首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Harris DL  Park JY  Gruenke L  Waskell L 《Proteins》2004,55(4):895-914
The molecular origins of temperature-dependent ligand-binding affinities and ligand-induced heme spin state conversion have been investigated using free energy analysis and DFT calculations for substrates and inhibitors of cytochrome P450 2B4 (CYP2B4), employing models of CYP2B4 based on CYP2C5(3LVdH)/CYP2C9 crystal structures, and the results compared with experiment. DFT calculations indicate that large heme-ligand interactions (ca. -15 kcal/mol) are required for inducing a high to low spin heme transition, which is correlated with large molecular electrostatic potentials (approximately -45 kcal/mol) at the ligand heteroatom. While type II ligands often contain oxygen and nitrogen heteroatoms that ligate heme iron, DFT results indicate that BP and MF heme complexes, with weak substrate-heme interactions (ca. -2 kcal/mol), and modest MEPS minima (>-35 kcal/mol) are high spin. In contrast, heme complexes of the CYP2B4 inhibitor, 4PI, the product of benzphetamine metabolism, DMBP, and water are low spin, have substantial heme-ligand interaction energies (<-15 kcal/mol) and deep MEPS minima (<-45 kcal/mol) near their heteroatoms. MMPBSA analysis of MD trajectories were made to estimate binding free energies of these ligands at the heme binding site of CYP2B4. In order to initially assess the realism of this approach, the binding free energy of 4PI inhibitor was computed and found to be a reasonable agreement with experiment: -7.7 kcal/mol [-7.2 kcal/mol (experiment)]. BP was determined to be a good substrate [-6.3 kcal/mol (with heme-ligand water), -7.3 kcal/mol (without ligand water)/-5.8 kcal/mol (experiment)], whereas the binding of MF was negligible, with only marginal binding binding free energy of -1.7 kcal/mol with 2-MF bound [-3.8 kcal/mol (experiment)], both with and without retained heme-ligand water. Analysis of the free energy components reveal that hydrophobic/nonpolar contributions account for approximately 90% of the total binding free energy of these substrates and are the source of their differential and temperature-dependent CYP2B4 binding. The results indicate the underlying origins of the experimentally observed differential binding affinities of BP and MF, and indicate the plausibility of the use of models derived from moderate sequence identity templates in conjunction with approximate free energy methods in the estimation of ligand-P450 binding affinities.  相似文献   

2.
Molecular dynamics simulations and molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) free energy calculations were used to study the binding of testosterone (TES), 5alpha-dihydrotestosterone (5ADHT), androstenedione (AND), and dehydroepiandrosterone sulfate (DHEAS) to the monoclonal antitestosterone antibody 3-C(4)F(5). The relative binding free energy of TES and AND was also calculated with free energy perturbation (FEP) simulations. The antibody 3-C(4)F(5) has a relatively high affinity (3 x 10(8) M(-1)) and on overall good binding profile for testosterone but its cross-reactivity with DHEAS has been the main reason for the failure to use this antibody in clinical immunoassays. The relative binding free energies obtained with the MM-PBSA method were 1.5 kcal/mol for 5ADHT, 3.8 kcal/mol for AND, and 4.3 kcal/mol for DHEAS, as compared to TES. When a water molecule of the ligand binding site, observed in the antibody-TES crystal structure, was explicitly included in MM-PBSA calculations, the relative binding energies were 3.4, 4.9, and 5.4 kcal/mol for 5ADHT, AND, and DHEAS, respectively. The calculated numbers are in correct order but larger than the corresponding experimental energies of 1.3, 1.5, and 2.6 kcal/mol, respectively. The fact that the MM-PBSA method reproduced the relative binding free energies of DHEAS, a steroid having a negatively charged sulfate group, and the neutrally charged TES, 5ADHT, and AND in satisfactory agreement with experiment shows the robustness of the method in predicting relative binding affinities. The 800-ps FEP simulations predicted that the antibody 3-C(4)F(5) binds TES 1.3 kcal/mol tighter than AND. Computational mutagenesis of selected amino acid residues of the ligand binding site revealed that the lower affinities of AND and DHEAS as compared to TES are due to a combined effect of several residues, each contributing a small fraction to the tighter binding of TES. An exception to this is Tyr99H, whose mutation to Ala lowered the binding of DHEAS 0.7 kcal/mol more than the binding of TES. This is probably due to the hydrogen bonding interaction formed between the OH group of Tyr99H and the sulfate group of DHEAS. Computational mutagensis data also showed that the affinity of the steroids to the antitestosterone antibody 3-C(4)F(5) would be enhanced if Trp47H were repositioned so that it would make more extensive contacts with the bound ligands. In addition, the binding of steroids to antitestosterone, antiprogesterone, and antiestradiol antibodies is discussed.  相似文献   

3.
We present a combined experimental and modeling study of organic ligand molecules binding to a slightly polar engineered cavity site in T4 lysozyme (L99A/M102Q). For modeling, we computed alchemical absolute binding free energies. These were blind tests performed prospectively on 13 diverse, previously untested candidate ligand molecules. We predicted that eight compounds would bind to the cavity and five would not; 11 of 13 predictions were correct at this level. The RMS error to the measurable absolute binding energies was 1.8 kcal/mol. In addition, we computed “relative” binding free energies for six phenol derivatives starting from two known ligands: phenol and catechol. The average RMS error in the relative free energy prediction was 2.5 kcal/mol (phenol) and 1.1 kcal/mol (catechol). To understand these results at atomic resolution, we obtained x-ray co-complex structures for nine of the diverse ligands and for all six phenol analogs. The average RMSD of the predicted pose to the experiment was 2.0 Å (diverse set), 1.8 Å (phenol-derived predictions), and 1.2 Å (catechol-derived predictions). We found that predicting accurate affinities and rank-orderings required near-native starting orientations of the ligand in the binding site. Unanticipated binding modes, multiple ligand binding, and protein conformational change all proved challenging for the free energy methods. We believe that these results can help guide future improvements in physics-based absolute binding free energy methods.  相似文献   

4.
Sandermann H 《FEBS letters》2002,514(2-3):340-342
The free energy of lipid/protein interaction in biological membranes is still unknown although extensive partitioning and modelling studies have revealed many partial energetic increments. Multiple site binding kinetics are now applied to four well-studied functional membrane proteins, and mean free energy values (+/-S.D.) of -4.23+/-0.49 kcal/mol for single lipid binding sites and of -89.7+/-35.4 kcal/mol for complete lipid substitution are obtained. These high free energy values point to an important bioenergetic role of lipid/protein interaction in membrane functions.  相似文献   

5.
Predicting absolute ligand binding free energies to a simple model site   总被引:2,自引:0,他引:2  
A central challenge in structure-based ligand design is the accurate prediction of binding free energies. Here we apply alchemical free energy calculations in explicit solvent to predict ligand binding in a model cavity in T4 lysozyme. Even in this simple site, there are challenges. We made systematic improvements, beginning with single poses from docking, then including multiple poses, additional protein conformational changes, and using an improved charge model. Computed absolute binding free energies had an RMS error of 1.9 kcal/mol relative to previously determined experimental values. In blind prospective tests, the methods correctly discriminated between several true ligands and decoys in a set of putative binders identified by docking. In these prospective tests, the RMS error in predicted binding free energies relative to those subsequently determined experimentally was only 0.6 kcal/mol. X-ray crystal structures of the new ligands bound in the cavity corresponded closely to predictions from the free energy calculations, but sometimes differed from those predicted by docking. Finally, we examined the impact of holding the protein rigid, as in docking, with a view to learning how approximations made in docking affect accuracy and how they may be improved.  相似文献   

6.
Calculations were performed on the D1.3-E5.2 antibody-antibody complex estimating the binding affinities of the wild-type and 16 alanine substitutions. Analyzed were structural models of the interfacial region containing a zinc ion and crystallographic waters. A continuum approach was used to evaluate the electrostatic free energies and the hydrophobic effect was calculated by employing a buried molecular surface area relationship. Estimates of the absolute binding affinity reproduced the experimental value within the uncertainty of assessing entropic and strain energy contributions. The best correlation for mutants with experimental data was achieved when the hydrophilicity of created cavities were considered, and yielded a correlation coefficient of 0.7 and an average error of +/-1.4 kcal/mol. Empirically fitting the free energy function produced a smaller error of +/-1.0 kcal/mol. Depending on the electrical potential and electrostatic reorganization, scaling the 'protein dielectric constant' to approximately 10 may improve the accuracy of continuum models for evaluating amino acid substitutions.  相似文献   

7.
T Nowak  M J Lee 《Biochemistry》1977,16(7):1343-1350
The formation of multiple ligand complexes with muscle pyruvate kinase was measured in terms of dissociation constants and the standard free energies of formation were calculated. The binding of Mn2+ to the enzyme (KA = 55 +/- 5 X 10(-6) M; deltaF degrees = -5.75 +/- 0.05 kcal/mol) and to the enzyme saturated with phosphoenolpyruvate (conditional free energy) KA' = 0.8 +/- 0.4 X 10(-6) M; deltaF degrees = -8.22 +/- 0.34 kcal/mol) has been measured under identical conditions giving a free energy of coupling, delta(deltaF degrees) = -2.47 +/- 0.34 kcal/mol. Such a large negative free energy of coupling is diagnostic of a strong positively cooperative effect in ligand binding. The binding of the substrate phosphoenolpyruvate to free enzyme and the enzyme-Mn2+ complex was, by necessity, measured by different methods. The free energy of phosphoenolpyruvate binding to free enzyme (KS = 1.58 +/- 0.10 X 10(-4)M; deltaF degrees = -5.13 +/- 0.04 kcal/mol) and to the enzyme-Mn2+ complex (K3 = 0.75 +/- 0.10 X 10(-6)M; deltaF degrees = -8.26 +/- 0.07 kcal/mol) also gives a large negative free energy of coupling, delta(deltaF degrees) = -3.16 +/- 0.08 kcal/mol. Such a large negative value confirms reciprocal binding effects between the divalent cation and the substrate phosphoenolpyruvate. The binding of Mn2+ to the enzyme-ADP complex was also investigated and a free energy of coupling, delta(deltaF degrees) = -0.08 +/- 0.08 kcal/mol, was measured, indicative of little or no cooperativity in binding. The free energy of coupling with Mn2+ and pyruvate was measured as -1.52 +/- 0.14 kcal/mol, showing a significant amount of cooperativity in ligand binding but a substantially smaller effect than that observed for phosphoenolpyruvate binding. The magnitude of the coupling free energy may be related to the role of the divalent cation in the formation of the enzyme-substrate complexes. In the absence of the activating monovalent cation, the coupling free energies for phosphoenolpyruvate and pyruvate binding decrease by 40-60% and 25%, respectively, substantiating a role for the monovalent cation in the formation of enzyme-substrate complexes with phosphoenolpyruvate and with pyruvate.  相似文献   

8.
NS5 methyltransferase (Mtase) has a crucial role in the replication of dengue virus. There are two active sites on NS5 Mtase i.e., SAM and RNA-cap binding sites. Inhibition of the NS5 Mtase activity is expected to prevent the propagation of dengue virus. This study was conducted to design cyclic peptide ligands as enzyme inhibitors of dengue virus NS5 Mtase through computational approach. Cyclopentapeptides were designed as ligand of SAM binding site as much as 1635 and 736 cyclopentpeptides were designed as ligand of RNA-cap binding site. Interaction between ligand and NS5 Mtase has been conducted on the Docking simulation. The result shows that cyclopentapeptide CTWYC was the best peptide candidate on SAM binding site, with estimated free binding energy -30.72 kca/mol. Cyclopentapeptide CYEFC was the best peptide on RNA-cap binding site with estimated free binding energy -22.89 kcal/mol. Both peptides did not have tendency toward toxicity properties. So it is expected that both CTWYC and CYEFC ligands could be used as a potential antiviral drug candidates, which can inhibit the SAM and RNA-cap binding sites of dengue virus NS5 Mtase.  相似文献   

9.
W M Kati  S A Acheson  R Wolfenden 《Biochemistry》1992,31(32):7356-7366
Nebularine undergoes hydration at the active site of adenosine deaminase, in a reaction analogous to a partial reaction in the displacement of ammonia from adenosine by water, to generate an inhibitory complex that captures much of the binding affinity expected of an ideal transition-state analogue. Enzyme affinities of several compounds related to nebularine 1,6-hydrate, and to its stable analog 2'-deoxycoformycin, were compared in an effort to identify the structural origins of strong binding. Binding of the stable transition-state analog inhibitor 2'-deoxycoformycin was rendered 9.8 kcal/mol less favorable by removal of substituent ribose, 9.7 kcal/mol less favorable by inversion of the 8-hydroxyl substituent of the diazepine ring, and 10.0 kcal/mol less favorable by removal of atoms 4-6 of the diazepine ring. Binding of the unstable transition-state analog nebularine hydrate was rendered at least 9.9 kcal/mol less favorable by removal of the 6-hydroxyl group and 10.2 kcal/mol less favorable by removal of atoms 1-3 of the pyrimidine ring. In each case, the enzyme exhibited only modest affinity (Kd greater than or equal to 10(-2) M) for the "missing piece", indicating that incorporation of 2 binding determinants within a single molecule permits an additional 7-12 kcal/mol of intrinsic binding energy to be manifested as observed binding energy. These results are consistent with earlier indications that adenosine deaminase may use 10.5 kcal/mol of the intrinsic free energy of binding of the two substrates to place them in positions appropriate for reaction at the active site, overcoming the unfavorable entropy change of -35 eu for the equilibrium of 1,6-hydration of purine ribonucleoside and reducing the equilibrium constant for attainment of the transition state in deamination of adenosine. Thus, adenosine deaminase may achieve up to 8 orders of magnitude of its catalytic power by converting the nonenzymatic, bimolecular, hydration reaction to a monomolecular reaction at its active site. Several new 6-substituted 1,6-dihydropurine ribonucleosides, prepared by photoaddition of formate and by low-temperature addition of organolithium reagents to a derivative of purine ribonucleoside, exhibited Ki values of 9-1400 microM against adenosine deaminase, in accord with the active site's considerable tolerance of bulky leaving groups in substrates. Inhibition by one diastereomer of 6-carboxy-1,6-dihydropurine ribonucleoside was found to be time-dependent, progressing from a weakly bound to a more strongly bound complex.  相似文献   

10.
Mycobacterium tuberculosis (TB) is a leading global cause of disease-related death. Recent works have studied metabolic pathways of the mycobacterium, highlighting essential enzymes to target via competitive inhibition through computational molecular modeling to suppress the organism''s life cycle. We used the Protein Databank (PDB), the UniProt Knowledgebase and the iDock server in this study. In vitro toxicity screening and pharmacokinetic properties were assessed to determine potential ligand safety and drug properties. Our results have revealed five and nine potential ligands for the enzymes AspS and KatG respectively. The KatG active site has displayed binding affinities of -13.443 to -12.895 kcal/mol, while AspS ligands range from -6.580 to -6.490kcal/mol. The intermolecular forces responsible for the differing binding affinities of each enzyme are primarily Coulombic interactions for AspS, versus Coulombic and extensive hydrogen bonding interactions in KatG.  相似文献   

11.
Glycogen phosphorylase (GP) is a validated target for the treatment of type 2 diabetes. Here we describe highly potent GP inhibitors, AVE5688, AVE2865, and AVE9423. The first two compounds are optimized members of the acyl urea series. The latter represents a novel quinolone class of GP inhibitors, which is introduced in this study. In the enzyme assay, both inhibitor types compete with the physiological activator AMP and act synergistically with glucose. Isothermal titration calorimetry (ITC) shows that the compounds strongly bind to nonphosphorylated, inactive GP (GPb). Binding to phosphorylated, active GP (GPa) is substantially weaker, and the thermodynamic profile reflects a coupled transition to the inactive (tense) conformation. Crystal structures confirm that the three inhibitors bind to the AMP site of tense state GP. These data provide the first direct evidence that acyl urea and quinolone compounds are allosteric inhibitors that selectively bind to and stabilize the inactive conformation of the enzyme. Furthermore, ITC reveals markedly different thermodynamic contributions to inhibitor potency that can be related to the binding modes observed in the cocrystal structures. For AVE5688, which occupies only the lower part of the bifurcated AMP site, binding to GPb (Kd = 170 nM) is exclusively enthalpic (Delta H = -9.0 kcal/mol, TDelta S = 0.3 kcal/mol). The inhibitors AVE2865 (Kd = 9 nM, Delta H = -6.8 kcal/mol, TDelta S = 4.2 kcal/mol) and AVE9423 (Kd = 24 nM, Delta H = -5.9 kcal/mol, TDelta S = 4.6 kcal/mol) fully exploit the volume of the binding pocket. Their pronounced binding entropy can be attributed to the extensive displacement of solvent molecules as well as to ionic interactions with the phosphate recognition site.  相似文献   

12.
Glucosamine-6-phosphate synthase (GlmS) catalyzes the formation of D-glucosamine 6-phosphate from D-fructose 6-phosphate using L-glutamine as the ammonia source. Because N-acetylglucosamine is an essential building block of both bacterial cell walls and fungal cell wall chitin, the enzyme is a potential target for antibacterial and antifungal agents. The most potent carbohydrate-based inhibitor of GlmS reported to date is 2-amino-2-deoxy-D-glucitol 6-phosphate, an analogue of the putative cis-enolamine intermediate formed during catalysis. The interaction of a series of structurally related cis-enolamine intermediate analogues with GlmS is described. Although arabinose oxime 5-phosphate is identified as a good competitive inhibitor of GlmS with an inhibition constant equal to 1. 2 (+/-0.3) mM, the presence of the amino function at the 2-position is shown to be important for potent inhibition. Comparison of the binding affinities of 2-deoxy-D-glucitol 6-phosphate and 2-amino-2-deoxy-D-glucitol 6-phosphate indicates that the amino function contributes -4.1 (+/-0.1) kcal/mol to the free energy of inhibitor binding. Similarly, comparison of the binding affinities of 2-deoxy-D-glucose 6-phosphate and D-glucosamine 6-phosphate indicates that the amino function contributes -3.0 (+/-0.1) kcal/mol to the free energy of product binding. Interactions between GlmS and the 2-amino function of its ligands contribute to the uniform binding of the product and the cis-enolamine intermediate as evidenced by the similar contribution of the amino group to the free energy of binding of D-glucosamine 6-phosphate and 2-amino-2-deoxy-D-glucitol 6-phosphate, respectively.  相似文献   

13.
Kinetic and equilibrium studies of the binding of modified beta-D-galactoside sugars to the lac repressor were carried out to generate thermodynamic data for protein-inducer interactions. The energetic contributions of the galactosyl hydroxyl groups to binding were assessed by using a series of methyl deoxyfluoro-beta-D-galactosides. The C-3 and C-6 hydroxyls contributed less than or equal to -2.3 and -1.7 +/- 0.3 kcal/mol to the binding free energy change, respectively, whereas the C-4 hydroxyl provided only a nominal contribution (-0.1 +/- 0.2 kcal/mol). Favorable contributions to the total binding free energy change were observed for replacement of O-methyl by S-methyl at the beta-anomeric position and for S-methyl by S-isopropyl. Negative delta H degrees values characteristic of protein-sugar complexes [Quiocho, F. A. (1986) Annu. Rev. Biochem. 55, 287-315] were observed for a series of beta-D-galactosides differing at the beta-glycosidic position. A decrease in delta H degrees of approximately 6 kcal/mol upon replacement of the O-methyl substituent by S-methyl indicates a substantial increase in van der Waals' interactions and/or hydrogen bonding in this region of the ligand binding site. The more favorable free energy change for the binding of the S-isopropyl vs S-methyl compound is due mainly to more positive entropic contributions, consistent with an increase in apolar interactions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
We present the results of free energy perturbation calculations on binding and catalysis of a tetrapeptide substrate, acetyl-Phe-Ala-Ala-Phe-NMe, by native subtilisin BPN' and a subtilisin BPN' mutant (Thr220----Ala220). The calculated difference in the free energy of binding was 0.70 +/- 0.72 kcal/mol. The calculated difference in the free energy of catalysis was 1.48 +/- 0.89 kcal/mol. These calculated values compare well with the experimental values in which another substrate, succinyl-Ala-Ala-Pro-Phe-p-nitroanilide, was used. These findings suggest that Thr220 is more important for catalysis than substrate binding.  相似文献   

15.
Antiestradiol antibody 57-2 binds 17beta-estradiol (E2) with moderately high affinity (K(a) = 5 x 10(8) M(-1)). The structurally related natural estrogens estrone and estriol as well synthetic 17-deoxy-estradiol and 17alpha-estradiol are bound to the antibody with 3.7-4.9 kcal mol(-1) lower binding free energies than E2. Free energy perturbation (FEP) simulations and the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) method were applied to investigate the factors responsible for the relatively low cross-reactivity of the antibody with these four steroids, differing from E2 by the substituents of the steroid D-ring. In addition, computational alanine scanning of the binding site residues was carried out with the MM-PBSA method. Both the FEP and MM-PBSA methods reproduced the experimental relative affinities of the five steroids in good agreement with experiment. On the basis of FEP simulations, the number of hydrogen bonds formed between the antibody and steroids, which varied from 0 to 3 in the steroids studied, determined directly the magnitude of the steroid-antibody interaction free energies. One hydrogen bond was calculated to contribute about 3 kcal mol(-1) to the interaction energy. Because the relative binding free energies of estrone (two antibody-steroid hydrogen bonds), estriol (three hydrogen bonds), 17-deoxy-estradiol (no hydrogen bonds), and 17alpha-estradiol (two hydrogen bonds) are close to each other and clearly lower than that of E2 (three hydrogen bonds), the water-steroid interactions lost upon binding to the antibody make an important contribution to the binding free energies. The MM-PBSA calculations showed that the binding of steroids to the antiestradiol antibody is driven by van der Waals interactions, whereas specificity is solely due to electrostatic interactions. In addition, binding of steroids to the antiestradiol antibody 57-2 was compared to the binding to the antiprogesterone antibody DB3 and antitestosterone antibody 3-C4F5, studied earlier with the MM-PBSA method.  相似文献   

16.
Binding of the protein Raf to the active form of Ras promotes activation of the MAP kinase signaling pathway, triggering cell growth and differentiation. Raf/Arg89 in the center of the binding interface plays an important role determining Ras-Raf binding affinity. We have investigated experimentally and computationally the Raf-R89K mutation, which abolishes signaling in vivo. The binding to [gamma-35S]GTP-Ras of a fusion protein between the Raf-binding domain (RBD) of Raf and GST was reduced at least 175-fold by the mutation, corresponding to a standard binding free energy decrease of at least 3.0 kcal/mol. To compute this free energy and obtain insights into the microscopic interactions favoring binding, we performed alchemical simulations of the RBD, both complexed to Ras and free in solution, in which residue 89 is gradually mutated from Arg into Lys. The simulations give a standard binding free energy decrease of 2.9+/-1.9 kcal/mol, in agreement with experiment. The use of numerous runs with three different force fields allows insights into the sources of uncertainty in the free energy and its components. The binding decreases partly because of a 7 kcal/mol higher cost to desolvate Lys upon binding, compared to Arg, due to better solvent interactions with the more concentrated Lys charge in the unbound state. This effect is expected to be general, contributing to the lower propensity of Lys to participate in protein-protein interfaces. Large contributions to the free energy change also arise from electrostatic interactions with groups up to 8 A away, namely residues 37-41 in the conserved effector domain of Ras (including 4 kcal/mol from Ser39 which loses a bifurcated hydrogen bond to Arg89), the conserved Lys84 and Lys87 of Raf, and 2-3 specific water molecules. This analysis will provide insights into the large experimental database of Ras-Raf mutations.  相似文献   

17.
Fenton AW  Reinhart GD 《Biochemistry》2002,41(45):13410-13416
Escherichia coli phosphofructokinase 1 (EcPFK) is a homotetramer with four active and four allosteric sites. Understanding of the structural basis of allosteric activation of EcPFK by MgADP is complicated by the multiplicity of binding sites. To isolate a single heterotropic allosteric interaction, hybrid tetramers were formed between wild-type and mutant EcPFK subunits in which the binding sites of the mutant subunits have decreased affinity for their respective ligands. The 1:3 (wild-type:mutant) hybrid that contained only one native active site and one native allosteric site was isolated. The affinity for the substrate fructose-6-phosphate (Fru-6-P) of a single wild-type active site is greatly decreased over that displayed by the wild-type tetramer due to the lack of homotropic activation. The free energy of activation by MgADP for this heterotropic interaction is -0.58 kcal/mol at 8.5 degrees C. This compares to -2.87 kcal/mol for a hybrid with no homotropic coupling but all four unique heterotropic interactions. Therefore, the isolated interaction contributes 20% of the total heterotropic coupling. By comparison, wild-type EcPFK exhibits a coupling free energy between Fru-6-P and MgADP of -1.56 kcal/mol under these conditions, indicating that the effects of MgADP are diminished by a homotropic activation equal to -1.3 kcal/mol. These data are not consistent with a concerted allosteric mechanism.  相似文献   

18.
Saito M  Sarai A 《Proteins》2003,52(2):129-136
The change in the binding free energy between DNA and lambda-repressor resulting from a base substitution, thymine (T)-->deoxyuracil (abbreviated as U), was evaluated by the free energy perturbation method on the basis of molecular dynamics simulations for the DNA-lambda-repressor complex in water with all degrees of freedom and including long-range Coulomb interactions. The binding free energy change that we calculated (1.47 +/- 0.40 kcal/mol) was in good agreement with an experimental value (1.8 kcal/mol). We clarified why the small difference between T and U (CH(3) in T is replaced with H in U) caused such a significant change in the binding free energy: The substitution of CH(3) in T with H in U lowered the dissociated-state free energy level due to the gain of the hydration free energy. Furthermore, the T-->U substitution raised the free energy level in the associated state due to the loss of the favored van der Waals (vdW) interactions with the lambda-repressor amino acid residues. In other words, the amino acid residues of lambda-repressor can recognize the CH(3) in T through the vdW interactions with the CH(3). This recognition is enhanced in a water environment, because the hydrophobic CH(3) prefers the amino acid residues of lambda-repressor to water molecules.  相似文献   

19.
The binding of cI-repressor to a series of mutant operators containing OR1 of the right operator of bacteriophage lambda was investigated. Sites OR2 and/or OR3 were inactivated by either point or deletion mutations. The free energy of binding repressor to OR1 in the wildtype operator, delta G1, is -13.7 +/- 0.3 kcal/mol. delta G1 determined for an OR2- operator created by a single point mutation in OR2 is -13.6 +/- 0.2 kcal/mol. In contrast, delta G1 for the binding of repressor to a cloned synthetic OR1 operator containing only 24 bp of lambda sequence is -12.2 +/- 0.1 kcal/mol. When sequence 5' to OR1 is present, the binding affinity increases to -13.0 +/- 0.1 kcal/mol. In addition, the proximity of OR1 to a fragment-end decreases delta G1 from -13.7 to -12.3 +/- 0.1 kcal/mol. These results suggest that the DNA sequence outside the 17 bp OR1 binding-site contributes to the specific binding of cI-repressor.  相似文献   

20.
We present a calculation of the relative changes in binding free energy between the complex of ribonuclease T1 (RNase Tr) with its inhibitor 2'-guanosine monophosphate (2'GMP) and that of RNase T1-2'-adenosine monophosphate (2'AMP) by means of a thermodynamic perturbation method implemented with molecular dynamics. Using the available crystal structure of the RNase T1-2'GMP complex, the structure of the RNase T1-2'AMP complex was obtained as a final structure of the perturbation calculation. The calculated difference in the free energy of binding (delta delta Gbind) was 2.76 kcal/mol. This compares well with the experimental value of 3.07 kcal/mol. The encouraging agreement in delta delta Gbind suggests that the interactions of inhibitors with the enzyme are reasonably represented. Energy component analyses of the two complexes reveal that the active site of RNase T1 electrostatically stabilizes the binding of 2'GMP more than that of 2'AMP by 44 kcal/mol, while the van der Waals' interactions are similar in the two complexes. The analyses suggest that the mutation from Glu46 to Gln may lead to a preference of RNase T1 for adenine in contrast to the guanine preference of the wild-type enzyme. Although the molecular dynamics equilibration moves the atoms of the RNase T1-2'GMP system about 0.9 A from their X-ray positions and the mutation of the G to A in the active site increases the deviation from the X-ray structure, the mutation of the A back to G reduces the deviation. This and the agreement found for delta delta Gbind suggest that the molecular dynamics/free energy perturbation method will be useful for both energetic and structural analysis of protein-ligand interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号