首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
本研究选取黄麻属(Corchorus)2个栽培品种及其4个野生类型和3个野生近缘种为材料,采用常规根尖压片法对黄麻属供试材料的染色体数目和核型进行研究。结果表明:染色体数目均为2n=14。核型公式分别为:宽叶长果(长果黄麻栽培种)2n=2x=14=14m(4SAT);南阳野生长果(长果黄麻野生类型)2n=2x=14=14m(2SAT);坦桑尼亚野生长果(长果黄麻野生类型)2n=2x=14=2M+12m;闽麻5号(圆果黄麻栽培种)2n=2x=14=12m+2sm;爱店野生圆果(圆果黄麻野生类型)2n=2x=14=14m ;廉江野生圆果(圆果黄麻野生类型) 2n=2x=14=4M+10m;假黄麻(黄麻属野生近缘种)2n=2x=14=2M+12m;假长果(黄麻属野生近缘种)2n=2x=14=2M+12m;甜麻(黄麻属野生近缘种)2n=2x=14=14m。其中除了宽叶长果核型分类为1B外,其他的都为1A型。本文还讨论了黄麻野生近缘种甜麻的分类学地位。  相似文献   

2.
Gene flow from cultivated rice (Oryza sativa) to its weedy and wild relatives   总被引:18,自引:0,他引:18  
BACKGROUND AND AIMS: Transgene escape through gene flow from genetically modified (GM) crops to their wild relative species may potentially cause environmental biosafety problems. The aim of this study was to assess the extent of gene flow between cultivated rice and two of its close relatives under field conditions. METHODS: Experiments were conducted at two sites in Korea and China to determine gene flow from cultivated rice (Oryza sativa L.) to weedy rice (O. sativa f. spontanea) and common wild rice (O. rufipogon Griff.), respectively, under special field conditions mimicking the natural occurrence of the wild relatives in Asia. Herbicide resistance (bar) and SSR molecular finger printing were used as markers to accurately determine gene flow frequencies from cultivated rice varieties to their wild relatives. KEY RESULTS: Gene flow frequency from cultivated rice was detected as between approx. 0.011 and 0.046 % to weedy rice and between approx. 1.21 and 2.19 % to wild rice under the field conditions. CONCLUSIONS: Gene flow occurs with a noticeable frequency from cultivated rice to its weedy and wild relatives, and this might cause potential ecological consequences. It is recommended that isolation zones should be established with sufficient distances between GM rice varieties and wild rice populations to avoid potential outcrosses. Also, GM rice should not be released when it has inserted genes that can significantly enhance the ecological fitness of weedy rice in regions where weedy rice is already abundant and causing great problems.  相似文献   

3.
Yang CC  Sakai H  Numa H  Itoh T 《Gene》2011,477(1-2):53-60
Although a large number of genes are expected to correctly solve a phylogenetic relationship, inconsistent gene tree topologies have been observed. This conflicting evidence in gene tree topologies, known as gene tree discordance, becomes increasingly important as advanced sequencing technologies produce an enormous amount of sequence information for phylogenomic studies among closely related species. Here, we aim to characterize the gene tree discordance of the Asian cultivated rice Oryza sativa and its progenitor, O. rufipogon, which will be an ideal case study of gene tree discordance. Using genome and cDNA sequences of O. sativa and O. rufipogon, we have conducted the first in-depth analyses of gene tree discordance in Asian rice. Our comparison of full-length cDNA sequences of O. rufipogon with the genome sequences of the japonica and indica cultivars of O. sativa revealed that 60% of the gene trees showed a topology consistent with the expected one, whereas the remaining genes supported significantly different topologies. Moreover, the proportions of the topologies deviated significantly from expectation, suggesting at least one hybridization event between the two subgroups of O. sativa, japonica and indica. In fact, a genome-wide alignment between japonica and indica indicated that significant portions of the indica genome are derived from japonica. In addition, literature concerning the pedigree of the indica cultivar strongly supported the hybridization hypothesis. Our molecular evolutionary analyses deciphered complicated evolutionary processes in closely related species. They also demonstrated the importance of gene tree discordance in the era of high-speed DNA sequencing.  相似文献   

4.
We present a detailed genome-wide comparative study of motif mismatches of microsatellites among 20 insect species representing five taxonomic orders. The results show that varying proportions (∼15–46%) of microsatellites identified in these species are imperfect in motif structure, and that they also vary in chromosomal distribution within genomes. It was observed that the genomic abundance of imperfect repeats is significantly associated with the length and number of motif mismatches of microsatellites. Furthermore, microsatellites with a higher number of mismatches tend to have lower abundance in the genome, suggesting that sequence heterogeneity of repeat motifs is a key determinant of genomic abundance of microsatellites. This relationship seems to be a general feature of microsatellites even in unrelated species such as yeast, roundworm, mouse and human. We provide a mechanistic explanation of the evolutionary link between motif heterogeneity and genomic abundance of microsatellites by examining the patterns of motif mismatches and allele sequences of single-nucleotide polymorphisms identified within microsatellite loci. Using Drosophila Reference Genetic Panel data, we further show that pattern of allelic variation modulates motif heterogeneity of microsatellites, and provide estimates of allele age of specific imperfect microsatellites found within protein-coding genes.  相似文献   

5.
Mangroves form the dominant intertidal ecosystems and differ morphologically and physiologically from their close terrestrial relatives. We investigate the molecular evolutionary pattern of the typical mangrove family, i.e. Rhizophoraceae, and rate heterogeneity for the plastid matK and rbcL genes in different species of the family, as revealed by phylogenetic analyses and relative‐rate tests. Our study documents evolutionary rate heterogeneity in the Rhizophoraceae for the two genes: the mangrove genus Bruguiera has relatively slow substitution rates compared to the terrestrial genus Carallia at both synonymous and non‐synonymous sites in the matK sequences, and the synonymous and non‐synonymous substitution matrices are correlated. However, the rbcL non‐synonymous sites exhibit a high degree of rate heterogeneity among mangroves and related terrestrial groups, and uncoupling of rates with the synonymous sites. Selection is probably an important influence on the rate variation, suggesting further investigation for better understanding of various forces contributing to the rate heterogeneity and molecular adaptation in mangroves.  相似文献   

6.
赵耀  李耕耘  杨继 《生物多样性》2018,26(4):414-5528
栽培植物是人类赖以生存和发展的重要物质基础。全球人口与人均需求量的持续增长导致对植物资源的需求与日俱增。栽培植物较低的遗传多样性是限制其产量增长和质量提高的主要因素。栽培植物野生近缘种在自然环境中积累了丰富的遗传变异, 并在应对环境变化的过程中产生了很多新的适应性状, 是栽培植物种质创新和品种改良的重要遗传资源。然而, 栽培植物野生近缘种的存续和自然进化因生境破坏以及全球气候变化等正面临严重威胁, 需要采取有效的措施进行保护。本文总结了国内外对栽培植物野生近缘种进行原生境保护与迁地保护所取得的进展, 并基于我国实际情况提出了栽培植物野生近缘种的保护建议。此外, 本文还对栽培植物野生近缘种利用技术进行了梳理, 探讨了栽培植物野生近缘种遗传资源可持续利用的新思路。最后, 我们以长江流域几种代表性栽培植物为例, 对主要作物类型的保护与利用情况进行了讨论。  相似文献   

7.
Breeding of competitive cultivars has long been fraught with difficulty owing to limited knowledge of the genetic basis of competitive ability. In this study, we examined the diversity of competitive ability in Asian rice and the genetic basis of this variation. Cultivated strains and wild perennial strains have higher competitive ability than wild annual strains. Quantitative trait locus (QTL) analysis of competitive ability for three weed species was conducted in the cross between cultivated and wild annual strains, and three QTLs for general competitive ability (GCA) were identified. GCA-QTLs conferred higher competitive ability by the cultivated rice alleles and were co-located with QTLs for plant architecture and root growth, detected in the same mapping population. Furthermore, a significant change in GCA was achieved by accumulation and epistatic interaction of three QTLs. Further studies on the genetic control of competitive ability would facilitate the breeding of competitive cultivars in rice.  相似文献   

8.
The analytical power of Arabidopsis thaliana genomics has turned its local varieties (accessions) from divergent habitats into important genetic resources. Variant alleles harbored in those accessions are used to identify loci controlling important plant traits with enormous benefits for analytical as well as applied purposes. We argue here that the information derived from Arabidopsis accessions can be further expanded, if a systematic effort for recording the growth conditions of new Arabidopsis accessions is rapidly implemented. The modest and feasible changes in genetic sampling practice that we propose will dramatically increase the quality and quantity of data obtained from Arabidopsis accessions. The broader data set will no longer focus solely on the genetic mechanism within the plant, but will also address the plant''s interaction with its environment. We suggest (a) a modified sampling strategy involving sample size and the recording of additional growth conditions (Appendix) and (b) the establishment of a centralized and expandable database to cover all available information regarding the habitats of Arabidopsis accessions.Key words: adaptation, Arabidopsis, ecology, evolution, genetic resources, sampling strategyThe influence of the immediate abiotic and biotic environment on the evolution of developmental, physiological, reproductive, defense-related and a variety of ecological characteristics of plants is well documented,13 but is rarely connected to the level of individual gene activities. This is partly because for most plants, the genetic dissection of adaptation processes at the individual, population and evolutionary levels is inherently difficult. The current and foreseeable wealth of molecular insights in the Arabidopsis model system could fill this void. With its very wide natural geographic distribution over large parts of Asia and Europe4 and it''s more recent (human-induced) colonization of habitats in America, Arabidopsis thaliana provides immediate opportunities for studying adaptation processes in great molecular and genetic detail. Therefore, it is not surprising that Arabidopsis has also been used as a model system for population genetics and ecological adaptation in recent years.58 In a parallel dramatic development, increasing numbers of Arabidopsis accessions are currently being characterized in unprecedented molecular detail to be used as parental lines in QTL mapping studies. These two lines of research could most productively benefit from each other, if habitat information for each accession would become available.An example of a relevant question is: how are environmental variables correlated to phenotypic or gene expression profiles of Arabidopsis accessions? An expandable list of such variables to be recorded at the sampling site would include elevation, aspect (facing north, south, east or west), soil type and soil conditions, rainfall, temperature regime, wind direction and velocity, exposure to sun irradiation, level of shade, UV level, photoperiod, snow cover, local plant communities, herbivore diversity, frequency and pressure, fire history, evidence of various disturbances and apparent diseases. We know, for instance, that various characters, such as vascular structure, fiber length and density, cuticle thickness, stomata density and pigment composition, can be subject to selection even within small, locally restricted populations.912 At a time when phenotypic and molecular profiles of Arabidopsis accession are being scrutinized with ever increasing precision, it would be an inexcusable loss, if the corresponding habitat data for those accessions were simply not recorded or retrievable. It seems evident that with a small, but well-coordinated additional effort, it could be possible to address a much wider array of questions and to direct the power of Arabidopsis genomics and genetics to the study of plant adaptations and evolution. Specifically, we propose that a standard list of environmental data should be provided with each accession of seeds, together with multiple deposited plants as well as electronic images of the exact site and general environment and a precise geographical position (GPS) of the sampling site (see appendix). Precise site documentation may enable re-sampling of populations to study their genetic changes over time.Detailed recording of accession habitats and the collection of multiple plants at each location would reciprocally benefit QTL mapping efforts. First, it would firmly establish that the parental lines of a mapping cross are true natural genotypes. This is important, because any exploitation of natural alleles in breeding and biotechnology should rely in the assumption that these alleles have passed the test of natural selection and are not spontaneous mutants or propagation contaminants. Secondly, emerging correlations between habitat conditions and phenotype can guide accession choices for the establishment of new mapping populations. Phenotyping of accessions for specific cell biological or biochemical traits can be labor intensive. To keep numbers manageable, habitat properties with predictive power would be highly desirable.In summary, we do not consider our suggestions of approximately 30 parameters (see the appendix) to be more than the beginning of a discussion. However, it seems to us that the need for organized habitat characterization and sampling is so urgent that this discussion should begin immediately.  相似文献   

9.
10.
11.
The geographic distribution of plant species is already being affected by climate change. Cropping patterns of edible plant species and their wild relatives will also be affected, making it important to predict possible changes to their distributions in the future. Currently, species distribution models are valuable tools that allow the estimation of species’ potential distributions, in the recent past as well as during other time spans for which climate data have been obtained. With the aim of evaluating how species distributions respond to current and future climate changes, in this work species distribution models were generated for two cultivated species of the Porophyllum genus (Asteraceae), known commonly as ‘pápalos' or ‘pápaloquelites', as well as their Mexican wild relatives, at five points in time (21,000 years ago, present, 2020, 2050, and 2080). Using a database of 1442 entries for 16 species of Porophyllum and 19 environmental variables, species distribution models were constructed for each time period using the Maxent modelling algorithm; those constructed for the future used a severe climate change scenario. The results demonstrate contrasting effects between the two cultivated species; for P. linaria, the future scenario suggests a decrease in distribution area, while for P. macrocephalum distribution is predicted to increase. Similar trends are observed in their wild relatives, where 11 species will tend to decrease in distribution area, while three are predicted to increase. It is concluded that the most important agricultural areas where the cultivated species are grown will not be greatly affected, while the areas inhabited by the wild species will. However, while the results suggest that climate change will affect the distribution of the cultivated species in contrasting ways, evaluations at finer scales are recommended to clarify the impact within cultivation zones.  相似文献   

12.
Varying degrees of reduction of genetic diversity in crops relative to their wild progenitors occurred during the process of domestication. Such information, however, has not been available for the Asian cultivated rice (Oryza sativa) despite its importance as a staple food and a model organism. To reveal levels and patterns of nucleotide diversity and to elucidate the genetic relationship and demographic history of O. sativa and its close relatives (Oryza rufipogon and Oryza nivara), we investigated nucleotide diversity data from 10 unlinked nuclear loci in species-wide samples of these species. The results indicated that O. rufipogon and O. nivara possessed comparable levels of nucleotide variation ((sil) = 0.0077 approximately 0.0095) compared with the relatives of other crops. In contrast, nucleotide diversity of O. sativa was as low as (sil) = 0.0024 and even lower ((sil) = 0.0021 for indica and 0.0011 for japonica), if we consider the 2 subspecies separately. Overall, only 20-10% of the diversity in the wild species was retained in 2 subspecies of the cultivated rice (indica and japonica), respectively. Because statistic tests did not reject the assumption of neutrality for all 10 loci, we further used coalescent to simulate bottlenecks under various lengths and population sizes to better understand the domestication process. Consistent with the dramatic reduction in nucleotide diversity, we detected a severe domestication bottleneck and demonstrated that the sequence diversity currently found in the rice genome could be explained by a founding population of 1,500 individuals if the initial domestication event occurred over a 3,000-year period. Phylogenetic analyses revealed close genetic relationships and ambiguous species boundary of O. rufipogon and O. nivara, providing additional evidence to treat them as 2 ecotypes of a single species. Lowest linkage disequilibrium (LD) was found in the perennial O. rufipogon where the r(2) value dropped to a negligible level within 400 bp, and the highest in the japonica rice where LD extended to the entirely sequenced region ( approximately 900 bp), implying that LD mapping by genome scans may not be feasible in wild rice due to the high density of markers needed.  相似文献   

13.
There are few reports of the patterns of polymorphism in the non-coding regions of plant genomes. In this study, we explored nucleotide diversity and linkage disequilibrium (LD) in 47 non-coding regions on chromosome 4 of wild and cultivated rice. The cultivated rice retained about 70% of the diversity of wild rice, which was verified by coalescent simulations with one population bottleneck for 198 combinations of duration and population sizes. Multi-locus likelihood analysis showed that the severity of the bottleneck ranged from 2.25 to 3.33, with an average value of 2.70; i.e., the diversity found in the cultivated rice could be explained by a founding population of 2,700 individuals if the initial domestication event occurred over a period of 1,000 years. LD decreased more rapidly in wild rice than in cultivated rice within 10 kb, and the LD observed in cultivated rice was increased at 100–140 kb by comparison with wild rice. The patterns of LD indicated the possibility of a haplotype block in cultivated rice but not in wild rice.  相似文献   

14.
The cacti have undergone extensive specialization in their evolutionary history, providing an excellent system in which to address large-scale questions of morphological and physiological adaptation. Recent molecular phylogenetic studies suggest that (1) Pereskia, the leafy genus long interpreted as the sister group of all other cacti, is likely paraphyletic, and (2) Cactaceae are nested within a paraphyletic Portulacaceae as a member of the "ACPT" clade (Anacampseroteae, Cactaceae, Portulaca, and Talinum). We collected new data on the vegetative anatomy of the ACPT clade and relatives to evaluate whether patterns in the distributions of traits may provide insight into early events in the evolutionary transition to the cactus life form. Many traits had high levels of homoplasy and were mostly equivocal with regard to infraclade relationships of ACPT, although several characters do lend further support to a paraphyletic Pereskia. These include a thick stem cuticle, prominent stem mucilage cells, and hypodermal calcium oxalate druses, all of which are likely to be important traits for stem water storage and photosynthesis. We hypothesize that high lability of many putative "precursor" traits may have been critical in generating the organismal context necessary for the evolution of an efficient and integrated photosynthetic stem.  相似文献   

15.
The growth of the wild tomato species Lycopersicon peruvianum (L.) Mill, and L. pennellii (Correll) D'Arcy, was compared with that of the cultivated tomato, L. esculentum Mill. cv. VE 234, under conditions of reduced K+ supply. Growth was impaired less in the wild than in the cultivated species. The higher efficiency of K+ utilization in the wild species was not associated with more efficient JC uptake from the medium. The rate of K+ uptake by whole plants was similar in the three species, but the rate of uptake by detached root tips was lower in the wild species. The permeability of the plasma membrane to K+ was apparently similar in root tips of the three species, but the tonoplast permeability was much lower in the wild than in the cultivated species.  相似文献   

16.
Tetraploid emmer wheat (Triticum turgidum L., BBAA) is the founder progenitor of bread wheat, providing the valuable genetic resource and gene pool for wheat improvement. However, the evolutionary trajectory of tetraploid wheat, especially the evolutionary fate of different types of genes has not been well studied. In this study, the rate of non-synonymous substitution (dN) and synonymous substitution (dS) was calculated by comparing the orthologs between the wild emmer and cultivated durum wheat at the whole genome and subgenome levels to obtain the positively selected genes (PSGs) and negatively selected genes (NSGs). Then, mutation rate, gene length, exon number, GC content, codon bias, and expression level were comprehensively investigated and compared between the PSGs and NSGs. Within both wild emmer and cultivated durum wheat, PSGs between A and B subgenome displayed shorter gene and exon lengths as well as fewer exon numbers compared with NSGs, whereas from wild emmer to cultivated durum wheat, PSGs showed longer gene length and more exon numbers. Furthermore, PSGs displayed much higher expression levels and stronger codon usage bias, but lower genetic diversity compared with NSGs. Finally, two PSGs TdER1-6B, and TdLC7-2A, were found to play the crucial roles in regulating grain width and plant height of tetraploid wheat, respectively. This study systematically investigated the evolutionary, structural, and functional difference between PSGs and NSGs in tetraploid wheat, which will contribute to a better understanding of the selective mode and evolutionary trajectory during wheat domestication and evolution.  相似文献   

17.
Asian wild rice (Oryza rufipogon) that ranges widely across the eastern and southern part of Asia is recognized as the direct ancestor of cultivated Asian rice (O. sativa). Studies of the geographic structure of O. rufipogon, based on chloroplast and low‐copy nuclear markers, reveal a possible phylogeographic signal of subdivision in O. rufipogon. However, this signal of geographic differentiation is not consistently observed among different markers and studies, with often conflicting results. To more precisely characterize the phylogeography of O. rufipogon populations, a genome‐wide survey of unlinked markers, intensively sampled from across the entire range of O. rufipogon is critical. In this study, we surveyed sequence variation at 42 genome‐wide sequence tagged sites (STS) in 108 O. rufipogon accessions from throughout the native range of the species. Using Bayesian clustering, principal component analysis and amova , we conclude that there are two genetically distinct O. rufipogon groups, Ruf‐I and Ruf‐II. The two groups exhibit a clinal variation pattern generally from north‐east to south‐west. Different from many earlier studies, Ruf‐I, which is found mainly in China and the Indochinese Peninsula, shows genetic similarity with one major cultivated rice variety, O. satvia indica, whereas Ruf‐II, mainly from South Asia and the Indochinese Peninsula, is not found to be closely related to cultivated rice varieties. The other major cultivated rice variety, O. sativa japonica, is not found to be similar to either O. rufipogon groups. Our results support the hypothesis of a single origin of the domesticated O. sativa in China. The possible role of palaeoclimate, introgression and migration–drift balance in creating this clinal variation pattern is also discussed.  相似文献   

18.
Pollen-mediated gene flow is the major pathway for transgene escape from GM rice to its wild relatives. Transgene escape to wild Oryza species having AA-genome will occur if GM rice is released to environments with these wild Oryza species. Transgenes may persist to and spread in wild populations after gene flow, resulting unwanted ecological consequences. For assessing the potential consequences caused by transgene escape, it is important to understand the actual gene flow frequencies from GM rice to wild relatives, transgene expression and inheritance in the wild relatives, as well as fitness changes that brought to wild relatives by the transgenes. This article reviews studies on transgene escape from rice to its wild relatives via gene flow and its ecological consequences. A framework for assessing potential ecological consequences caused by transgene escape from GM rice to its wild relatives is discussed based on studies of gene flow and fitness changes.  相似文献   

19.
It is known that the common cultivated rice (Oryza sativa) was domesticated from Asian wild rice, O. rufipogon. Among the morphological differences between them, loss of seed shattering is one of the striking characters specific for the cultivated forms. In order to understand the genetic control on shattering habit, QTL analysis was carried out using BC(2)F(1) backcross population between O. sativa cv. Nipponbare (a recurrent parent) and O. rufipogon acc. W630 (a donor parent). As a result, two strong QTLs were detected on chromosomes 1 and 4, and they were found to be identical to the two major seed-shattering loci, qSH1 and sh4, respectively. The allelic interaction at these loci was further examined using two sets of backcross populations having reciprocal genetic backgrounds, cultivated and wild. In the genetic background of cultivated rice, the wild qSH1 allele has stronger effect on seed shattering than that of sh4. In addition, the wild alleles at both qSH1 and sh4 loci showed semi-dominant effects. On the other hand, in the genetic background of wild rice, non-shattering effects of Nipponbare alleles at both loci were examined to inspect rice domestication from a viewpoint of seed shattering. It was serendipitous that the backcross plants individually having Nipponbare homozygous alleles at either shattering locus (qSH1 or sh4) shed all the seeds. This fact strongly indicates that the non-shattering behavior was not obtained by a single mutation in the genetic background of wild rice. Probably, some other minor genes are still associated with the formation or activation of abscission layer, which enhance the seed shattering.  相似文献   

20.
Summary Patterns of allozyme variation were surveyed in collections of cultivated and wild sorghum from Africa, the Middle East, and Asia. Data for 30 isozyme loci from a total of 2067 plants representing 429 accessions were analyzed. Regional levels of genetic diversity in the cultivars are greater in northern and central Africa compared to southern Africa, the Middle East, or Asia. The spatial distribution of individual alleles at the most variable loci was studied by plotting allele frequencies on geographic maps covering the distribution of sorghum. Generally, many of the alleles with frequencies below 0.25 are localized in specific portions of the range and are commonly present in more than one race in that region. Several alleles occur in both wild and cultivated sorghum of one region and are absent from sorghum elsewhere, suggesting local introgression between the wild and cultivated forms. Although the same most common allele was found in the wild and cultivated gene pools at 29 of the 30 loci, phenetic analyses separated the majority of wild collections from the cultivars, indicating that the two gene pools are distinct. Wild sorghum from northeast and central Africa exhibits greater genetic similarities to the cultivars compared to wild sorghum of northwest or southern Africa. This is consistent with the theory that wild sorghum of northeast-central Africa is ancestral to domesticated sorghum. Wild sorghums of race arundinaceum of northwest Africa and race virgatum from Egypt are shown to be genetically distinct from both other forms of wild sorghum and from the cultivars. Suggestions for genetic conservation are presented in light of these data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号