首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Scavenger receptor BI (SR-BI) is an HDL receptor. It binds HDL and mediates the uptake of cholesteryl ester from HDL. Early studies have pointed out that the extracellular domain of SR-BI is critical for SR-BI-mediated cholesteryl ester uptake. However, the extracellular loop of SR-BI is large: it contains 403 amino acids. The HDL binding site and the modulation of SR-BI-mediated cholesteryl ester uptake remain to be identified. In this study, using C323G mutant SR-BI, we showed that C323G mutant SR-BI lost its HDL binding and cholesteryl ester uptake activity, indicating that the highly conserved C323 is required for SR-BI-mediated HDL binding and cholesteryl ester uptake. Using a blocking antibody against C323 region, we demonstrated that C323 is directly involved in HDL binding and likely an HDL binding site. Using C323G mutant transgenic mouse model, we further demonstrated that C323 of SR-BI is required for regulating plasma cholesterol levels in vivo. Using redox reagents, we showed that physiological relevant levels of H(2)O(2) upregulated the SR-BI-mediated cholesteryl ester uptake activity by 65%, whereas GSH or DTT significantly downregulated SR-BI-mediated cholesteryl ester uptake activity by 45%. C323 of SR-BI is critical for SR-BI-mediated HDL binding and cholesteryl ester uptake, and changes in redox status may be a regulatory factor modulating SR-BI-mediated cholesterol transport.  相似文献   

2.
High density lipoprotein cholesterol represents a major source of biliary cholesterol. Secretory phospholipase A2 (sPLA2) is an acute phase enzyme mediating decreased plasma HDL cholesterol levels. Clinical studies reported a link between increased sPLA2 expression and the presence of cholesterol gallstones. The aim of our study was to investigate whether the overexpression of human sPLA2 in transgenic mice affects biliary cholesterol secretion and gallstone formation. Liver weight (P < 0.01) and hepatic cholesterol content (P < 0.01) were significantly increased in sPLA2 transgenic mice compared with controls as a result of increased scavenger receptor class B type I (SR-BI)-mediated hepatic selective uptake of HDL cholesterol (P < 0.01), whereas hepatic SR-BI expression remained unchanged. However, biliary cholesterol secretion as well as fecal neutral sterol and fecal bile salt excretion remained unchanged in sPLA2 transgenic mice. Furthermore, gallstone prevalence in response to a lithogenic diet was identical in both groups. These data demonstrate that i) increased flux of cholesterol from HDL into the liver via SR-BI as a result of phospholipase modification of the HDL particle translates neither into increased biliary and fecal sterol output nor into increased gallstone formation, and ii) increased sPLA2 expression in patients with cholesterol gallstones might be a consequence rather than the underlying cause of the disease.  相似文献   

3.
Endothelial lipase (EL) plays an important physiological role in modulating HDL metabolism. Data suggest that plasma contains an inhibitor of EL, and previous studies have suggested that apolipoprotein A-II (apoA-II) inhibits the activity of several enzymes involved in HDL metabolism. Therefore, we hypothesized that apoA-II may reduce the ability of EL to influence HDL metabolism. To test this hypothesis, we determined the effect of EL expression on plasma phospholipase activity and HDL metabolism in human apoA-I and human apoA-I/A-II transgenic mice. Expression of EL in vivo resulted in lower plasma phospholipase activity and significantly less reduction of HDL-cholesterol, phospholipid, and apoA-I levels in apoA-I/A-II double transgenic mice compared with apoA-I single transgenic mice. We conclude that the presence of apoA-II on HDL particles inhibits the ability of EL to influence the metabolism of HDL in vivo.  相似文献   

4.
Scavenger receptor class B type I (SR-BI) plays a critical role in the delivery of HDL cholesterol and cholesteryl esters (CEs) to liver and steroidogenic tissues by a selective process that does not result in significant degradation of HDL protein. Recently, SR-BI-mediated endocytosis and recycling of HDL have been demonstrated. However, it remains unclear whether efficient SR-BI-mediated selective uptake occurs strictly at the plasma membrane or at additional sites along its endocytic itinerary. To examine the requirement for SR-BI endocytosis in HDL selective uptake, we determined the effects of energy depletion on the levels of cell-associated HDL protein and CE in primary mouse hepatocytes. Compared with CHO cells, we observed a much larger energy-dependent effect on CE uptake in primary mouse hepatocytes. Although varying the levels of caveolin-1 and carboxyl ester lipase altered the efficiency of selective uptake, neither was able to account for the energy-dependent component of HDL-CE uptake. Finally, we demonstrate that the hepatocyte-specific, energy-dependent effects on HDL-apolipoprotein A-I and -CE uptake are independent of SR-BI and are not required to achieve efficient SR-BI-mediated selective uptake of CE. Together, these data support the conclusion that neither the intracellular trafficking of HDL nor any energy-dependent cellular process affects the ability of the cell to maximally acquire CE through SR-BI-mediated selective uptake from HDL.  相似文献   

5.
Our objective was to evaluate the associations of individual apolipoprotein A-I (apoA-I)-containing HDL subpopulation levels with ABCA1- and scavenger receptor class B type I (SR-BI)-mediated cellular cholesterol efflux. HDL subpopulations were measured by nondenaturing two-dimensional gel electrophoresis from 105 male subjects selected with various levels of apoA-I in pre-beta-1, alpha-1, and alpha-3 HDL particles. ApoB-containing lipoprotein-depleted serum was incubated with [(3)H]cholesterol-labeled cells to measure efflux. The difference in efflux between control and ABCA1-upregulated J774 macrophages was taken as a measure of ABCA1-mediated efflux. SR-BI-mediated efflux was determined using cholesterol-labeled Fu5AH hepatoma cells. Fractional efflux values obtained from these two cell systems were correlated with the levels of individual HDL subpopulations. A multivariate analysis showed that two HDL subspecies correlated significantly with ABCA1-mediated efflux: small, lipid-poor pre-beta-1 particles (P=0.0022) and intermediate-sized alpha-2 particles (P=0.0477). With regard to SR-BI-mediated efflux, multivariate analysis revealed significant correlations with alpha-2 (P=0.0004), alpha-1 (P=0.0030), pre-beta-1 (P=0.0056), and alpha-3 (P=0.0127) HDL particles. These data demonstrate that the small, lipid-poor pre-beta-1 HDL has the strongest association with ABCA1-mediated cholesterol even in the presence of all other HDL subpopulations. Cholesterol efflux via the SR-BI pathway is associated with several HDL subpopulations with different apolipoprotein composition, lipid content, and size.  相似文献   

6.
Scavenger receptor, class B, type I (SR-BI) mediates binding and internalization of a variety of lipoprotein and nonlipoprotein ligands, including HDL. Studies in genetically engineered mice revealed that SR-BI plays an important role in HDL reverse cholesterol transport and protection against atherosclerosis. Understanding how SR-BI's function is regulated may reveal new approaches to therapeutic intervention in atherosclerosis and heart disease. We utilized a model cell system to explore pathways involved in SR-BI-mediated lipid uptake from and signaling in response to distinct lipoprotein ligands: the physiological ligand, HDL, and a model ligand, acetyl LDL (AcLDL). In Chinese hamster ovary-derived cells, murine SR-BI (mSR-BI) mediates lipid uptake via distinct pathways that are dependent on the lipoprotein ligand. Furthermore, HDL and AcLDL activate distinct signaling pathways. Finally, mSR-BI-mediated selective lipid uptake versus endocytic uptake are differentially regulated by protein kinase signaling pathways. The protein kinase C (PKC) activator PMA and the phosphatidyl inositol 3-kinase inhibitor wortmannin increase the degree of mSR-BI-mediated selective lipid uptake, whereas a PKC inhibitor has the opposite effect. These data demonstrate that SR-BI's selective lipid uptake activity can be acutely regulated by intracellular signaling cascades, some of which can originate from HDL binding to murine SR-BI itself.  相似文献   

7.
Human plasma HDLs are classified on the basis of apolipoprotein composition into those that contain apolipoprotein A-I (apoA-I) without apoA-II [(A-I)HDL] and those containing apoA-I and apoA-II [(A-I/A-II)HDL]. ApoA-I enters the plasma as a component of discoidal particles, which are remodeled into spherical (A-I)HDL by LCAT. ApoA-II is secreted into the plasma either in the lipid-free form or as a component of discoidal high density lipoproteins containing apoA-II without apoA-I [(A-II)HDL]. As discoidal (A-II)HDL are poor substrates for LCAT, they are not converted into spherical (A-II)HDL. This study investigates the fate of apoA-II when it enters the plasma. Lipid-free apoA-II and apoA-II-containing discoidal reconstituted HDL [(A-II)rHDL] were injected intravenously into New Zealand White rabbits, a species that is deficient in apoA-II. In both cases, the apoA-II was rapidly and quantitatively incorporated into spherical (A-I)HDL to form spherical (A-I/A-II)HDL. These particles were comparable in size and composition to the (A-I/A-II)HDL in human plasma. Injection of lipid-free apoA-II and discoidal (A-II)rHDL was also accompanied by triglyceride enrichment of the endogenous (A-I)HDL and VLDL as well as the newly formed (A-I/A-II)HDL. We conclude that, irrespective of the form in which apoA-II enters the plasma, it is rapidly incorporated into spherical HDLs that also contain apoA-I to form (A-I/A-II)HDL.  相似文献   

8.
9.
Receptor-mediated cholesterol uptake has been suggested to play a role in maintaining the adrenal intracellular free cholesterol pool and the ability to produce hormones. Therefore, in the current study, we evaluated the importance of scavenger receptor class B type I (SR-BI)-mediated cholesteryl ester uptake from HDL for adrenal glucocorticoid hormone synthesis in vivo. No difference was observed in the plasma level of corticosterone between SR-BI-deficient and wild-type mice under ad libitum feeding conditions. Overnight fasting ( approximately 16 h) stimulated the plasma level of corticosterone by 2-fold in wild-type mice. In contrast, no effect of fasting on plasma corticosterone levels was observed in SR-BI-deficient mice, leading to a 44% lower plasma corticosterone level compared with their wild-type littermate controls. In parallel, an almost complete depletion of lipid stores in the adrenal cortex of fasted SR-BI-deficient mice was observed. Plasma adrenocorticotropic hormone levels were increased by 5-fold in fasted SR-BI-deficient mice. SR-BI deficiency induced marked changes in the hepatic expression of the glucocorticoid-responsive genes cholesterol 7alpha-hydroxylase, HMG-CoA synthase, apolipoprotein A-IV, corticosteroid binding globulin, interleukin-6, and tumor necrosis factor-alpha, which coincided with a 42% decreased plasma glucose level under fasting conditions. In conclusion, we show that the absence of adrenal HDL cholesteryl ester uptake in SR-BI-deficient mice impairs the adrenal glucocorticoid-mediated stress response to fasting as a result of adrenal glucocorticoid insufficiency and attenuated liver glucocorticoid receptor signaling, leading to hypoglycemia under fasting conditions.  相似文献   

10.
Scavenger receptor class B type I (SR-BI) mediates the selective uptake of HDL cholesteryl esters (CEs) and facilitates the efflux of unesterified cholesterol. SR-BI expression in macrophages presumably plays a role in atherosclerosis. The role of SR-BI for selective CE uptake and cholesterol efflux in macrophages was explored. Macrophages and HDL originated from wild-type (WT) or SR-BI knockout (KO; homozygous) mice. For uptake, macrophages were incubated in medium containing 125I-/3H-labeled HDL. For lipid removal, [3H]cholesterol efflux was analyzed using HDL as acceptor. Selective uptake of HDL CE ([3H]cholesteryl oleyl ether - 125I-tyramine cellobiose) was similar in WT and SR-BI KO macrophages. Radiolabeled SR-BI KO-HDL yielded a lower rate of selective uptake compared with WT-HDL in WT and SR-BI KO macrophages. Cholesterol efflux was similar in WT and SR-BI KO cells using HDL as acceptor. SR-BI KO-HDL more efficiently promoted cholesterol removal compared with WT-HDL from both types of macrophages. Macrophages selectively take up HDL CE independently of SR-BI. Additionally, in macrophages, there is substantial cholesterol efflux that is not mediated by SR-BI. Therefore, SR-BI-independent mechanisms mediate selective CE uptake and cholesterol removal. SR-BI KO-HDL is an inferior donor for selective CE uptake compared with WT-HDL, whereas SR-BI KO-HDL more efficiently promotes cholesterol efflux.  相似文献   

11.
Paraoxonase-1 (PON1) and HDL are tightly associated in plasma, and this is generally assumed to reflect the need for the enzyme to associate with a hydrophobic complex. The association has been examined in coronary cases and age-matched controls. Highly significant (P < 0.0001), positive associations were observed between PON1 activities and concentrations and HDL-cholesterol and apolipoprotein A-I (apoA-I) concentrations in cases and controls. Corrected slopes were significantly different in cases (cases vs. controls: arylesterase, r = 0.19 vs. 0.38, P < 0.02 for apoA-I and r = 0.15 vs. 0.34, P < 0.02 for HDL-cholesterol) such that if PON1 should influence serum HDL, it would be less effective in coronary cases. When examined as a function of the PON1 gene promoter polymorphism C-107 T, highly significant differences (P < 0.001) in HDL-cholesterol and apoA-I were observed between genotypes for controls, with high expresser alleles having the highest HDL concentrations. This relationship was lost in cases with coronary disease. The coding region polymorphisms Q192R and L55M of the PON1 gene showed no association with HDL. The promoter polymorphism was an independent determinant of HDL concentrations in multivariate analyses. These data are consistent with an impact of PON1 on plasma concentrations of HDL, with detrimental modifications to the relationship in coronary cases.  相似文献   

12.
The objective of this study was to demonstrate the efficacy of a novel peroxisome proliferator-activated receptor (PPAR) agonist and known PPARalpha and PPARdelta agonists to increase HDL-cholesterol (HDL-C) in the St. Kitts vervet, a nonhuman primate model of atherosclerosis. Four groups (n = 6) were studied and each group was assigned one of the following "treatments": a) vehicle only (vehicle); b) the PPARdelta selective agonist GW501516 (GW); c) the PPARalpha/delta agonist T913659 (T659); and d) the PPARalpha agonist TriCor (fenofibrate). No statistically significant changes were seen in body weight, total plasma cholesterol, plasma triglycerides, VLDL-C, LDL-C, or apolipoprotein B (apoB) concentrations. Each of the PPARalpha and PPARdelta agonists investigated in this study increased plasma HDL-C, apoA-I, and apoA-II concentrations and increased HDL particle size in St. Kitts vervets. The maximum percentage increase in HDL-C from baseline for each group was as follows: vehicle, 5%; GW, 43%; T659, 43%; and fenofibrate, 20%. Treatment with GW and T659 resulted in an increase in medium-sized HDL particles, whereas fenofibrate showed increases in large HDL particles. These data provide additional evidence that PPARalpha and PPARdelta agonists (both mixed and selective) have beneficial effects on HDL-C in these experimental primates.  相似文献   

13.
In low density lipoprotein receptor (LDLR)-deficient mice, overexpression of human plasma phospholipid transfer protein (PLTP) results in increased atherosclerosis. PLTP strongly decreases HDL levels and might alter the antiatherogenic properties of HDL particles. To study the potential interaction between human PLTP and apolipoprotein A-I (apoA-I), double transgenic animals (hPLTPtg/hApoAItg) were compared with hApoAItg mice. PLTP activity was increased 4.5-fold. Plasma total cholesterol and phospholipid were decreased. Average HDL size (analyzed by gel filtration) increased strongly, hPLTPtg/hApoAItg mice having very large, LDL-sized, HDL particles. Also, after density gradient ultracentrifugation, a substantial part of the apoA-I-containing lipoproteins in hPLTPtg/hApoAItg mice was found in the LDL density range. In cholesterol efflux studies from macrophages, HDL isolated from hPLTPtg/hApoAItg mice was less efficient than HDL isolated from hApoAItg mice. Furthermore, it was found that the largest subfraction of the HDL particles present in hPLTPtg/hApoAItg mice was markedly inferior as a cholesterol acceptor, as no labeled cholesterol was transferred to this fraction. In an LDLR-deficient background, the human PLTP-expressing mouse line showed a 2.2-fold increased atherosclerotic lesion area. These data demonstrate that the action of human PLTP in the presence of human apoA-I results in the formation of a dysfunctional HDL subfraction, which is less efficient in the uptake of cholesterol from cholesterol-laden macrophages.  相似文献   

14.
Cardiovascular disease is a major cause of morbidity and premature mortality in diabetes. HDL plays an important role in limiting vascular damage by removing cholesterol and cholesteryl ester hydroperoxides from oxidized low density lipoprotein and foam cells. Methionine (Met) residues in apolipoprotein A-I (apoA-I), the major apolipoprotein of HDL, reduce peroxides in HDL lipids, forming methionine sulfoxide [Met(O)]. We examined the extent and sites of Met(O) formation in apoA-I of HDL isolated from plasma of healthy control and type 1 diabetic subjects to assess apoA-I exposure to lipid peroxides and the status of oxidative stress in the vascular compartment in diabetes. Three tryptic peptides of apoA-I contain Met residues: Q(84)-M(86)-K(88), W(108)-M(112)-R(116), and L(144)-M(148)-R(149). These peptides and their Met(O) analogs were identified and quantified by mass spectrometry. Relative to controls, Met(O) formation was significantly increased at all three locations (Met(86), Met(112), and Met(148)) in diabetic patients. The increase in Met(O) in the diabetic group did not correlate with other biomarkers of oxidative stress, such as N(epsilon)-malondialdehyde-lysine or N(epsilon)-(carboxymethyl)lysine, in plasma or lipoproteins. The higher Met(O) content in apoA-I from diabetic patients is consistent with increased levels of lipid peroxidation products in plasma in diabetes. Using the methods developed here, future studies can address the relationship between Met(O) in apoA-I and the risk, development, or progression of the vascular complications of diabetes.  相似文献   

15.
The apoA-I mimetic peptide L-4F [(Ac-D-W-F-K-A-F-Y-D-K-V-A-E-K-F-K-E-A-F-NH2) synthesized from all L-amino acids] has shown potential for the treatment of a variety of diseases. Here, we demonstrate that LDL promotes association between L-4F and HDL. A 2- to 3-fold greater association of L-4F with human HDL was observed in the presence of human LDL as compared with HDL by itself. This association further increased when LDL was supplemented with the oxidized lipid 15S-hydroxy-5Z, 8Z, 11Z, 13E-eicosatetraenoic acid (15HETE). Additionally, L-4F significantly (P = 0.02) promoted the transfer of 15HETE from LDL to HDL. The transfer of L-4F from LDL to HDL was demonstrated both in vitro and in C57BL/6J mice. L-4F, injected into C57BL/6J mice, associated rapidly with HDL and was then cleared quickly from the circulation. Similarly, L-4F loaded onto human HDL and injected into C57BL/6J mice was cleared quickly with T(1/2) = 23.6 min. This was accompanied by a decline in human apoA-I with little or no effect on the mouse apoA-I. Based on these results, we propose that i) LDL promotes the association of L-4F with HDL and ii) in the presence of L-4F, oxidized lipids in LDL are rapidly transferred to HDL allowing these oxidized lipids to be acted upon by HDL-associated enzymes and/or cleared from the circulation.  相似文献   

16.
Recently, we showed that holo HDL particle uptake and resecretion occur in physiologically relevant cell lines and that HDL uptake is mediated by scavenger receptor class B type I (SR-BI). Furthermore, we established that HDL resecretion is accompanied by [(3)H]cholesterol efflux. This study shows that HDL uptake and resecretion occur even when LDL uptake and cholesterol trafficking are disturbed. First, we used a set of inhibitors that block cholesterol transport out of the lysosome: chloroquine, imipramine, U18666A, and monensin. In all cases, HDL retroendocytosis occurred and HDL resecretion mediated [(3)H]cholesterol efflux, although to a lesser extent. Second, cell lines carrying somatic mutations in intracellular cholesterol transport were used: CHO 2-2 and CHO 3-6 cells accumulated LDL-derived lipid in the lysosome but showed all components of HDL retroendocytosis. SR-BI overexpression increased HDL uptake and resecretion and [(3)H]cholesterol efflux in these mutant cells. Finally, we used Niemann-Pick type C (NPC) patient fibroblast cells, which carry a defect in cholesterol transfer out of the lysosome. NPC fibroblast cells accumulate cholesterol in the lysosome as a result of a mutation in the NPC1 gene. Despite disturbed intracellular cholesterol transfer, NPC fibroblast cells exhibited HDL retroendocytosis and [(3)H]cholesterol efflux via HDL resecretion, although to a lesser extent. Thus, [(3)H]cholesterol efflux via HDL resecretion is independent of the cholesterol uptake pathway via the LDL receptor and may be an alternative way to remove excess cholesterol.  相似文献   

17.
Modified forms of LDL, including oxidized low density lipoprotein (OxLDL), contribute to macrophage lipid accumulation in the vessel wall. Despite the pathophysiological importance of uptake pathways for OxLDL, the molecular details of OxLDL endocytosis by macrophages are not well understood. Studies in vitro demonstrate that the class B scavenger receptor CD36 mediates macrophage uptake and degradation of OxLDL. Although the closely related scavenger receptor class B type I (SR-BI) binds OxLDL with high affinity, evidence that SR-BI plays a role in OxLDL metabolism is lacking. In this study, we directly compared OxLDL uptake and degradation by CD36 and SR-BI. Our results indicate that although CD36 and SR-BI internalize OxLDL, SR-BI mediates significantly less OxLDL degradation. Endocytosis of OxLDL by both SR-BI and CD36 is independent of caveolae, microtubules, and actin cytoskeleton. However, OxLDL uptake by CD36, but not SR-BI, is dependent on dynamin. The analysis of chimeric SR-BI/CD36 receptors shows that the CD36 C-terminal cytoplasmic tail is necessary and sufficient for dynamin-dependent OxLDL internalization by class B scavenger receptors. These findings indicate that different mechanisms are involved in OxLDL uptake by SR-BI and CD36, which may segregate these two structurally homologous receptors at the cell surface, leading to differences in intracellular trafficking and degradation.  相似文献   

18.
apoA-I plays important structural and functional roles in reverse cholesterol transport. We have described the molecular structure of the N-terminal domain, Δ(185-243) by X-ray crystallography. To understand the role of the C-terminal domain, constructs with sequential elongation of Δ(185-243), by increments of 11-residue sequence repeats were studied and compared with Δ(185-243) and WT apoA-I. Constructs up to residue 230 showed progressively decreased percent α-helix with similar numbers of helical residues, similar detergent and lipid binding affinity, and exposed hydrophobic surface. These observations suggest that the C-terminal domain is unstructured with the exception of the last 11-residue repeat (H10B). Similar monomer-dimer equilibrium suggests that the H10B region is responsible for nonspecific aggregation. Cholesterol efflux progressively increased with elongation up to ∼60% of full-length apoA-I in the absence of the H10B. In summary, the sequential repeats in the C-terminal domain are probably unstructured with the exception of H10B. This segment appears to be responsible for initiation of lipid binding and aggregation, as well as cholesterol efflux, and thus plays a vital role during HDL formation. Based on these observations and the Δ(185-243) crystal structure, we propose a lipid-free apoA-I structural model in solution and update the mechanism of HDL biogenesis.  相似文献   

19.
20.
High density lipoprotein (HDL) cholesterol has direct effects on numerous cell types that influence cardiovascular and metabolic health. These include endothelial cells, vascular smooth-muscle cells, leukocytes, platelets, adipocytes, skeletal muscle myocytes, and pancreatic β cells. The effects of HDL or apoA-I, its major apolipoprotein, occur through the modulation of intracellular calcium, oxygen-derived free-radical production, numerous kinases, and enzymes, including endothelial nitric-oxide synthase (eNOS). ApoA-I and HDL also influence gene expression, particularly genes encoding mediators of inflammation in vascular cells. In many paradigms, the change in intracellular signaling occurs as a result of cholesterol efflux, with the cholesterol acceptor methyl-β-cyclodextrin often invoking responses identical to HDL or apoA-I. The ABC transporters ABCA1 and ABCG1 and scavenger receptor class B, type I (SR-BI) frequently participate in the cellular responses. Structure-function relationships are emerging for signal initiation by ABCA1 and SR-BI, with plasma membrane cholesterol binding by the C-terminal transmembrane domain of SR-BI uniquely enabling it to serve as a sensor of changes in membrane cholesterol. Further investigation of the processes underlying HDL and apoA-I modulation of intracellular signaling will potentially reveal new prophylactic and therapeutic strategies to optimize both cardiovascular and metabolic health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号