首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The antitumor action of bovine seminal RNAase is studied as a function of the enzyme concentration and of the number of plated cells. With polyoma transformed hamster kidney cells, a 50% inhibition of cell growth is obtained with a 10 μg/ml of enzyme, while at this concentration growth of normal cells is very little affected. On the other hand the higher the number of plated cells, the lesser is the effect. The enzyme is found to be very effective also on tumor cells derived from a spontaneous tumor (neuroblastoma) and on cells derived from a chemically induced tumor (glioma). AmphoterycinB which is known to alter the permeability of eukariotic cells, does not affect the resistance of normal cells to the cytotoxic action of the enzyme.  相似文献   

2.
Unlike the bovine pancreatic ribonuclease (RNAase A), bovine seminal ribonuclease (BS RNAase) displays various biological activities including antitumor cytotoxicity. To learn more about its antitumor activity, we investigated BS RNAase effect on athymic nude mice bearing various tumors. BS RNAase (250 μg per mouse per day) was administered to the mice with prostate carcinoma for three weeks by three different routes (intraperitoneally—i.p., subcutaneously—s.c., and intratumorally—i.t.). Administration i.p. was ineffective, while s.c. administration reduced significantly size of tumors and i.t. administration abolished half of the tumors in treated mice. The i.t. administration of BS RNase to nude mice bearing melanoma showed even better results. Eighty % of mice were without tumors and in the other mice the tumors were significantly diminished. The best antitumor effect was obtained in case of seminoma. All mice bearing this tumor were cured after ten doses of BS RNAase.  相似文献   

3.
Human seminal ribonuclease (a basic protein occurring in a glycosylated and in a non-glycosylated form) is very active against double-stranded RNAs (De Prisco, R., Sorrentino, S., Leone, E. and Libonati, M. (1984) Biochim. Biophys. Acta 788, 356-363). The action of the two enzyme forms on single-stranded and double-stranded substrates was studied as a function of pH and ionic strength. Results indicate (1) that glycosylation of the RNAase molecule does not affect enzyme action on single-stranded RNAs, while (2) degradation of double-stranded RNAs is moderately increased by the presence of carbohydrates in the enzyme molecule. Human seminal RNAase shows a marked helix-destabilizing activity on poly(dA-dT) X poly(dA-dT). Under various conditions, this action (1) is definitely stronger than that of bovine RNAase A, and (2) seems to be less dependent on the glycosylation than on the basicity of the enzyme protein. The remarkable activity of human seminal RNAase on double-stranded RNA may, at least partly, be related to the enzyme properties mentioned above.  相似文献   

4.
C L Lee  S S Li  C Y Li    T M Chu 《The Biochemical journal》1983,215(3):605-612
Four ribonucleases (RNAases I-IV) have been purified to homogeneity from human seminal plasma by precipitation with 40-75%-satd. (NH4)2SO4, followed by chromatographies on concanavalin A-Sepharose 4B, DEAE-cellulose phosphocellulose, agarose-5'-(4-aminophenylphospho)uridine 2'(3')-phosphate (RNAase affinity column) and Sephadex G-75 or G-100. The homogeneity of these RNAases was confirmed by polyacrylamide-gel electrophoresis. Mr values for these purified RNAases were 78 000, 16 000, 13 300 and 5000 as estimated by gel filtration. Enzyme activities of RNAases I, III and IV were inhibited by Mn2+, Zn2+ and Cu2+ and activated by Na+, K+, Ba2+, Mg2+, Fe2+ and EDTA, whereas that of RNAase II was inhibited by Ba2+, Mg2+, Fe2+, Mn2+, Zn2+ and Cu2+ and activated by Na+, K+ and EDTA. RNAases I, II and IV demonstrated a higher affinity for poly(C) and poly(U) or yeast RNA, whereas RNAase III preferentially hydrolysed poly(U) over poly(C) and yeast RNA. In the presence of 5 mM-spermine, RNAase I was dissociated to a low-Mr (5000) enzyme with an increase in total RNAase enzymic activity. Xenoantiserum to each RNAase was raised and evaluated by immunoprecipitation and immunohistochemical methods. Anti-(seminal RNAase III) antiserum showed no immunological cross-reaction with RNAases of other human origin, whereas anti-(seminal RNAase I), -(RNAase II) and -(RNAase IV) antisera exhibited indistinguishable immunological reactions with serum RNAase and other human RNAases, except that anti-(seminal RNAase I) and -(RNAase antisera IV) did not react with pancreatic RNAases. Seminal RNAases I and IV were identical immunologically as shown by anti-(RNAase I) and anti-(RNAase IV) in immunodiffusion. Immunohistochemical study revealed that, among human tissues examined, only prostate expressed seminal RNAase III. These results suggested that human seminal RNAase I may be an aggregated molecule of RNAase IV and that seminal RNAases II and IV are similar to serum RNAases, whereas seminal RNAase III is a prostate-specific enzyme.  相似文献   

5.
The activity of purified bovine seminal RNAase and pancreatic RNAase A (EC 3.1.27.5) has been investigated following in vitro ADPribosylation in the presence of nuclear ADPribosyltransferase (EC 2.4.2.30) and NAD+ X ADPribosylation of these enzymes was correlated with a significant decrease in their activities. Approximately three residues of ADPribose were present per mol of enzyme. Removal of the bound ADPribose restored enzyme activity to near normal levels. Similar results were obtained with nuclei isolated from bull seminal vesicles as an endogenous source of seminal RNAase and nuclear ADPribosyltransferase. The findings suggest that in vitro ADPribosylation has a reversible inactivating effect on ribonucleases.  相似文献   

6.
A ribonuclease, active on single- and double-stranded RNAs, has been isolated from human seminal plasma 3-5 micrograms of enzyme were recovered per ml of seminal plasma, equivalent to 71% of total activity and a 2500-fold purification (measured with poly(A) X poly(U) as substrate) from the initial dialyzed material. Similar amounts of RNAase were found per g (wet weight) of human prostate, where the enzyme appears to be produced. Human seminal RNAase degrades poly(U) 3-times faster than poly(A) X poly(U), and poly(C) or viral single-stranded RNA about 10-times faster than poly(U). Degradation of poly(A) X poly(U), viral double-stranded RNA, and poly(A) by human seminal RNAase is 500-, 380- and 140-times more efficient, respectively, than by bovine RNAase A. The enzyme, a basic protein with maximum absorbance at 276 nm, occurs in two almost equivalent forms, one of which is glycosylated. Mr values of the glycosylated and non-glycosylated form are 21000 and 16000, respectively. The amino-acid composition of the RNAase is very similar to that of human pancreatic RNAase. The same is true for the carbohydrate content of its glycosylated form.  相似文献   

7.
A new RNAase, RNAase SPL, was discovered (Reddy et al., 1979), which constituted most of bull semen RNAase activity; it was reminiscent in many of its properties of the bovine seminal RNAase we have studied for many years (see References), but different from it in other respects. When the procedure devised by those authors for its isolation was repeated, we found that an RNAase SPL such as that described in the above-mentioned paper is not to be found in bovine seminal plasma.  相似文献   

8.
Dimers, trimers, and tetramers of bovine ribonuclease A, obtained by lyophilization of the enzyme from 40% acetic acid solutions, were purified and isolated by cation exchange chromatography. The two conformers constituting each aggregated species were assayed for their antitumor, aspermatogenic, or embryotoxic activities in comparison with monomeric RNase A and bovine seminal RNase, which is dimeric in nature. The antitumor action was tested in vitro on ML-2 (human myeloid leukemia) and HL-60 (human myeloid cell line) cells and in vivo on the growth of human non-pigmented melanoma (line UB900518) transplanted subcutaneously in nude mice. RNase A oligomers display a definite antitumor activity that increases as a function of the size of the oligomers. On ML-2 and HL-60 cells, dimers and trimers generally show a lower activity than bovine seminal RNase; the activity of tetramers, instead, is similar to or higher than that of the seminal enzyme. The growth of human melanoma in nude mice is inhibited by RNase A oligomers in the order dimers < trimers < tetramers. The action of the two tetramers is very strong, blocking almost completely the growth of melanoma. RNase A dimers, trimers, and tetramers display aspermatogenic effects similar to those of bovine seminal RNase, but, contrarily, they do not show any embryotoxic activity.  相似文献   

9.
Native bovine seminal ribonucelase is a dimeric protein, whose identical subunits (Mr 14 500), linked through two disulfide bridges, can be dissociated by a selective reduction procedure. Evidence is presented that the synthesis in vitro, under reducing conditions, of bovine seminal RNAase, directed by polyadenylated RNA isolated from bull seminal vesicles (where the enzyme is synthesized in vivo), occurs in the form of a precursor, 18 000-Da polypeptide. The precursor nature of this translation product was deduced by two criteria: (1) its specific immunoprecipitation with anti-bovine seminal RNAase antibodies; (2) its processing by dog pancreas microsomal membranes to produce a protein with a molecular weight similar to that of the subunit(s) of bovine seminal RNAase. Moreover, evidence is offered that the precursor polypeptide is able to form in vitro a dimeric molecule under conditions where no exogenous reducing agents were added.  相似文献   

10.
The dimeric structure of seminal ribonuclease (BS-RNase) is maintained by noncovalent interactions and by two intersubunit disulfide bridges. Another unusual feature of this enzyme is its antitumour action, consisting in a cytotoxic activity selective for malignant cells. This cytotoxic action is exerted when the protein reaches the cytosol of the affected cells, where it degrades ribosomal RNA, thus blocking protein synthesis and leading cells to death. The current model proposed for the mechanism of antitumour action of BS-RNase is based on the ability of the protein to resist the neutralizing action of the cytosolic RNase inhibitor, a resistance due to the dimeric structure of the enzyme. Monomeric RNases, and monomeric derivatives of BS-RNase, are strongly bound by the inhibitor and inactive as antitumor agents. Here we report on monomeric derivatives of BS-RNase that, although strongly inhibited by the cytosolic RNase inhibitor, are cytotoxic towards malignant cells. These monomers are produced by reductive cleavage of the intersubunit disulfides of the native, dimeric protein followed by linking the exposed sulfhydryls to small thiols through formation of mixed disulfides. We found that sulfhydryls from cell monolayers and cell membranes can attack these mixed disulfides in the monomeric derivatives, and reconstitute, through sulfhydryl-disulfide interchange reactions, the native dimeric protein, which is internalized as such, and displays its antitumour action.  相似文献   

11.
Fast and high yielding procedures for the isolation of bovine seminal RNAase are described. Homogeneous enzyme is prepared from seminal plasma in high yields in a single chromatographic step. Higher amounts (hundreds of mg) are easily prepared from seminal vesicles, a more available source of enzyme. Both procedures can be used also for the direct isolation of the isoenzymes of bovine seminal RNAase. An ultrarapid (1 hour) procedure is described for the preparation of mg amounts of pure enzyme, or of the individual isoenzymes, from seminal plasma.  相似文献   

12.
The purification to homogeneity of a new ribonuclease, named RNAase SPL, from bovine seminal plasma is described. This nuclease, like the bovine pancreatic RNAase A, is pyrimidine specific. Its activity on single-stranded synthetic polyribonucleotides such as poly(rU) is significantly higher than that of RNAase A. However, unlike RNAase A, RNAase SPL is highly active on a double-stranded RNA such as poly[r(A · U)], and shows extremely limited activity on naturally occurring RNAs, such as Escherichia coli RNA, prepared with Mg2+ present throughout the isolation procedure. Under conditions of limiting hydrolysis in which RNAase A degrades 60 to 90% of total E. coli RNA to acid-soluble material and the remaining to material having a molecular weight lower than that of transfer RNA, RNAase SPL does not yield any acid-soluble products: it does not appear to degrade tRNA or 5 S RNA, and causes only a small number of nicks in the remaining RNAs to yield a limiting digest containing products with molecular weights ranging between 10,000 and 150,000. Absence of Mg2+ during the isolation procedure, or heat denaturation of the RNA makes it as susceptible to RNAase SPL as it is to RNAase A.The above and other related observations reported here support the view that there are Mg2+-dependent structural features, besides single and doublestrandedness, in naturally occurring RNAs, that can be distinguished by using the two nucleases RNAase SPL and RNAase A.  相似文献   

13.
1. Double-stranded f2 sus11 or Qbeta RNAs, resistant to bovine pancreatic RNAase A in 0.15 M NaCl/0.015 M sodium citrate (SSC), are quickly and completely degraded at 10-fold lower ionic strength (0.1 X SSC) under otherwise similar conditions. At this ionic strength the secondary structure of double-stranded RNA is maintained, as judged by the following: (a) the unchanged resistance of double-stranded RNA and DNA, under similar low ionic strength conditions, to nuclease S1 from Aspergillus oryzae, in contrast with the sensitivity of the corresponding denatured nucleic acids to this enzyme, specific for single-stranded RNA and DNA; (b) the co-operative pattern of the thermal-transition profile of double-stranded RNA (with a Tm of 89 degrees C) in 0.1 X SSC. 2. Whereas in SSC bovine seminal RNAase (RNAase BS-1) and whale pancreatic RNAase show an activity on double-stranded RNA significantly higher than that of RNAase A, in 0.1 X SSC the activity of the latter enzyme on this substrate becomes distinctly higher than that of RNAase BS-1, and similar to that of whale RNAase. 3. From these results it is deduced that the secondary structure is probably not the only nor the most important variable in determining the susceptibility double-stranded RNA to ribonuclease. Other factors, such as the effect of ionic strength on the enzyme and/or the binding of enzyme to nucleic acids, may play an important role in the process of double-stranded RNA degradation by ribonucleases specific for single-stranded RNA.  相似文献   

14.
Myelopeptides (MPs) are low-molecular-weight immunoregulatory peptides of bone marrow origin. The peculiarities of their immunoregulatory effects are demonstrated with two of the six synthesized MPs, MP-1 (Phe-Leu-Gly-Phe-Pro-Thr) and MP-2 (Leu-Val-Val-Tyr-Pro-Trp). It is shown that MP action is directed to the damaged links of immunity. MP-1 enhances a decreased level of antibody production in cyclophosphamide (Cy)-treated mice, but does not influence the antibody formation in normal animals. MP-2 inhibits the tumor growth more in a tumor-bearing organism as the tumor size gets larger, insofar as MP-2 antitumor effect is concerned, by its ability to recover functional activity of T lymphocytes suppressed by tumor products. Selective immunocorrective effects of MPs are based on ligand-receptor interactions. Using FITC-labeled MP-1 and [3H]-labeled MP-2, specific binding of these peptides with appropriate cell populations is shown. The cytofluorimetric analysis revealed a target cell for MP-1--CD4+ T lymphocyte (T helper). The data obtained suggest that MPs are endogenic immunoregulators which participate in the maintenance of immune homeostasis.  相似文献   

15.
RNAase H, which catalyzes the hydrolysis of the RNA moiety of an RNA-DNA hybrid, was measured in the mammary gland of virgin, pregnant, lactating, and weaning Fischer rats and in the R3230AC mammary tumor grown in the same animals. In the normal mammary gland when DNA levels were low, as in the virgin state or during involution, RNAase H activity was also low. During pregnancy and lactogenesis when DNA levels increased, RNAase H activity, either on the basis of mammary gland weight or DNA content, also increased. During lactation when cellular proliferation ceases but rates of RNA and protein synthesis continue to reach peak values, RNAase H activity decreased. Compared to the corresponding enzyme from host glands, RNAase H from the R3230AC mammary tumor grown in pregnant and lactating hosts changes similarly, but to a lesser extent. The RNAase H activity which, ona tissue weight basis, was higher than in normal tissue also increased during pregnancy and directly after parturition, but decreased during lactation. During pregnancy these changes were accompanied by an increase in tumor DNA values. During lactation the tumor DNA values returned to the level seen in virgin hosts. These results are consistent with a role for RNAase H in DNA replication in rat mammary gland and in R3230Ac mammary tumor.  相似文献   

16.
Onapristone and other antiprogestins proved to possess a potent antitumor activity in several hormone-dependent experimental breast cancer models. This activity is as strong or even better than that of tamoxifen or ovariectomy in the MXT-mammary tumor of the mouse and the DMBA- and MNU-induced mammary tumor of the rat. The antitumor activity is evident in these models in spite of elevated serum levels of ovarian and pituitary hormones. The detailed analysis of all our data including the morphological (ultrastructure) studies of the mammary tumors of treated animals and the effects on growth and cell cycle kinetics using DNA flow cytometry indicates that the antitumor action of antiprogestins is mediated via the progesterone receptor and related to the induction of terminal cell differentiation leading to increased cell death. The strong antitumor activity of antiprogestins in our experimental breast cancer models does not primarily depend on a classical anti-hormonal mechanism. The antiprogestin-related reduction of the number of mammary tumor cells in the S-phase in our experimental tumor models (G0G1 arrest) emphasizes the unique innovative mechanism of action of these new agents in the treatment of human breast cancer.  相似文献   

17.
Bovine seminal RNase (BS-RNase) is a homodimeric enzyme with a cytotoxic activity selective for tumor cells. In this study, the relationships of its cytotoxic activity to its dimeric structure and its resistance to the cytosolic RNase inhibitor (cRI) are investigated systematically by site-directed mutagenesis. The results show that (1) the dimericity of BS-RNase is essential for its full cytotoxic action; (2) the role of the dimeric structure in the antitumor activity is that of making the enzyme insensitive to the cytosolic RNase inhibitor; (3) a RNase may not be completely insensitive to cRI to exploit a full cytotoxic potential.  相似文献   

18.
Pharmacokinetic properties of pancreatic RNAase (RNAase I), RNAase of Bacillus intermedius (RNAase Bi) and RNAase of Streptomyces rimosus (RNAase Sr) were studied on albino rats. RNAase Bi was shown to be characterized by a higher rate and level of absorption into the systemic blood flow, higher retention time, lower elimination from the kidneys and tissues of the peripheral chamber (skeletal muscles) and higher distribution in the other animal organs such as the heart, spleen and brain. It was concluded by the experimental results that the higher antiviral efficacy of RNAase Bi (RNAase Bi greater than RNAase Sr greater than RNAase I), as was known from the literature data, and the ability to stimulate the immunity correlated with higher biological availability of the enzyme in the animals and could be due to its pharmacokinetic properties.  相似文献   

19.
姜黄素诱导肿瘤细胞凋亡的研究进展   总被引:1,自引:0,他引:1  
姜黄素是从姜科植物的根茎姜黄中提取的一种植物多酚,具有抗炎、抗氧化、抗凝、抗动脉粥样硬化、抗肿瘤等药理作用。本文综述了姜黄素诱导肿瘤细胞凋亡的分子生物学机制研究进展。  相似文献   

20.
A ribonuclease (RNAase BSD) isolated by us earlier from bovine seminal plasma by DNA-affinity chromatography is shown to be homogeneous on polyacrylamide gel electrophoresis, analytical ultracentrifuge and high performance liquid chromatography. From amino acid analysis, high performance liquid chromatography and enzymatic and physicochemical studies, this enzyme is shown to be identical to RNAase BS-1 reported by D'Alessio et al. ((1972) Eur. J. Biochem. 26, 153-161). Immunological studies support this observation. It has also been shown that, as compared to RNAase A, this enzyme is more sensitive to polyvinyl sulphate inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号