首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MicroRNAs (miRNAs) are endogenous, small non‐coding RNAs known to regulate expression of protein‐coding genes. A large proportion of miRNAs are highly conserved, localized as clusters in the genome, transcribed together from physically adjacent miRNAs and show similar expression profiles. Since a single miRNA can target multiple genes and miRNA clusters contain multiple miRNAs, it is important to understand their regulation, effects and various biological functions. Like protein‐coding genes, miRNA clusters are also regulated by genetic and epigenetic events. These clusters can potentially regulate every aspect of cellular function including growth, proliferation, differentiation, development, metabolism, infection, immunity, cell death, organellar biogenesis, messenger signalling, DNA repair and self‐renewal, among others. Dysregulation of miRNA clusters leading to altered biological functions is key to the pathogenesis of many diseases including carcinogenesis. Here, we review recent advances in miRNA cluster research and discuss their regulation and biological functions in pathological conditions.  相似文献   

2.
MicroRNAs (miRNAs) are integral to the gene regulatory network. A single miRNA is capable of controlling the expression of hundreds of protein coding genes and modulate a wide spectrum of biological functions, such as proliferation, differentiation, stress responses, DNA repair, cell adhesion, motility, inflammation, cell survival, senescence and apoptosis, all of which are fundamental to tumorigenesis. Overexpression, genetic amplification, and gain-of-function mutation of oncogenic miRNAs (“onco-miRs”) as well as genetic deletion and loss-of-function mutation of tumor suppressor miRNAs (“suppressor-miRs”) are linked to human cancer. In addition to the dysregulation of a specific onco-miR or suppressor-miRs, changes in global miRNA levels resulting from a defective miRNA biogenesis pathway play a role in tumorigenesis. The function of individual onco-miRs and suppressor-miRs and their target genes in cancer has been described in many different articles elsewhere. In this review, we primarily focus on the recent development regarding the dysregulation of the miRNA biogenesis pathway and its contribution to cancer.  相似文献   

3.
MicroRNAs are a class of small, non‐coding RNAs that can negatively regulate protein‐coding genes, and are associated with almost all known physiological and pathological processes, especially cancer. The number of studies documenting miRNA expression patterns in malignancy continues to expand rapidly, with continuously gained critical information regarding how aberrantly expressed miRNAs may contribute to carcinogenesis. miRNAs can influence cancer pathogenesis, playing a potential role as either oncogenes or tumour suppressors. Recently, several miRNAs have been reported to exert different regulatory functions in oesophageal cancer – the carcinoma typically arising from the epithelial lining of the oesophagus. These miRNAs also have potential clinical applications towards developing biomarkers or targets for possible use in diagnosis or therapy in oesophageal cancer. In this review, we have summarized the two (oncogenic or tumour suppressive) roles of miRNAs here, and their applications as potential biomarkers or therapeutic targets, which may illuminate future treatment for oesophageal cancer.  相似文献   

4.
Keloids are defined as benign dermal scars invading adjacent healthy tissue, characterized by aberrant fibroblast dynamics and overproduction of extracellular matrix. However, the aetiology and molecular mechanism of keloid production remain poorly understood. Recent discoveries have shed new light on the involvement of a class of non‐coding RNAs known as microRNAs (miRNA), in keloid formation. A number of miRNAs have differential expression in keloid tissues and keloid‐derived fibroblasts. These miRNAs have been characterized as novel regulators of cellular processes pertinent to wound healing, including extracellular matrix deposition and fibroblast proliferation. Delineating the functional significance of miRNA deregulation may help us better understand pathogenesis of keloids, and promote development of miRNA‐directed therapeutics against this condition.  相似文献   

5.
6.
MiRNAs are a class of small non‐coding RNAs that are involved in the development and progression of various complex diseases. Great efforts have been made to discover potential associations between miRNAs and diseases recently. As experimental methods are in general expensive and time‐consuming, a large number of computational models have been developed to effectively predict reliable disease‐related miRNAs. However, the inherent noise and incompleteness in the existing biological datasets have inevitably limited the prediction accuracy of current computational models. To solve this issue, in this paper, we propose a novel method for miRNA‐disease association prediction based on matrix completion and label propagation. Specifically, our method first reconstructs a new miRNA/disease similarity matrix by matrix completion algorithm based on known experimentally verified miRNA‐disease associations and then utilizes the label propagation algorithm to reliably predict disease‐related miRNAs. As a result, MCLPMDA achieved comparable performance under different evaluation metrics and was capable of discovering greater number of true miRNA‐disease associations. Moreover, case study conducted on Breast Neoplasms further confirmed the prediction reliability of the proposed method. Taken together, the experimental results clearly demonstrated that MCLPMDA can serve as an effective and reliable tool for miRNA‐disease association prediction.  相似文献   

7.
microRNAs (miRNAs) are highly conserved, non-protein-coding RNAs that function to regulate gene expression. In mammals this regulation is primarily carried out by repression of translation. miRNAs play important roles in homeostatic processes such as development, cell proliferation and cell death. Recently the dysregulation of miRNAs has been linked to cancer initiation and progression, indicating that miRNAs may play roles as tumour suppressor genes or oncogenes. The role of miRNAs in apoptosis is not fully understood, however, evidence is mounting that miRNAs are important in this process. The dysregulation of miRNAs involved in apoptosis may provide a mechanism for cancer development and resistance to cancer therapy. This review examines the biosynthesis of miRNA, the mechanisms of miRNA target regulation and the involvement of miRNAs in the initiation and progression of human cancer. It will include miRNAs involved in apoptosis, specifically those miRNAs involved in the regulation of apoptotic pathways and tumour suppressor/oncogene networks. It will also consider emerging evidence supporting a role for miRNAs in modulating sensitivity to anti-cancer therapy.  相似文献   

8.
Proton particles comprise the most abundant ionizing radiation (IR) in outer space. These high energy particles are known to cause frequent double- and single-stranded DNA lesions that can lead to cancer and tumor formation. Understanding the mechanism of cellular response to proton-derived IR is vital for determining health risks to astronauts during space missions. Our understanding of the consequences of these high energy charged particles on microRNA (miRNA) regulation is still in infancy. miRNAs are non-coding, single-stranded RNAs of ~22 nucleotides that constitute a novel class of gene regulators. They regulate diverse biological processes, and each miRNA can control hundreds of gene targets. To investigate the effect of proton radiation on these master regulators, we examined the miRNA expression in selected mice organs that had been exposed to whole-body proton irradiation (2 Gy), and compared this to control mice (0 Gy exposure). RNA was isolated from three tissues (testis, brain, and liver) from treated and control mice and subjected to high-throughput small RNA sequencing. Bioinformatics analysis of small RNA sequencing data revealed dysregulation of (p < 0.05; 20 up- and 10 down-regulated) 14 mouse testis, 8 liver, and 8 brain miRNAs. The statistically significant and unique miRNA expression pattern found among three different proton-treated mouse tissues indicates a tissue-specific response to proton radiation. In addition to known miRNAs, sequencing revealed differential expression of 11 miRNAs in proton-irradiated mice that have not been previously reported in association with radiation exposure and cancer. The dysregulation of miRNAs on exposure to proton radiation suggest a possible mechanism of proton particles involvement in the onset of cell tumorgenesis. In summary, we have established that specific miRNAs are vulnerable to proton radiation, that such differential expression profile may depend upon the tissue, and that there are more miRNAs affected by proton radiation than have been previously observed.  相似文献   

9.
Micro RNA(miRNA)是近年来研究发现的一种高度保守,长度大约19-25个核苷酸的非编码小分子RNA,起着调控基因表达的作用。目前认为miRNA能调控细胞周期、凋亡、分化、发育和新陈代谢等,参与肿瘤的发生与发展,因此异常表达的miRNAs表达谱有可能成为一种全新的肿瘤分子标记物。相关研究表明,miRNA能够以一种被保护的状态存在于血清及血浆中,因此miRNA表达谱的发现具有易检测性、重现性以及非侵袭性。研究显示血清及血浆中miRNA表达谱可作为上皮性卵巢癌生物信号分子,在上皮性卵巢癌早期诊断、预后判断和化疗药物应用等方面具有不可替代的作用。本文将对miRNA表达谱与上皮性卵巢癌的关系进行一个简单总结。  相似文献   

10.
Exosomes play a crucial role in the crosstalk between cancer associated fibroblasts (CAFs) and cancer cells, contributing to carcinogenesis and the tumour microenvironment. Recent studies have revealed that CAFs, normal fibroblasts and cancer cells all secrete exosomes that contain miRNA, establishing a cell-cell communication network within the tumour microenvironment. For example, miRNA dysregulation in melanoma has been shown to promote CAF activation via induction of epithelial-mesenchymal transition (EMT), which in turn alters the secretory phenotype of CAFs in the stroma. This review assesses the roles of melanoma exosomal miRNAs in CAF formation and how CAF exosome-mediated feedback signalling to melanoma lead to tumour progression and metastasis. Moreover, efforts to exploit exosomal miRNA-mediated network communication between tumour cells and their microenvironment, and their potential as prognostic biomarkers or novel therapeutic targets in melanoma will also be considered.  相似文献   

11.
MicroRNAs (miRNAs) are key regulators of gene expression and contribute to a variety of biological processes. Abnormal miRNA expression has been reported in various diseases including pathophysiology of breast cancer, where they regulate protumorigenic processes including vascular invasiveness, estrogen receptor status, chemotherapy resistance, invasion and metastasis. The miRBase sequence database, a public repository for newly discovered miRNAs, has grown rapidly with approximately >10,000 entries to date. Despite this rapid growth, many miRNAs have not yet been validated, and several others are yet to be identified. A lack of a full complement of miRNAs has imposed limitations on recognizing their important roles in cancer, including breast cancer. Using deep sequencing technology, we have identified 189 candidate novel microRNAs in human breast cancer cell lines with diverse tumorigenic potential. We further show that analysis of 500-nucleotide pri-microRNA secondary structure constitutes a reliable method to predict bona fide miRNAs as judged by experimental validation. Candidate novel breast cancer miRNAs with stem lengths of greater than 30 bp resulted in the generation of precursor and mature sequences in vivo. On the other hand, candidates with stem length less than 30 bp were less efficient in producing mature miRNA. This approach may be used to predict which candidate novel miRNA would qualify as bona fide miRNAs from deep sequencing data with approximately 90% accuracy.  相似文献   

12.
13.
Colorectal Cancer (CRC) is one of the most common digestive system malignant tumors. Recently, PDT has been used as a first-line treatment for colon cancer; however, limited curative effect was obtained due to resistance of CRC to PDT. During the past decades, accumulating CRC-related long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and mRNAs have been reported to exert diverse functions through various biological processes; their dysregulation might trigger and/or promote the pathological changes. Herein, we performed microarrays analysis to identify dysregulated lncRNAs, miRNAs and mRNAs in PDT-treated HCT116 cells to figure out the lncRNA-miRNA interactions related to the resistance of CRC to PDT treatment, and the downstream mRNA target, as well as the molecular mechanism. We found a total of 1096 lncRNAs dysregulated in PDT-treated CRC HCT116 cells; among them, LIFR-AS1 negatively interacted with miR-29a, one of the dysregulated miRNAs in PDT-treated CRC cells, to affect the resistance of CRC to PDT. LIFR-AS1 knockdown attenuated, whereas miR-29a inhibition enhanced the cellular effect of PDT on HCT116 cell proliferation and apoptosis. Furthermore, among the dysregulated mRNAs, TNFAIP3 was confirmed to be a direct target of miR-29a and exerted a similar effect to LIFR-AS1 on the cellular effects of PDT. In summary, LIFR-AS1 serves as a competitive endogenous RNA (ceRNA) for miR-29a to inhibit its expression and up-regulate downstream target TNFAIP3 expression, finally modulating the resistance of CRC to PDT. We provide an experimental basis for this lncRNA/miRNA/mRNA network being a promising target in CRC resistance to PDT treatment.  相似文献   

14.
15.
16.
microRNAs, regulators of complex phenotypes microRNAs (miRNAs) are small, non‐coding RNAs that regulate a number of biological processes, including development. Due to their mode of action some miRNAs are also causally involved in diseases like cancer. miRNAs bind base‐complementary mRNAs and lead to either degradation of the bound mRNAs or translational repression. Both result in decreased protein levels of the particular target. miRNA selectivity is governed via a very short, just six to seven nucleotides long, ”seed" sequence which is likely to exist in many mRNAs. miRNAs are, therefore, believed to target a larger number of mRNAs, each, leading to the concerted regulation of functionally connected proteins and to thus substantially contribute to phenotypes. We have performed several screenings which suggest that, indeed, many miRNAs regulate a larger number of proteins. However, we also showed that the proteins we tested were regulated by a larger number of miRNAs each. The complexity of miRNA regulation opens new avenues towards reaching a molecular understanding of disease phenotypes via the integrated consideration of coordinated regulations.  相似文献   

17.
Aberrant regulation of miRNA genes contributes to pathogenesis of a wide range of human diseases, including cancer. The TAR DNA binding protein 43 (TDP-43), a RNA/DNA binding protein associated with neurodegeneration, is involved in miRNA biogenesis. Here, we systematically examined miRNAs regulated by TDP-43 using RNA-Seq coupled with an siRNA-mediated knockdown approach. TDP-43 knockdown affected the expression of a number of miRNAs. In addition, TDP-43 down-regulation led to alterations in the patterns of different isoforms of miRNAs (isomiRs) and miRNA arm selection, suggesting a previously unknown role of TDP-43 in miRNA processing. A number of TDP-43 associated miRNAs, and their candidate target genes, are associated with human cancers. Our data reveal highly complex roles of TDP-43 in regulating different miRNAs and their target genes. Our results suggest that TDP-43 may promote migration of lung cancer cells by regulating miR-423-3p. In contrast, TDP-43 increases miR-500a-3p expression and binds to the mature miR-500a-3p sequence. Reduced expression of miR-500a-3p is associated with poor survival of lung cancer patients, suggesting that TDP-43 may have a suppressive role in cancer by regulating miR-500a-3p. Cancer-associated genes LIF and PAPPA are possible targets of miR-500a-3p. Our work suggests that TDP-43-regulated miRNAs may play multifaceted roles in the pathogenesis of cancer.  相似文献   

18.
19.
Dysregulation in the expression of miRNAs contributes to the occurrence and development of many human cancers. We herein attempted to obtain the potential association between miRNA expression profile and breast cancer by applying high-throughput sequencing technology. Small RNAs from seven paired tumor and adjacent normal tissue samples were sequenced. To determine the miRNA expression profiles in tissues and sera, another five equally pooled serum samples from 20 patients and 30 normal women were sequenced. Despite a similar number in abundantly expressed miRNAs across samples, we detected varying miRNA expression profiles. Some miRNAs showed inconsistent or opposite dysregulation trends across different tumor tissues, including some abundantly expressed miRNA gene clusters and gene families. Wilcoxon sign-rank test for paired samples analysis revealed that abnormal miRNAs showed a higher level of variation across the seven tumor samples. We also completely surveyed abnormal miRNAs expressed in tumor and serum tissues in the mixed datasets based on the relative expression levels. Most of these miRNAs were significantly down-regulated in tumor samples, but nine abnormal miRNAs (miR-18a, 19a, 20a, 30a, 103b, 126, 126*, 192, 1287) were consistently expressed in tumor tissues and serum samples. Based on experimentally validated target mRNAs, functional enrichment analysis indicated that these abnormal miRNAs and miRNA groups (miRNA gene clusters and gene families) have important roles in multiple biological processes. Dynamic miRNA expression profiles, various abnormal miRNA profiles and complexity of the miRNA regulatory network reveal that the miRNA expression profile is a potential biomarker for classifying or detecting human disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号