to be a function of the concentration of NO generated by DETA/NO, with N. gonorrhoeae reducing the NO from proinflammatory (>1 microM) to anti-inflammatory (approximately 100 nM) concentrations. The implications of the ability of N. gonorrhoeae to maintain an anti-inflammatory NO concentration is discussed in relation to asymptomatic infection in women.  相似文献   

18.
We have shown that many fungi (eukaryotes) exhibit distinct denitrifying activities, although occurrence of denitrification was previously thought to be restricted to bacteria (prokaryotes), and have characterized the fungal denitrification system. It comprises NirK (copper-containing nitrite reductase) and P450nor (a cytochrome P450 nitric oxide (NO) reductase (Nor)) to reduce nitrite to nitrous oxide (N(2)O). The system is localized in mitochondria functioning during anaerobic respiration. Some fungal systems further contain and use dissimilatory and assimilatory nitrate reductases to denitrify nitrate. Phylogenetic analysis of nirK genes showed that the fungal-denitrifying system has the same ancestor as the bacterial counterpart and suggested a possibility of its proto-mitochondrial origin. By contrast, fungi that have acquired a P450 from bacteria by horizontal transfer of the gene, modulated its function to give a Nor activity replacing the original Nor with P450nor. P450nor receives electrons directly from nicotinamide adenine dinucleotide to reduce NO to N(2)O. The mechanism of this unprecedented electron transfer has been extensively studied and thoroughly elucidated. Fungal denitrification is often accompanied by a unique phenomenon, co-denitrification, in which a hybrid N(2) or N(2)O species is formed upon the combination of nitrogen atoms of nitrite with a nitrogen donor (amines and imines). Possible involvement of NirK and P450nor is suggested.  相似文献   

19.
Nitrate and nitrite concentrations in the water and nitrous oxide and nitrite fluxes across the sediment-water interface were measured monthly in the River Colne estuary, England, from December 1996 to March 1998. Water column concentrations of N(2)O in the Colne were supersaturated with respect to air, indicating that the estuary was a source of N(2)O for the atmosphere. At the freshwater end of the estuary, nitrous oxide effluxes from the sediment were closely correlated with the nitrite concentrations in the overlying water and with the nitrite influx into the sediment. Increases in N(2)O production from sediments were about 10 times greater with the addition of nitrite than with the addition of nitrate. Rates of denitrification were stimulated to a larger extent by enhanced nitrite than by nitrate concentrations. At 550 microM nitrite or nitrate (the highest concentration used), the rates of denitrification were 600 micromol N.m(-2).h(-1) with nitrite but only 180 micromol N.m(-2).h(-1) with nitrate. The ratios of rates of nitrous oxide production and denitrification (N(2)O/N(2) x 100) were significantly higher with the addition of nitrite (7 to 13% of denitrification) than with nitrate (2 to 4% of denitrification). The results suggested that in addition to anaerobic bacteria, which possess the complete denitrification pathway for N(2) formation in the estuarine sediments, there may be two other groups of bacteria: nitrite denitrifiers, which reduce nitrite to N(2) via N(2)O, and obligate nitrite-denitrifying bacteria, which reduce nitrite to N(2)O as the end product. Consideration of free-energy changes during N(2)O formation led to the conclusion that N(2)O formation using nitrite as the electron acceptor is favored in the Colne estuary and may be a critical factor regulating the formation of N(2)O in high-nutrient-load estuaries.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号