首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Theoretical and empirical studies indicate that exploitation is a possible driver of exploiter and victim diversification. However, there are many factors which could promote and limit this diversification process. Using a spatially explicit individual-based model, where an exploiter's success depends on matching between its own and a victim's continuous trait, we simulate local communities of victims and exploiters. We investigate how exploiter mobility (searching ability and movement strategies) can influence diversification of victims. We find that if victim traits are under intermediate intensity of stabilizing selection, disruptive selection exerted by exploiters can indeed lead to diversification in victim population and the victim trait distribution can split into two or more groups. Searching ability and movement strategy of exploiters (local vs. global movement) play a role in determining the number of victim trait groups emerging. Moreover, they affect the proportion of infected victims and the formation of spatial patterns in the victim trait distribution. In addition, with a high searching ability, exploiters with global movement drive victims to be more diverse than exploiters with local movement.  相似文献   

2.
From parasitism to mutualism: partner control in asymmetric interactions   总被引:1,自引:0,他引:1  
Intraspecific cooperation and interspecific mutualism often feature a marked asymmetry in the scope for exploitation. Cooperation may nevertheless persist despite one‐sided opportunities for cheating, provided that the partner vulnerable to exploitation has sufficient control over the duration of interaction. Here we develop a simple, game theoretical model of this form of partner control. We show that as a victim's ability to terminate an encounter increases, selection can favour reduced exploitation, resulting in a switch from parasitism to mutualism. For a given level of control, exploitation is likely to be less intense and the interaction to last longer when there are greater mutualistic benefits to be gained, and when the benefits of cheating are lower relative to the costs inflicted on the victim. Observations of interactions between cleaner‐fish and non‐predatory species of client are shown to match these predictions.  相似文献   

3.
Mutualisms are ubiquitous in nature, as is their exploitation by both conspecific and heterospecific cheaters. Yet, evolutionary theory predicts that cheating should be favoured by natural selection. Here, we show theoretically that asymmetrical competition for partners generally determines the evolutionary fate of obligate mutualisms facing exploitation by third-species invaders. When asymmetry in partner competition is relatively weak, mutualists may either exclude exploiters or coexist with them, in which case their co-evolutionary response to exploitation is usually benign. When asymmetry is strong, the mutualists evolve towards evolutionary attractors where they become extremely vulnerable to exploiter invasion. However, exploiter invasion at an early stage of the mutualism's history can deflect mutualists' co-evolutionary trajectories towards slightly different attractors that confer long-term stability against further exploitation. Thus, coexistence of mutualists and exploiters may often involve an historical effect whereby exploiters are co-opted early in mutualism history and provide lasting 'evolutionary immunization' against further invasion.  相似文献   

4.
Observations of a host-parasitoid interaction in which victims are significantly less motile than their exploiters suggest the possibility of stable spatial pattern in a fairly homogeneous environment. Findings of pattern formation in continuous-time models are not fully able to account for this behavior. Those findings often rely on questionable biological conditions, and more fundamentally, the continuous nature of time in such models does not reflect the reality of the observed interaction. In this paper, we introduce a discrete-time spatial model of the interaction. The final state of our model is often a striking spatial pattern, similar to those observed. We analyze the model, describe its transient behavior, and find the conditions under which these spatial patterns occur, as well as an estimate of maximum possible patch size under those conditions. We also discuss the existence of such conditions in the natural system.  相似文献   

5.
Cannibalistic interactions generally depend on the size relationship between cannibals and victims. In many populations, a large enough size variation to allow for cannibalism may not only develop among age‐cohorts but also within cohorts. We studied the implications of variation in hatching period length and initial cohort size for the emergence of cannibalism and bimodal size distributions within animal cohorts using a physiologically structured population model. We found that the development of size bimodality was critically dependent on hatching period length, victim density and the presence of a feedback via shared resources. Cannibals only gained enough energy from cannibalism to accelerate in growth when victim density was high relative to cannibal density at the onset of cannibalism. Furthermore, we found that the opportunity for early hatchers to initially feed on an unexploited resource increases the likelihood both for cannibalism to occur and size bimodality to develop. Once cannibals accelerated in growth relative to victims size bimodality, reduced victim numbers and relaxed resource competition resulted. Thus, in addition to that cannibals profited from cannibalism through energy extraction, their potential victims also benefited as the resource recovered due to cannibal thinning. To ensure recruitment success, it can be critical that a few individuals can accelerate in growth and reach a size large enough to escape size‐dependent predation and winter starvation. Hence, within‐cohort cannibalism may be a potentially important mechanism to explain recruitment variation especially for cannibalistic species in temperate climates with strong seasonality. However, the scope for size bimodality to develop as a result of cannibalism may be limited by low victim densities and size and food‐dependent growth rates.  相似文献   

6.
Mutualisms often involve reciprocal adaptations of both partners. Acacia ant-plants defended by symbiotic Pseudomyrmex ant mutualists secrete sucrose-free extrafloral nectar, which is unattractive to generalists. We aimed to investigate whether this extrafloral nectar can also exclude exploiters, that is nondefending ant species. Mutualist workers discriminated against sucrose whereas exploiters and generalists with no affinity toward Acacia myrmecophytes preferred sucrose, because mutualist workers lacked the sucrose-cleaving enzyme invertase, which is present in workers of the other two groups. Sucrose uptake induced invertase activity in workers of parasites and generalists, but not mutualists, and in larvae of all species: the mutualists loose invertase during their ontogeny. This reduced metabolic capacity ties the mutualists to their plant hosts, but it does not completely prevent the mutualism from exploitation. We therefore investigated whether the exploiters studied here are cheaters (i.e., have evolved from former mutualists) or parasites (exploiters with no mutualistic ancestor). A molecular phylogeny demonstrates that the exploiter species did not evolve from former mutualists, and no evidence for cheaters was found. We conclude that being specialized to their partner can prevent mutualists from becoming cheaters, whereas other mechanisms are required to stabilize a mutualism against the exploitation by parasites.  相似文献   

7.
The evolution of cooperation and mutualism has mainly been explored through individual- and group-level processes. However, community-level processes could also impose selection pressure on species interactions. By using a dome-shaped nonmonotonic interaction (DS interaction) with cooperation at low-density and competition at high-density, we studied how cooperation and exploitation are selected at the meta-community level. Our results showed that population densities of species and communities were both significantly associated with the number of DS interactions and the species interaction modes. The more cooperation a species received via DS interactions, the higher its density was. A community with more DS interactions, especially more reciprocal cooperation, showed a higher total population density. Both reciprocal cooperators and exploiters in a local community were more favoured than unidirectional cooperators within a closed community. When facing competition from a community without cooperators (with only competitors), both reciprocal cooperators and exploiters were favoured in a local community, but only reciprocal cooperators were more favoured when facing competition from another community with cooperators. Our results suggest that selection at the meta-community level could be an alternative mechanism for the evolution of cooperation and the depression of exploitation between competitors.  相似文献   

8.
Coevolution is one of the major drivers of complex dynamics in population ecology. Historically, antagonistic coevolution in victim-exploiter systems has been a topic of special interest, and involves traits with various genetic architectures (e.g., the number of genes involved) and effects on interactions. For example, exploiters may need to have traits that “match” those of victims for successful exploitation (i.e., a matching interaction), or traits that exceed those of victims (i.e., a difference interaction). Different models exist which are appropriate for different types of traits, including Mendelian (discrete) and quantitative (continuous) traits. For models with multiple Mendelian traits, recent studies have shown that antagonistic coevolutionary patterns that appear as matching interactions can arise due to multiple difference interactions with costs of having large trait values. Here we generalize their findings to quantitative traits and show, analogously, that the multidimensional difference interactions with costs sometimes behave qualitatively the same as matching interactions. While previous studies in quantitative genetics have used the dichotomy between matching and difference frameworks to explore coevolutionary dynamics, we suggest that exploring multidimensional trait space is important to examine the generality of results obtained from one-dimensional traits.  相似文献   

9.
Many mutualisms host "exploiter" species that consume the benefits provided by one or both mutualists without reciprocating. Exploiters have been widely assumed to destabilize mutualisms, yet they are common. We develop models to explore conditions for local coexistence of obligate plant/pollinating seed parasite mutualisms and nonpollinating exploiters. As the larvae of both pollinators and (at a later time) exploiters consume seeds, we examine the importance of intraspecific and (asymmetric) interspecific competition among and between pollinators and exploiters for achieving three-way coexistence. With weak intra- and interspecific competition, exploiters can invade the stable mutualism and coexist with the mutualists (either stably or with oscillations), provided the exploiters' intrinsic birthrate (b(E)) slightly exceeds that of the pollinators. At higher b(E), all three species go locally extinct. When facing strong interspecific competition, exploiters cannot invade and coexist with the mutualists if intraspecific competition in pollinators and exploiters is weak. However, strong intraspecific competition in pollinators and exploiters facilitates exploiter invasion and coexistence and greatly expands the range of b(E) over which stable coexistence occurs. Our results suggest that mutualist/exploiter coexistence may be more easily achieved than previously thought, thus highlighting the need for a better understanding of competition among and between mutualists and exploiters.  相似文献   

10.
A model for the coevolution of two species in facultative symbiosis is used to investigate conditions under which species merge to form a single reproductive unit. Two traits evolve in each species, the first affecting loss of resources from an individual to its partner, and the second affecting vertical transmission of the symbiosis from one generation to the next. Initial conditions are set so that the symbiosis involves exploitation of one partner by the other and vertical transmission is very rare. It is shown that, even in the face of continuing exploitation, a stable symbiotic unit can evolve with maximum vertical transmission of the partners. Such evolution requires that eventually deaths should exceed births for both species in the free-living state, a condition which can be met if the victim, in the course of developing its defences, builds up sufficiently large costs in the free-living state. This result expands the set of initial conditions from which separate lineages can be expected to merge into symbiotic units.  相似文献   

11.
Employing a mathematical model we show how insularity, genotypic interactions and victim life‐history/demography can influence adaptation in a simple enemy–victim interaction where genotypes migrate between a large source and a smaller, initially unoccupied, isolated habitat. We find that when there are explicit costs to heightened enemy virulence and victim resistance, large/close islands resemble their immigration sources, whereas small and/or distant islands tend to be occupied only by the least defended victims and least virulent enemies. In a model with no explicit cost to genotypic identity, frequencies do not differ on average between source and island. Despite these trends in genotype frequencies, for a range of realistic conditions, both cost and cost‐free genotypic interactions yield an increase in the frequency of resistant encounters as a function of isolation. Moreover, in models with explicit costs, maximal island to island variation in genotypic frequencies is found on islands of intermediate distance from the source. In contrast, the model without explicit costs produces more variable communities, attaining maximum variability in genotypic frequencies at the most isolated islands. We hypothesize that adaptive patterns in mainland–island comparisons may differ substantially from those generated by centre‐periphery comparisons in continental systems.  相似文献   

12.
Although a large portion of plant and animal species exhibit intermediate levels of outcrossing, the factors that maintain this wealth of variation are not well understood. Natural enemies are one relatively understudied ecological factor that may influence the evolutionary stability of mixed mating. In this paper, we aim for a conceptual unification of the role of enemies in mating system expression and evolution in both hermaphroditic animals and plants. We review current theory and detail the potential effects of enemies on fundamental mating system parameters. In doing so, we identify situations in which consideration of enemies alters expectations about the stability of mixed mating. Generally, we find that inclusion of the enemy dimension may broaden conditions in which mixed mating systems are evolutionarily stable. Finally, we highlight avenues ripe for future theoretical and empirical work that will advance our understanding of enemies in the expression and evolution of mixed mating in their hosts/victims, including examination of feedback cycles between victims and enemies and quantification of mating system-related parameters in victim populations in the presence and absence of enemies.  相似文献   

13.
The conditions under which humans benefit from contributing to a public good have attracted great interest; in particular the potential role of punishment of cheaters is hotly debated. In contrast, similar studies on other animals are lacking. In this study, we describe for the first time how the course of interactions between parasitic sabre‐tooth blennies (the cheaters) and their reef fish victims can be used to study both punishment and the emergence of public goods. Sabre tooth blennies (Plagiotremus sp.) sneak up from behind to bite off small pieces of scales and/or mucus from other fish. Victims regularly show spontaneous aggression as well as aggressive responses to blenny attacks. In a between species comparison, we tested how the probability of chasing a blenny is affected by (1) the option of avoiding interactions with a blenny by avoiding its small territory, and (2) variation in local abundance of conspecifics. We found that resident victim species are more aggressive towards blennies than visiting species. This difference persisted when we controlled for victim size and territoriality, suggesting that it is the enforced repeated game structure that causes residents to chase blennies. In residents, we also found a negative correlation between aggression towards blennies and local abundance, which suggests that the benefits of chasing are diluted with increasing local abundance. We discuss the implication of these results for future studies.  相似文献   

14.
Theoretical and empirical studies have shown that enemy–victim interactions in spatially homogenous environments can exhibit diverging oscillations which result in the extinction of one or both species. For enemy–victim models with overlapping generations, we investigate the dynamical implications of spatial heterogeneity created by enemy-free sinks or victimless sinks. An enemy-free sink is a behavioral, physiological or ecological state that reduces or eliminates the victim's vulnerability to the enemy but cannot sustain the victim population. For victims that move in an ideal-free manner, we prove that the inclusion of an enemy-free sink shifts the population dynamics from diverging oscillations to stable oscillations. During these stable oscillations, the victim disperses in an oscillatory manner between the enemy-free sink and the enemy-occupied patch. Enemy-free sinks with lower mortality rates exhibit oscillations with smaller amplitudes and longer periods. A victimless sink, on the other hand, is a behavioral, physiological or ecological state in which the enemy has limited (or no) access to its victims. For enemies that move in an ideal-free manner, we prove that victimless sinks also stabilize diverging oscillations. Simulations suggest that suboptimal behavior due to information gathering or learning limitations amplify oscillations for systems with enemy-free sinks and dampen oscillations for systems with victimless sinks. These results illustrate that the coupling of a sink created by unstable enemy–victim interactions and a sink created by unsuitable environmental conditions can result in population persistence at the landscape level.  相似文献   

15.
Abundant pollinators are often more generalised than rare pollinators. This could be because abundant species have more chance encounters with potential interaction partners. On the other hand, generalised species could have a competitive advantage over specialists, leading to higher abundance. Determining the direction of the abundance–generalisation relationship is therefore a ‘chicken‐and‐egg’ dilemma. Here we determine the direction of the relationship between abundance and generalisation in plant–hummingbird pollination networks across the Americas. We find evidence that hummingbird pollinators are generalised because they are abundant, and little evidence that hummingbirds are abundant because they are generalised. Additionally, most patterns of species‐level abundance and generalisation were well explained by a null model that assumed interaction neutrality (interaction probabilities defined by species relative abundances). These results suggest that neutral processes play a key role in driving broad patterns of generalisation in animal pollinators across large spatial scales.  相似文献   

16.
The exploitation of mutualisms   总被引:8,自引:0,他引:8  
Mutualisms (interspecific cooperative interactions) are ubiquitously exploited by organisms that obtain the benefits mutualists offer, while delivering no benefits in return. The natural history of these exploiters is well-described, but relatively little effort has yet been devoted to analysing their ecological or evolutionary significance for mutualism. Exploitation is not a unitary phenomenon, but a set of loosely related phenomena: exploiters may follow mixed strategies or pure strategies at either the species or individual level, may or may not be derived from mutualists, and may or may not inflict significant costs on mutualisms. The evolutionary implications of these different forms of exploitation, especially the threats they pose to the stability of mutualism, have as yet been minimally explored. Studies of this issue are usually framed in terms of a "temptation to defect" that generates a destabilizing conflict of interest between partners. I argue that this idea is in fact rather inappropriate for interpreting most observed forms of exploitation in mutualisms. I suggest several alternative and testable ideas for how mutualism can persist in the face of exploitation.  相似文献   

17.
Fruit–frugivore interactions have received great attention from evolutionary, ecological and applied perspectives. However, despite the fact that large-scale approaches may offer new insights on fruit–frugivore interactions, little work has been devoted to exploring the factors shaping large-scale variation of seed dispersal. This paper studies the spatial variation in seeds regurgitated within pellets by wintering thrushes (genusTurdus) in a set of 26 Spanish juniper (Juniperus thurifera) woodlands scattered along a latitudinal gradient during two winters of contrasting cone and bird abundance. It explicitly explores whether pellet rain variation among woodlands was related to changes in vegetation cover, temperature, day length duration and bird abundance. Top regression models in the Akaike information criterion framework explained 34 % and 70 % of variance in pellet numbers in low and high crop and bird abundance years, respectively. In both winters, the spatial variation in pellets correlated to thrush abundance and day length duration. Pellet abundance linked to cone distribution only in the year of high crop, in which many migratory, extra-Iberian thrushes arrived to exploit the resource. Strong dependence of seed dispersion on large-scale features affecting bird numbers (e.g. the arrival of extra-Iberian migratory birds) and feeding behaviour (e.g. latitudinal variation in day length duration) suggests a primary role for variables acting at large scale on this mutualistic interaction.  相似文献   

18.
Summary. In social Hymenoptera worker policing that inhibits direct reproduction of workers occurs mainly in the two ways: (1) destruction of worker progenies (postovipositional policing), and (2) aggression towards ovary-developed workers (preovipositional policing). In the queenless ponerine ant, Diacamma sp. from Japan, the existence of the former type of worker policing has been reported, whereas previous studies have failed to find the latter type. We examine the presence of the latter type of worker policing in this species using more careful observational methods. By a series of experiments reuniting previously separated orphaned and non-orphaned subcolonies we found the following facts. Immediately after the colony reunification, aggression frequently took place. Unlike the one-on-one dominance interaction that occurs in non-manipulated colonies, aggression was often directed towards a single victim from multiple attackers, grasping and pulling the victim. The duration of each aggressive interaction was on average far longer in this situation than that of usual dominance interactions. Most victims consisted of ex-orphan workers, while the majority of the attackers were ex-non-orphan workers. Dissection after the above behavioral observation revealed that the ovaries of the victims were on average more active, often containing mature oocytes, than those of non-victims, while the ovaries of attackers were always inactive. The above findings indicate that worker policing via immobilization, which has been reported in some other Ponerinae, also exists in Diacamma sp. from Japan.Received 22 April 2003; revised 28 June and 19 August 2004; accepted 1 September 2004.  相似文献   

19.
Biodiversity monitoring is crucial for effective conservation efforts. Effective monitoring allows managers to determine the status and trends of biodiversity, as well as the success of conservation actions. The population of the Broad-toothed Rats (Mastacomys fuscus) in the Barrington Tops National Park New South Wales, Australia has been monitored since 1999 via scat and live-trapping surveys. We reviewed the methods used and analysed the data produced with the aim of describing patterns of population change over time using a range of outcome variables and identifying different climate correlates. A secondary aim was to explore the use of population statistics that account for imperfect detection by comparing naïve occupancy, with an index of relative abundance based on trap effort, the latency to find scats during scat surveys and an occupancy model based on trapping surveys. Neither of these three methods accounts for detectability variation. Naïve occupancy decreased slightly over time, while the relative abundance based on trap effort revealed no evidence of change. Additionally, naïve occupancy decreased with increasing temperature while temperature had no clear impact on relative abundance. Finally, precipitation had no impact on either naïve occupancy or relative abundance. We found no evidence of a relationship between the latency to find scats and the index of relative abundance, suggesting that one or neither is related to actual abundance. Finally, a multi-season occupancy model found occupancy probability to be 0.78 ± 0.23 (standard error); detection probability as 0.51 ± 0.06; seasonal colonisation rate as 0.36 ± 0.13 and seasonal extinction rate at 0.44 ± 0.13. We conclude that despite significant investment in monitoring, this historical data set does not allow managers to ascertain whether population change has occurred and to identify potential drivers of change. Careful consideration of future methods, in particular, whether there is imperfect detection in scat surveys, will help to inform future monitoring.  相似文献   

20.
Negative density-dependent population regulation in exploitative species is well studied. Positive density-dependence can arise if exploiters must cooperate to obtain access to well-defended resources. Most studies, however, focus on the first type of density-dependence at the expense of the other. Using a parasitoid-host model, we explored how positive density-dependence driven by host defenses in combination with negative density-dependence due to competition for resources impact transient population dynamics. Inspired by interactions between the mountain pine beetle and its pine hosts, we formulated a model of enemy-victim interactions in discrete-time in which the victim is capable of deadly self-defense against exploitation. We fitted the model to data and then analyzed its non-equilibrium dynamics to determine what conditions promote boom-bust dynamics. When present together, strong Allee effects and overcompensating competition for resources among exploiters can cause their populations to irrupt and then crash even though many exploitable resources remain. Accelerating population irruptions followed by precipitous collapse occur for realistic parameter values of our model of mountain pine beetle dynamics. Insect dynamics are often dominated by sudden irruptions and collapses on short time scales. Population crashes in exploitative species often happen enigmatically even when exploitable resources are not depleted. Herein, we argue that strong Allee effects in combination with overcompensation provide a plausible explanation for these boom-bust dynamics in some species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号