共查询到20条相似文献,搜索用时 15 毫秒
1.
Du P Stolovitzky G Horvatovich P Bischoff R Lim J Suits F 《Bioinformatics (Oxford, England)》2008,24(8):1070-1077
Motivation: Mass spectrometry data are subjected to considerablenoise. Good noise models are required for proper detection andquantification of peptides. We have characterized noise in bothquadrupole time-of-flight (Q-TOF) and ion trap data, and haveconstructed models for the noise. Results: We find that the noise in Q-TOF data from Applied BiosystemsQSTAR fits well to a combination of multinomial and Poissonmodel with detector dead-time correction. In comparison, iontrap noise from Agilent MSD-Trap-SL is larger than the Q-TOFnoise and is proportional to Poisson noise. We then demonstratethat the noise model can be used to improve deisotoping forpeptide detection, by estimating appropriate cutoffs of thegoodness of fit parameter at prescribed error rates. The noisemodels also have implications in noise reduction, retentiontime alignment and significance testing for biomarker discovery. Contact: pdu{at}us.ibm.com Supplementary information: Supplementary data are availableat Bioinfomatics Online.
Associate Editor: Olga Troyanskaya 相似文献
2.
Summary The paper considers a model of competition, based upon the Lotka-Volterra equations, which explicitly considers the effect of density independent mortality upon the outcome of competition. The model's possible application to wild Drosophila species in Europe are considered. 相似文献
3.
G G Ross 《Journal of theoretical biology》1973,42(2):333-347
In this paper a deterministic differential equation system is proposed to model the population dynamics of a biological community in which two species on the same trophic level compete for a common food, taken to be in limited supply. Food limitation is assumed to be the only inhibition of the growth of the populations and food quantity is assumed to be only affected by consumption. The model is thus designed to mimic a closed experimental situation rather than a natural community.Analytical properties of the solution of the differential equation system are developed and corresponding biological interpretations suggested.Cited laboratory data on the experimental batch community consisting of the marine ciliates Euplotes vannus and Uronema marinum feeding on bacteria motivated the model and supported its analytic properties. 相似文献
4.
A competition model for a seasonally fluctuating nutrient 总被引:5,自引:0,他引:5
S. B. Hsu 《Journal of mathematical biology》1980,9(2):115-132
A model of two species consuming a single, limited, periodically added resource is discussed. The model is based on chemostat-type equations, which differ from the classical models of Lotka and Volterra. The model incorporates nonlinear functional response curves of the Holling or Michaelis-Menten type to describe the dependence of the resource-exploitation rate on the amount of resource. Coexistence of two species due to seasonal variation is indicated by numerical studies. 相似文献
5.
Molecular classification of liver cirrhosis in a rat model by proteomics and bioinformatics 总被引:7,自引:0,他引:7
Xu XQ Leow CK Lu X Zhang X Liu JS Wong WH Asperger A Deininger S Eastwood Leung HC 《Proteomics》2004,4(10):3235-3245
Liver cirrhosis is a worldwide health problem. Reliable, noninvasive methods for early detection of liver cirrhosis are not available. Using a three-step approach, we classified sera from rats with liver cirrhosis following different treatment insults. The approach consisted of: (i) protein profiling using surface-enhanced laser desorption/ionization (SELDI) technology; (ii) selection of a statistically significant serum biomarker set using machine learning algorithms; and (iii) identification of selected serum biomarkers by peptide sequencing. We generated serum protein profiles from three groups of rats: (i) normal (n=8), (ii) thioacetamide-induced liver cirrhosis (n=22), and (iii) bile duct ligation-induced liver fibrosis (n=5) using a weak cation exchanger surface. Profiling data were further analyzed by a recursive support vector machine algorithm to select a panel of statistically significant biomarkers for class prediction. Sensitivity and specificity of classification using the selected protein marker set were higher than 92%. A consistently down-regulated 3495 Da protein in cirrhosis samples was one of the selected significant biomarkers. This 3495 Da protein was purified on-chip and trypsin digested. Further structural characterization of this biomarkers candidate was done by using cross-platform matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) peptide mass fingerprinting (PMF) and matrix-assisted laser desorption/ionization time of flight/time of flight (MALDI-TOF/TOF) tandem mass spectrometry (MS/MS). Combined data from PMF and MS/MS spectra of two tryptic peptides suggested that this 3495 Da protein shared homology to a histidine-rich glycoprotein. These results demonstrated a novel approach to discovery of new biomarkers for early detection of liver cirrhosis and classification of liver diseases. 相似文献
6.
Background
This paper considers the problem of identifying pathways through metabolic networks that relate to a specific biological response. Our proposed model, HME3M, first identifies frequently traversed network paths using a Markov mixture model. Then by employing a hierarchical mixture of experts, separate classifiers are built using information specific to each path and combined into an ensemble prediction for the response. 相似文献7.
Dworzanski JP Deshpande SV Chen R Jabbour RE Snyder AP Wick CH Li L 《Journal of proteome research》2006,5(1):76-87
Timely classification and identification of bacteria is of vital importance in many areas of public health. We present a mass spectrometry (MS)-based proteomics approach for bacterial classification. In this method, a bacterial proteome database is derived from all potential protein coding open reading frames (ORFs) found in 170 fully sequenced bacterial genomes. Amino acid sequences of tryptic peptides obtained by LC-ESI MS/MS analysis of the digest of bacterial cell extracts are assigned to individual bacterial proteomes in the database. Phylogenetic profiles of these peptides are used to create a matrix of sequence-to-bacterium assignments. These matrixes, viewed as specific assignment bitmaps, are analyzed using statistical tools to reveal the relatedness between a test bacterial sample and the microorganism database. It is shown that, if a sufficient amount of sequence information is obtained from the MS/MS experiments, a bacterial sample can be classified to a strain level by using this proteomics method, leading to its positive identification. 相似文献
8.
F. G. Mosqueira 《Bulletin of mathematical biology》1983,45(1):51-67
Asimple model system of two self-reproducing objects is considered. A set of equations, similar to Eigen's equation, describing competition of these objects is derived and analyzed under the effect of an ‘ecological constraint’. The relation with other constraints used in the literature is discussed. 相似文献
9.
A spatially explicit integrodifference equation model is studied for the spread of an invading organism against an established competitor. Provided the invader is initially confined to a bounded region, the invasion spreads asymptotically as a travelling wave whose speed depends on the strength of the competitive interaction and on the dispersal characteristics of the invader. Even an inferior, but established, competitor can significantly reduce the invasion speed. The invasion speed is also influenced by the exact shape of the dispersal kernel (especially the thickness of the tail) as well as the mean dispersal distance for each generation. Received 10 April 1996; received in revised form 21 August 1996 相似文献
10.
Some viruses encode proteins that promote cell proliferation while others, such as the human immunodeficiency virus (HIV), encode proteins that prevent cell division. It has been hypothesized that the selective advantage determining which strategy evolves depends on the ability of the virus to induce a cellular environment which maximizes both virus production and cell life span. In HIV, the protein that causes cell cycle arrest is Vpr. In this paper, we develop a mathematical model, based on difference equations, to study the competition between two genotypes of HIV - one that encodes this protein (Vpr+) and one that does not (Vpr-). In particular, we are interested in parameters that could be different between the in vitro condition, where the Vpr- genotype dominates, and the in vivo condition, where the Vpr+ genotype dominates. Our model indicates that the infected cell death-rate, the viral half-life, and the dynamics of the target cell population all effect the competition dynamics between the Vpr+ and Vpr- viral genotypes. Perturbing any of these parameters from the in vitro estimates while holding the others fixed has no affect on the competition outcome, i. e., the Vpr- genotype dominates. Perturbing the infected cell death-rate and the target cell source causes a switch in competitive outcome, although not necessarily at values, which represent the in vivo condition. Adding a perturbation in the viral half-life from in vitro to in vivo condition results in a switch of the competitive advantage from the Vpr- genotype to the Vpr+ genotype with parameters for all three mechanisms set to estimated in vivo values. 相似文献
11.
G-Protein Coupled Receptors (GPCR) are the largest family of membrane bound receptor and plays a vital role in various biological
processes with their amenability to drug intervention. They are the spotlight for the pharmaceutical industry. Experimental methods are both
time consuming and expensive so there is need to develop a computational approach for classification to expedite the drug discovery
process. In the present study domain based classification model has been developed by employing and evaluating various machine learning
approaches like Bagging, J48, Bayes net, and Naive Bayes. Various softwares are available for predicting domains. The result and accuracy
of output for the same input varies for these software''s. Thus, there is dilemma in choosing any one of it. To address this problem, a
simulation model has been developed using well known five softwares for domain prediction to explore the best predicted result with
maximum accuracy. The classifier is developed for classification up to 3 levels for class A. An accuracy of 98.59% by Naïve Bayes for level
I, 92.07% by J48 for level II and 82.14% by Bagging for level III has been achieved. 相似文献
12.
Daly DS Anderson KK Panisko EA Purvine SO Fang R Monroe ME Baker SE 《Journal of proteome research》2008,7(3):1209-1217
Comparing a protein's concentrations across two or more treatments is the focus of many proteomics studies. A frequent source of measurements for these comparisons is a mass spectrometry (MS) analysis of a protein's peptide ions separated by liquid chromatography (LC) following its enzymatic digestion. Alas, LC-MS identification and quantification of equimolar peptides can vary significantly due to their unequal digestion, separation, and ionization. This unequal measurability of peptides, the largest source of LC-MS nuisance variation, stymies confident comparison of a protein's concentration across treatments. Our objective is to introduce a mixed-effects statistical model for comparative LC-MS proteomics studies. We describe LC-MS peptide abundance with a linear model featuring pivotal terms that account for unequal peptide LC-MS measurability. We advance fitting this model to an often incomplete LC-MS data set with REstricted Maximum Likelihood (REML) estimation, producing estimates of model goodness-of-fit, treatment effects, standard errors, confidence intervals, and protein relative concentrations. We illustrate the model with an experiment featuring a known dilution series of a filamentous ascomycete fungus Trichoderma reesei protein mixture. For 781 of the 1546 T. reesei proteins with sufficient data coverage, the fitted mixed-effects models capably described the LC-MS measurements. The LC-MS measurability terms effectively accounted for this major source of uncertainty. Ninety percent of the relative concentration estimates were within 0.5-fold of the true relative concentrations. Akin to the common ratio method, this model also produced biased estimates, albeit less biased. Bias decreased significantly, both absolutely and relative to the ratio method, as the number of observed peptides per protein increased. Mixed-effects statistical modeling offers a flexible, well-established methodology for comparative proteomics studies integrating common experimental designs with LC-MS sample processing plans. It favorably accounts for the unequal LC-MS measurability of peptides and produces informative quantitative comparisons of a protein's concentration across treatments with objective measures of uncertainties. 相似文献
13.
Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) undergoes Ca(2+)/calmodulin-dependent autophosphorylation of threonine-286/287 (Thr(286/287)). Extremely high concentration of CaMKII in the postsynaptic spine indicates that increase in the Ca(2+) concentration in the spine induced by synaptic activation results in Thr(286/287) autophosphorylation of this enzyme. It has recently been shown that the K(d) value of CaMKII for Ca(2+)/calmodulin (Ca(2+)/CaM) drastically decreases after Thr(286/287) autophosphorylation. Therefore, Ca(2+)/CaM associated with CaMKII becomes tightly bound to this kinase after Thr(286/287) autophosphorylation. This has been called 'Ca(2+)/CaM trapping'. We discussed the functional significance of Ca(2+)/CaM trapping in the neuronal system by a mathematical-modelling approach. We considered neighbouring synapses formed on the same dendrite and different increase in the Ca(2+) concentration in each spine. CaMKII undergoing Thr(286/287) autophosphorylation in each spine is eager to recruit nearby calmodulin in the dendrite for Ca(2+)/CaM trapping. Since the amount of calmodulin is limited, recruiting calmodulin to each spine causes competition among synapses for this finite resource. The results of our computer simulation show that this competition leads to 'winner-take-all': almost all calmodulin is taken by a few synapses to which relatively large increases in the Ca(2+) concentration are assigned. These results suggest a novel form of synaptic encoding of information. 相似文献
14.
Background
Analysis of complex samples with tandem mass spectrometry (MS/MS) has become routine in proteomic research. However, validation of database search results creates a bottleneck in MS/MS data processing. Recently, methods based on a randomized database have become popular for quality control of database search results. However, a consequent problem is the ignorance of how to combine different database search scores to improve the sensitivity of randomized database methods. 相似文献15.
Background
Detailed knowledge of the subcellular location of each expressed protein is critical to a full understanding of its function. Fluorescence microscopy, in combination with methods for fluorescent tagging, is the most suitable current method for proteome-wide determination of subcellular location. Previous work has shown that neural network classifiers can distinguish all major protein subcellular location patterns in both 2D and 3D fluorescence microscope images. Building on these results, we evaluate here new classifiers and features to improve the recognition of protein subcellular location patterns in both 2D and 3D fluorescence microscope images.Results
We report here a thorough comparison of the performance on this problem of eight different state-of-the-art classification methods, including neural networks, support vector machines with linear, polynomial, radial basis, and exponential radial basis kernel functions, and ensemble methods such as AdaBoost, Bagging, and Mixtures-of-Experts. Ten-fold cross validation was used to evaluate each classifier with various parameters on different Subcellular Location Feature sets representing both 2D and 3D fluorescence microscope images, including new feature sets incorporating features derived from Gabor and Daubechies wavelet transforms. After optimal parameters were chosen for each of the eight classifiers, optimal majority-voting ensemble classifiers were formed for each feature set. Comparison of results for each image for all eight classifiers permits estimation of the lower bound classification error rate for each subcellular pattern, which we interpret to reflect the fraction of cells whose patterns are distorted by mitosis, cell death or acquisition errors. Overall, we obtained statistically significant improvements in classification accuracy over the best previously published results, with the overall error rate being reduced by one-third to one-half and with the average accuracy for single 2D images being higher than 90% for the first time. In particular, the classification accuracy for the easily confused endomembrane compartments (endoplasmic reticulum, Golgi, endosomes, lysosomes) was improved by 5–15%. We achieved further improvements when classification was conducted on image sets rather than on individual cell images.Conclusions
The availability of accurate, fast, automated classification systems for protein location patterns in conjunction with high throughput fluorescence microscope imaging techniques enables a new subfield of proteomics, location proteomics. The accuracy and sensitivity of this approach represents an important alternative to low-resolution assignments by curation or sequence-based prediction.16.
17.
The chemostat is a basic model for competition in an open system and a model for the laboratory bio-reactor (CSTR). Inhibitors in open systems are studied with a view of detoxification in natural systems and of control in bio-reactors. This study allows the amount of resource devoted to inhibitor production to depend on the state of the system. The feasibility of one dependence is provided by quorum sensing. In contrast to the constant allocation case, a much wider set of outcomes is possible including interior, stable rest points and stable limit cycles. These outcomes are important contrasts to competitive exclusion or bistable attractors that are often the outcomes for competitive systems. The model consists of four non-linear ordinary differential equations and computer software is used for most of the stability calculations. 相似文献
18.
19.
The effect of abnormal cell proportion on the performance of an automated cervical prescreening system is discussed in K.R. Castleman and B.S. White, Cytometry 2:155-18. The model employed assumes fixed proportions of abnormal cells, both in the design stage and in the test stage. In the present paper, an extended model is developed that allows for random variability of this proportion. It is shown, that there is a fundamental, non-zero lower limit to the false-negative specimen error rate, which depends only on the coefficient of variation. This limit may be reached even for moderate values of the coefficient of variation, which implies that a satisfactory prescreening system may not be feasible. 相似文献