首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this research was to identify the biochemical agents responsible for the oxidative degradation of lignin by the white-rot fungus . We examined the hypothesis that activated oxygen species are involved, and we also sought the agent in ligninolytic cultures responsible for a specific oxidative degradative reaction in substructure model compounds. Results of studies of the production of activated oxygen species by cultures, of the effect of their removal on ligninolytic activity, and of their action on substructure model compounds support a role for hydrogen peroxide (H2O2) and possibly superoxide (O2 ·-) in lignin degradation. Involvement of hydroxyl radical (·OH) or singlet oxygen (1O2) is not supported by our data. The actual biochemical agent responsible for one important oxidative C-C bond cleavage reaction in non-phenolic lignin substructure model compounds, and in lignin itself, was found to be an enzyme. The enzyme is extracellular, has a molecular weight of 42,000 daltons, is azide-sensitive, and requires H2O2 for activity.  相似文献   

2.
Hydroxyl radical (HO.) has been implicated in the degradation of lignin by Phanerochaete chrysosporium. This study assessed the possible involvement of HO. in degradation of lignin substructural models by intact cultures and by an extracellular ligninase isolated from the cultures. Two non-phenolic lignin model compounds [aryl-C(alpha)HOH-C(beta)HR-C(gamma)H2OH, in which R = aryl (beta-1) or R = O-aryl (beta-O-4)] were degraded by cultures, by the purified ligninase, and by Fenton's reagent (H2O2 + Fe2+), which generates HO.. The ligninase and the cultures formed similar products, derived via an initial cleavage between C(alpha) and C(beta) (known to be an important biodegradative reaction), indicating that the ligninase is responsible for model degradation in cultures. Products from the Fenton degradation were mainly polar phenolics that exhibited little similarity to those from the biological systems. Mass-spectral analysis, however, revealed traces of the same products in the Fenton reaction as seen in the biological reactions; even so, an 18O2-incorporation study showed that the mechanism of formation differed. E.s.r. spectroscopy with a spin-trapping agent readily detected HO. in the Fenton system, but indicated that no HO. is formed during ligninase catalysis. We conclude, therefore that HO. is not involved in fungal C(alpha)-C(beta) cleavage in the beta-1 and beta-O-4 models and, by extension, in the same reaction in lignin.  相似文献   

3.
A convenient and efficient application of heterogeneous methylrhenium trioxide (MTO) systems for the selective oxidation of lignin model compounds and lignins is reported. Environmental friendly and low-cost H2O2 was used as the oxygen atom donor. Overall, the data presented and discussed in this paper point toward the conclusion that the immobilized heterogeneous catalytic systems based on H2O2/and MTO catalysts are able to extensively oxidize both phenolic and non-phenolic, monomeric, and dimeric, lignin model compounds. Condensed diphenylmethane models were found also extensively oxidized. Technical lignins, such as hydrolytic sugar cane lignin (SCL) and red spruce kraft lignin (RSL), displayed oxidative activity with immobilized MTO catalytic systems. After oxidation, these lignins displayed the formation of more soluble lignin fragments with a high degree of degradation as indicated by the lower contents of aliphatic and condensed OH groups, and the higher amounts of carboxylic acid moieties. Our data indicate that immobilized MTO catalytic systems are significant potential candidates for the development of alternative totally chlorine-free delignification processes and environmental sustainable lignin selective modification reactions.  相似文献   

4.
Lu H  Wan Q  Wang H  Na X  Wang X  Bi Y 《Physiologia plantarum》2012,144(1):48-58
Narciclasine (NCS) is a plant growth inhibitor isolated from the secreted mucilage of Narcissus tazetta bulbs. It is a commonly used anticancer agent in animal systems. In this study, we provide evidence to show that NCS also acts as an agent in inducing programmed cell death (PCD) in tobacco Bright Yellow-2 (TBY-2) cell cultures. NCS treatment induces typical PCD-associated morphological and biochemical changes, namely cell shrinkage, chromatin condensation and nuclear DNA degradation. To investigate possible signaling events, we analyzed the production of reactive oxygen species (ROS) and the function of mitochondria during PCD induced by NCS. A biphasic behavior burst of hydrogen peroxide (H(2)O(2)) was detected in TBY-2 cells treated with NCS, and mitochondrial transmembrane potential (MTP) loss occurred after a slight increase. Pre-incubation with antioxidant catalase (CAT) and N-acetyl-L-cysteine (NAC) not only significantly decreased the H(2)O(2) production but also effectively retarded the decrease of MTP and reduced the percentage of cells undergoing PCD after NCS treatment. In conclusion, our results suggest that NCS induces PCD in plant cells; the oxidative stress (accumulation of H(2)O(2)) and the MTP loss play important roles during NCS-induced PCD.  相似文献   

5.
The metabolism of a lignin substructure model compound, 1,2-bis(3-methoxy-4-ethoxyphenyl)propane-1,3-diol (Ia) in ligninolytic cultures of Phanerochaete chrysosporium was studied to help elucidate the biochemical mechanism of lignin degradation. The primary reaction was cleavage of the model compound between C1 and C2 of the propane moiety to produce 1-(3-methoxy-4-ethoxyphenyl)ethane-1,2-diol and a C6-C1 product (probably 3-methoxy-4-ethoxybenzaldehyde). Other identified products arose secondarily; all were further metabolized. Even though the model compound was a mixture of four stereoisomers, no stereoselectivity was observed in its metabolism. In cultures under 18O2, the initial cleavage produced the diol product with ≈70% enrichment by 18O in the benzyl alcohol group. The diol was a mixture of the two possible enantiomers, and the O2-derived hydroxyl was incorporated at the asymmetric (benzyl) carbon. (Limited optical activity in the diol was traced to selective further metabolism of the D form.) These results show that the primary cleavage reaction lacked stereospecificity and was primarily oxygenative, implicating a nonspecific oxygenase or a nonenzymatic reaction involving activated oxygen. Preliminary experiments demonstrated no cell homogenate activity against Ia.  相似文献   

6.
The effect of oxidative stress on human red blood cell AMP-deaminase activity was studied by incubating either fresh erythrocytes or hemolysates with H(2)O(2) (0.5, 1, 2, 4, 6, 8, and 10 mm) or NaNO(2) (1, 5, 10, 20, and 50 mm), for 15 min at 37 degrees C. AMP-deaminase tremendously increased by increasing H(2)O(2) or NaNO(2) at up to 4 and 20 mm, respectively (maximal effect for both oxidants was 9.5 and 6.5 times higher enzymatic activity than control erythrocytes or hemolysates, respectively). The incubation of hemolysates with iodoacetate (5-100 mm), N-ethylmaleimide (0.1-10 mm), or p-hydroxymercuribenzoate (0.1-5 mm) mimicked the effect of oxidative stress on AMP-deaminase, indicating that sulfhydryl group modification is involved in the enzyme activation. In comparison with control hemolysates, changes of the kinetic properties of AMP-deaminase (decrease of AMP concentration necessary for half-maximal activation, increase of V(max), modification of the curve shape of V(o) versus [S], Hill plots, and coefficients) were recorded with 4 mm H(2)O(2)- and 1 mm N-ethylmaleimide-treated hemolysates. Data obtained using 90% purified enzyme, incubated with Fenton reagents (Fe(2+) + H(2)O(2)) or -SH-modifying compounds, demonstrated that (i) reactive oxygen species are directly responsible for AMP-deaminase activation; (ii) this phenomenon occurs through sulfhydryl group modification; and (iii) the activation does not involve the loss of the tetrameric protein structure. Results of experiments conducted with glucose-6-phosphate dehydrogenase-deficient erythrocytes, challenged with increasing doses of the anti-malarial drug quinine hydrochloride and showing dramatic AMP-deaminase activation, suggest relevant physiopathological implications of this enzymatic activation in conditions of increased oxidative stress. To the best of our knowledge, this is the first example of an enzyme, fundamental for the maintenance of the correct red blood cell energy metabolism, that is activated (rather than inhibited) by the interaction with reactive oxygen species.  相似文献   

7.
Anaerobically induced NAD-linked glycerol dehydrogenase of Klebsiella pneumoniae for fermentative glycerol utilization was reported previously to be inactivated in the cell during oxidative metabolism. In vitro inactivation was observed in this study by incubating the purified enzyme in the presence of O2, Fe2+, and ascorbate or dihydroxyfumarate. It appears that O2 and the reducing agent formed H2O2 and that H2O2 reacted with Fe2+ to generate an activated species of oxygen which attacked the enzyme. The in vitro-oxidized enzyme, like the in vivo-inactivated enzyme, showed an increased Km for NAD (but not glycerol) and could no longer be activated by Mn2+ which increased the Vmax of the native enzyme but decreased its apparent affinity for NAD. Ethanol dehydrogenase and 1,3-propanediol oxidoreductase, two enzymes with anaerobic function, also lost activity when the cells were incubated aerobically with glucose. However, glucose 6-phosphate dehydrogenase (NADP-linked), isocitrate dehydrogenase, and malate dehydrogenase, expected to function both aerobically and anaerobically, were not inactivated. Thus, oxidative modification of proteins in vivo might provide a mechanism for regulating the activities of some anaerobic enzymes.  相似文献   

8.
Peroxide mediates ethanol-induced cytotoxicity in PC12 cells   总被引:3,自引:0,他引:3  
Pheochromocytoma (PC12) cell cultures exhibited a loss of cells and increase in intracellular oxidative stress when exposed to ethanol (EtOH) for 24 h. Catalase, an enzyme that hydrolyzes hydrogen peroxide (H(2)O(2)) to O(2) and H(2)O can attenuate EtOH-induced cell loss and oxidative stress in PC12 cells. This study provides the first clear evidence that oxidative stress in the form of elevated intracellular H(2)O(2) is a primary mechanism of EtOH neurotoxicity in PC12 cells.  相似文献   

9.
Many ligninolytic fungi appear to lack lignin peroxidase (LiP), the enzyme generally thought to cleave the major, recalcitrant, nonphenolic structures in lignin. At least one such fungus, Ceriporiopsis subvermispora, is nevertheless able to degrade these nonphenolic structures. Experiments showed that wood block cultures and defined liquid medium cultures of C. subvermispora rapidly depolymerized and mineralized a (sup14)C-labeled, polyethylene glycol-linked, high-molecular-weight (beta)-O-4 lignin model compound (model I) that represents the major nonphenolic structure of lignin. The fungus cleaved model I between C(inf(alpha)) and C(inf(beta)) to release benzylic fragments, which were shown in isotope trapping experiments to be major products of model I metabolism. The C(inf(alpha))-C(inf(beta)) cleavage of (beta)-O-4 lignin structures to release benzylic fragments is characteristic of LiP catalysis, but assays of C. subvermispora liquid cultures that were metabolizing model I confirmed that the fungus produced no detectable LiP activity. Three results pointed, instead, to the participation of a different enzyme, manganese peroxidase (MnP), in the degradation of nonphenolic lignin structures by C. subvermispora. (i) The degradation of model I and of exhaustively methylated (nonphenolic), (sup14)C-labeled, synthetic lignin by the fungus in liquid cultures was almost completely inhibited when the Mn concentration of the medium was decreased from 35 (mu)M to approximately 5 (mu)M. (ii) The fungus degraded model I and methylated lignin significantly faster in the presence of Tween 80, a source of unsaturated fatty acids, than it did in the presence of Tween 20, which contains only saturated fatty acids. Previous work has shown that nonphenolic lignin structures are degraded during the MnP-mediated peroxidation of unsaturated lipids. (iii) In experiments with MnP, Mn(II), and unsaturated lipid in vitro, this system mimicked intact C. subvermispora cultures in that it cleaved nonphenolic (beta)-O-4 lignin model compounds between C(inf(alpha)) and C(inf(beta)) to release a benzylic fragment.  相似文献   

10.
Imposing hypoxia (P(O(2)) = 23 mmHg) upon A549 cells elicited increased G(amil) although previous work had predicted a fall in this parameter. G(amil) appeared to be dependent upon glucocorticoid-driven gene expression, a process inhibited by ERK, an enzyme activated by oxidative stress. However, hypoxia transiently activated this enzyme and the response was blocked by glucocorticoids, showing that the rise in G(amil) occurs only if ERK activation is suppressed. Fluorimetric assays showed that lowering P(O(2)) elicited H(2)O(2) formation indicating that this maneuver actually imposes oxidative stress, thus explaining how hypoxia can elicit responses normally associated with a rise in P(O(2)).  相似文献   

11.
The kinetics of the sensitized photodegradation of a variety of well-defined lignin model compounds was studied to determine the mechanisms responsible for lignin's photochemically-mediated oxidation. Monomeric and dimeric models representing lignin's phenolic end groups and nonphenolic dimers representing its inner core were studied. It was determined that the rate constants for the reaction of the deprotonated phenolic models with singlet oxygen (1O2) range from 0.96 to 7.2 x 10(7) M(-1) s(-1). The models were substituted with zero, one, or two electron-donating methoxy groups on both aryl rings and, while the rate constants showed little dependence on the substitution of the nonphenolic ring, the rate constants increased dramatically with increasing methoxy substitution of the phenol. Reaction between these deprotonated models and 1O2 is thus proposed to occur at the phenolate ring. Under neutral conditions, it was observed that the phenolic models react with excited state sensitizer, with this reaction also occuring at the phenol ring. The sum of the rate constants for quenching of and reaction with excited state sensitizer by lignin model compound ranges from 5.4 to 75 x 10(7) M(-1) s(-1). This study corrects previous reports that attribute the sensitized degradation of neutral lignin model compounds to reaction with 1O2. A nonphenolic aromatic ketone inner-core model was observed to undergo direct photolysis, and its reduced analog was not degraded by direct photolysis or reaction with 1O2 or excited state sensitizer. The oxidized inner-core model was also shown to be able to act as a sensitizer for the degradation of a phenolic lignin model compound.  相似文献   

12.
The methylene blue photosensitized oxidation of cysteine sulfinic acid is investigated. Enhancement of the oxygen consumption rate in deuterium oxide suggests the involvement of singlet oxygen ((1)O(2)) in oxidation. Addition of the (1)O(2) quencher azide produced an unusual enhancement of the oxidation rate of all the sulfinates assayed. It is assumed that azide works as a one-electron carrier between (1)O(2) and the sulfur compounds. Analyses of the products indicate that the photochemical oxidation of cysteine sulfinic acid proceeds through two simultaneous mechanisms. The Type II (singlet oxygen) mechanism is responsible for oxidation of the sulfinic group to the sulfonic group with production of cysteic acid, stable to the photooxidation system, whereas the Type I (electron transfer) mechanism is involved in the degradation of cysteine sulfinic acid to acetaldehyde. Other products detected were ammonia, sulfate, and hydrogen peroxide which account for the degradation of cysteine sulfinic acid and for the excess of oxygen consumption detected during the oxidative reaction.  相似文献   

13.
The possible involvement of singlet oxygen (1O2) in the degradation of lignin by Phanerochaetechrysosporium was examined. Ligninolytic cultures and photochemically generated 1O2 gave the same oxidation products from the lignin substructure model compound 1,2-bis(3-methoxy-4-alkoxyphenyl)propan-1,3-diol. Fluorescence and near UV absorbance of the specific 1O2 trapping agent anthracene-9,10-bisethanesulfonic acid (AES) disappeared in ligninolytic cultures, indicating that 1O2 was produced. AES strongly inhibited oxidation of 14C-lignin, but not 14C-glucose, to 14CO2 in cultures, and also strongly suppressed oxidation of the model compound. These results indicate the 1O2 plays an integral role in lignin biodegradation.  相似文献   

14.
A recombinant strain of Aspergillus niger (B1-D), engineered to produce the marker protein hen egg white lysozyme, was investigated with regard to its susceptibility to "oxidative stress" in submerged culture in bioreactor systems. The culture response to oxidative stress, produced either by addition of exogenous hydrogen peroxide or by high-dissolved oxygen tensions, was examined in terms of the activities of two key defensive enzymes: catalase (CAT) and superoxide dismutase (SOD). Batch cultures in the bioreactor were generally found to have maximum specific activities of CAT and SOD (Umg x protein(-1)) in the stationary/early-decline phase. Continuous addition of H2O2 (16 mmole L(-1) h(-1)), starting in the early exponential phase, induced CAT but did not increase SOD significantly. Gassing an early exponential-phase culture with O2 enriched (25 vol%) air resulted in increased activities of both SOD and CAT relative to control processes gassed continuously with air, while gassing the culture with 25 vol% O2 enriched air throughout the experiment, although inducing a higher base level of enzyme activities, did not increase the maximum SOD activity obtained relative to control processes gassed continuously with air. The profile of the specific activity of SOD (U mg CDW(-1)) appeared to correlate with dissolved oxygen levels in processes where no H2O2 addition occurred. These findings indicate that it is unsound to use the term "oxidative stress" to encompass a stress response produced by addition of a chemical (H2O2) or by elevated dissolved oxygen levels because the response to each might be quite different.  相似文献   

15.
Brown precipitates were obtained by polymerization of low molecular weight lignin fragments contained in a model effluent. Polymerization reactions were initiated by potato-polyphenoloxidase (PPO) or horseradish peroxidase/H(2)O(2) system (HRP/H(2)O(2)). The insolubilization processes occurred after a molecular weight increase of the lignin, as shown by gel permeation chromatography (GPC). The effect of reaction time, pH and amount of soluble lignin per unit of enzyme activity on the molecular weight distribution was evaluated for PPO-initiated reactions. For HRP-initiated system the amount of H(2)O(2) per unit of enzyme activity was also evaluated. Chemical characterization of the macromolecules obtained under optimized conditions and the soluble lignin fragments present in the effluent suggests that the polymerization reactions occur by oxidative cleavage of alpha-beta unsaturated bonds of the soluble lignin fragments. Methoxyl group analysis showed that p-hydroxycoumaryl units were preferentially oxidized by PPO. In contrast, HRP oxidized preferentially guaiacyl and siringyl units giving more condensed polymers.  相似文献   

16.
Several aromatic compounds increased initial lignin degradation rates in cultures of Phanerochaete chrysosporium. This activation was connected to increased H2O2 production and glucose oxidation rates. Veratryl alcohol, a natural secondary metabolite of P. chrysosporium, also activated the lignin-degrading system. In the presence of added veratryl alcohol the ligninolytic system appeared 6–8 h earlier than in reference cultures. This effect was only seen when lignin was added after the primary growth was completed because lignin itself also caused earlier appearance of the degradative system. In cultures which received no added lignin or veratryl alcohol the ligninolytic activity only appeared once the alcohol started to accumulate. The degradation patterns of veratryl alcohol and lignin were similar. The activity levels of lignin degradation and glucose oxidation could be regulated by veratryl alcohol concentration. It is suggested that either veratryl alcohol itself or a metabolite derived from it is actually responsible for the low levels of ligninolytic activity in glucose grown cultures.  相似文献   

17.
The importance of extracellular H2O2 in lignin degradation has become increasingly apparent with the recent discovery of H2O2-requiring ligninases produced by white-rot fungi. Here we describe a new H2O2-producing activity of Phanerochaete chrysosporium that involves extracellular oxidases able to use simple aldehyde, alpha-hydroxycarbonyl, or alpha-dicarbonyl compounds as substrates. The activity is expressed during secondary metabolism, when the ligninases are also expressed. Analytical isoelectric focusing of the extracellular proteins, followed by activity staining, indicated that minor proteins with broad substrate specificities are responsible for the oxidase activity. Two of the oxidase substrates, glyoxal and methylglyoxal, were also identified, as their quinoxaline derivatives, in the culture fluid as secondary metabolites. The significance of these findings is discussed with respect to lignin degradation and other proposed systems for H2O2 production in P. chrysosporium.  相似文献   

18.
Catalytic mechanisms and regulation of lignin peroxidase.   总被引:3,自引:0,他引:3  
Lignin peroxidase (LiP) is a fungal haemoprotein similar to the lignin-synthesizing plant peroxidases, but it has a higher oxidation potential and oxidizes dimethoxylated aromatic compounds to radical cations. It catalyses the degradation of lignin models but in vitro the outcome is net lignin polymerization. LiP oxidizes veratryl alcohol to radical cations which are proposed to act by charge transfer to mediate in the oxidation of lignin. Phenolic compounds are, however, preferentially oxidized, but transiently inactivate the enzyme. Analysis of the catalytic cycle of LiP shows that in the presence of veratryl alcohol the steady-state turnover intermediate is Compound II. We propose that veratryl alcohol is oxidized by the enzyme intermediate Compound I to a radical cation which now participates in charge-transfer reactions with either veratryl alcohol or another reductant, when present. Reduction of Compound II to native state may involve a radical product of veratryl alcohol or radical product of charge transfer. Phenoxy radicals, by contrast, cannot engage in charge-transfer reactions and reaction of Compound II with H2O2 ensues to form the peroxidatically inactive intermediate, Compound III. Regulation of LiP activity by phenolic compounds suggests feedback control, since many of the products of lignin degradation are phenolic. Such control would lower the concentration of phenolics relative to oxygen and favour degradative ring-opening reactions.  相似文献   

19.
百草枯对木质素降解菌产酶及其生物化学变化的影响   总被引:2,自引:0,他引:2  
为研究外源活性氧对木质素降解菌的影响,本实验对外源百草枯诱导下的杂色云芝(Coriolus versicolor)产酶及其生物化学过程进行了研究。将一定浓度的百草枯加入培养7 d的杂色云芝菌培养液中,连续培养148 h,测定其胞外木质素降解酶、胞内抗氧化酶的活性及生物化学参数的变化。与对照相比,30μmol/L的百草枯能够显著促进杂色云芝锰依赖过氧化物酶(MnP)、木质素过氧化物酶(LiP)和漆酶(Lac)的活性,3种酶活性分别提高了1.3、7和2.5倍;在连续培养的前48 h,30μmol/L的百草枯促进了胞内超氧化物歧化酶(SOD)、过氧化氢酶(CAT)的活性。百草枯对于胞外木质素降解酶活性的促进作用比对胞内抗氧化酶活性的促进作用明显。百草枯的加入促进了胞外酚类化合物与甲醛的浓度的增加,而丙二醛的浓度在培养的前24 h内增加,随后下降。结果表明,百草枯的加入对白腐菌产生了氧化胁迫,但菌株的抗氧化系统能够有效地进行氧化剂的清除,从而阻止氧化剂对机体的氧化伤害。百草枯作为外源氧化胁迫剂,可以增加木质素降解酶活性,有利于木质素的降解。  相似文献   

20.
The ability of various reactive oxygen species and serine proteases to activate latent collagenase (matrix metalloproteinase-1) purified from human neutrophils was examined. Latent 70-75 kD human neutrophil collagenase (HNC) was efficiently activated by known non-proteolytic activators phenylmercuric chloride (an organomercurial compound) and gold thioglucose (Au(I)-salt). Corresponding degree of activation was achieved by reactive oxygen species including hypochlorous acid (HOCl), hydrogen peroxide (H2O2) and hydroxyl radical generated by hypoxanthine/xanthine oxidase (HX/XAO). The presence of trace amounts of iron and EDTA were necessary and even enhanced H2O2 induced activation of latent HNC. This activation could be abolished by an iron chelator desferrioxamine and a hydroxyl radical scavenger mannitol. HOCl induced activation of latent HNC was not affected by desferrioxamine and mannitol. Thus, these compounds do not inhibit the active/activated form of HNC. Latent HNC could also be activated by trypsin and chymotrypsin but not by plasmin and plasma kallikrein. The ability of mannitol and desferrioxamine to inhibit the H2O2-induced activation of HNC suggests the transition metal dependent Fenton reaction to be responsible for localized and/or site-specific generation of hydroxyl radical/hydroxyl radical -like oxidants to act as the activating oxygen species. Our results support the ability of myeloperoxidase derived HOCl to act as a direct oxidative activator of HNC and further suggest the existence of a new/alternative oxidative activation pathway of HNC involving hydroxyl radical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号