共查询到20条相似文献,搜索用时 31 毫秒
1.
A significant improvement in the production of l-ribulose from inexpensive and commercially available starting materials, l-arabinose and sodium aluminate, is demonstrated. This has facilitated expeditious access to gram-scale quantities of l-ribulofuranoside derivatives. 相似文献
2.
Tiejun Liu Shigenobu Miura Tomohiro Arimura Min-Yi Tei Enoch Y. Park Mitsuyasu Okabe 《Biotechnology and Bioprocess Engineering》2005,10(6):522-527
Various processes which producel-lactic acid using ammonia-tolerant mutant strain,Rhizopus sp. MK-96-1196, in a 3 L airlift bioreactor were evaluated. When the fed-batch culture was carried out by keeping the glucose
concentration at 30 g/l, more than 140 g/l ofl-lactic acid was produced with a product yield of 83%. In the case of the batch culture with 200 g/l of initial glucose concentration, 121 g/L ofl-lactic acid was obtained but the low product yield based on the amount of glucose consumed. In the case of a continuous culture,
1.5 g/l/h of the volumetric productivity with a product yield of 71% was achieved at dilution rate of 0.024 h−1. Basis on these results three processes were evaluated by simple variable cost estimation including carbon source, steam,
and waste treatment costs. The total variable costs of the fed-batch and continuous cultures were 88% and 140%, respectively,
compared to that of batch culture. The fed-batch culture with highl-lactic acid concentration and high product yield decreased variable costs, and was the best-suited for the industrial production
ofl-lactic acid. 相似文献
3.
A novel transglycosylation reaction from sucrose to l-ascorbic acid by a recombinant sucrose phosphorylase from Bifidobacterium longum was used to produce a stable l-ascorbic acid derivative. The major product was detected by HPLC, and confirmed to be 2-O-α-d-glucopyranosyl-l-ascorbic acid by LC-MS/MS analysis. 相似文献
4.
During L-lactic acid fermentation by Rhizopus oryzae, increasing the phosphate level in the fermentation medium from 0.1 g l–1 to 0.6 g l–1 KH2PO4 reduced the maximal concentration of L-lactic acid and fumaric acid from 85 g l–1 to 71 g l–1 and from 1.36 g l–1 to 0.18 g l–1, respectively; and it decreased the fermentation time from 72 h to 52 h. Phosphate at 0.40 g l–1 KH2PO4 was suitable for both minimizing fumaric acid accumulation and benefiting L-lactic acid production. 相似文献
5.
In hippocampal slices arachidonic acid released after NMDA post-synaptic receptor activation is thought to act as a retrograde trans-synaptic messenger which facilitates the pre-synaptic release of L-glutamate to be involved in the expression of long-term synaptic potentiation (LTP). We measured the mass amount of arachidonic acid released from hippocampal slices incubated under conditions which maintain the electrophysiological responsiveness of the slice. Melittin released arachidonic, oleic and docosahexaenoic acids by phospholipase A2 activation but not palmitic or stearic acids. Of greater interestl-glutamate, N-methyl-d-aspartate and incubation conditions known to induce LTP selectively and rapidly increased the release of archidonic acid in amounts over basal levels of 200–300 ng/mg protein. This is the first direct determination of the mass amount of arachidonic acid released following NMDA receptor activation in the hippocampus.Special issue dedicated to Dr. Louis Sokoloff. 相似文献
6.
Geobacillus thermodenitrificans, with a double-site mutation in L: -arabinose isomerase, produced 95 g L-: ribulose l(-1 ) from 500 g L: -arabinose l(-1) under optimum conditions of pH 8, 70 degrees C, and 10 units enzyme ml(-1) with a conversion yield of 19% over 2 h. The half-lives of the mutated enzyme at 70 and 75 degrees C were 35 and 4.5 h, respectively. 相似文献
7.
Okino S Suda M Fujikura K Inui M Yukawa H 《Applied microbiology and biotechnology》2008,78(3):449-454
In mineral salts medium under oxygen deprivation, Corynebacterium glutamicum exhibits high productivity of l-lactic acid accompanied with succinic and acetic acids. In taking advantage of this elevated productivity, C. glutamicum was genetically modified to produce d-lactic acid. The modification involved expression of fermentative d-lactate dehydrogenase (d-LDH)-encoding genes from Escherichia coli and Lactobacillus delbrueckii in l-lactate dehydrogenase (l-LDH)-encoding ldhA-null C. glutamicum mutants to yield strains C. glutamicum ΔldhA/pCRB201 and C. glutamicum ΔldhA/pCRB204, respectively. The productivity of C. glutamicum ΔldhA/pCRB204 was fivefold higher than that of C. glutamicum ΔldhA/pCRB201. By using C. glutamicum ΔldhA/pCRB204 cells packed to a high density in mineral salts medium, up to 1,336 mM (120 g l−1) of d-lactic acid of greater than 99.9% optical purity was produced within 30 h. 相似文献
8.
Maas RH Springer J Eggink G Weusthuis RA 《Journal of industrial microbiology & biotechnology》2008,35(6):569-578
The fungus Rhizopus oryzae converts both glucose and xylose under aerobic conditions into chirally pure L+-lactic acid with by-products such as xylitol, glycerol, ethanol, carbon dioxide and fungal biomass. In this paper, we demonstrate that the production of lactic acid by R. oryzae CBS 112.07 only occurs under growing conditions. Deprivation of nutrients such as nitrogen, essential for fungal biomass formation, resulted in a cessation of lactic acid production. Complete xylose utilisation required a significantly lower C/N ratio (61/1) compared to glucose (201/1), caused by higher fungal biomass yields that were obtained with xylose as substrate. Decreasing the oxygen transfer rate resulted in decline of xylose consumption rates, whereas the conversion of glucose by R. oryzae was less affected. Both results were linked to the fact that R. oryzae CBS 112.07 utilises xylose via the two-step reduction/oxidation route. The consequences of these effects for R. oryzae as a potential lactic acid producer are discussed. 相似文献
9.
Eulalia Alonso Miguel Angel García-Pérez Jorge Bueso Vicente Rubio 《Neurochemical research》1991,16(7):787-794
N-Acetyl-L-glutamate (NAG), the activator of mitochondrial carbamoyl phosphate synthetase (CPS), is demonstrated by several methods, including a new HPLC assay, in the brain of mammals and of chicken. The brain levels of NAG are 200–300 times lower than the levels of N-acetyl-l-aspartate (NAA), and are similar to the levels of NAG in rat liver. The NAG levels in chicken liver are very low. Although NAG is mitochondrial in the liver, it is cytosolic in brain. Using enzyme activity and immuno assays we did not detect CPS in brain (detection limit, 12.5 g/g brain), excluding that brain NAG is involved in citrullinogenesis. The regional distribution of brain NAG differs from that of NAA and resembles that of N-acetyl-l-aspartyl-l-glutamate (NAAG), suggesting that NAG and NAAG are related. NAG might be involved in the modulation of NAAG degradation.Special issue dedicated to Dr. Santiago Grisolía 相似文献
10.
Xiao-Na Liu Xiu-Qing Zhang Shi-Xiang Zhang Jun-She Sun 《Plant Cell, Tissue and Organ Culture》2007,91(1):1-7
Four precursors (l-phenylalanine, l-tryptophan, cinnamic acid and emodin) and one signal elicitor (methyl jasmonate, MeJA) were added to liquid cultures of Hypericum perforatum L. to study their effect on production of hyperforin and hypericins (pseudohypericin and hypericin). The addition of l-phenylalanine (75 to 100 mg l−1) enhanced production of hypericins, but hyperforin levels were decreased. Hypericin, pseudohypericin and hyperforin concentrations
were all decreased when l-tryptophan (25 to 100 mg l−1) was added to the medium. However, addition of l-tryptophan (50 mg l−1) with MeJA (100 μM) stimulated hyperforin production significantly (1.81-fold) and resulted in an increased biomass. Cinnamic acid (25, 50 mg l−1) and emodin (1.0 to 10.0 mg l−1) each enhanced hyperforin accumulation in H. perforatum, but did not affect accumulation of hypericins. 相似文献
11.
Summary
l-Galactose,d-arabinose, andl-fucose form six-membered rings with identical stereoconfigurations. However, onlyl-fucose can serve as the sole carbon and energy source of wild-typeEscherichia coli K-12. A mutant that can grow onl-galactose andd-arabinose was isolated by alternate selection on the two sugars. Thel-fucose pathway became inducible by all three sugars. Transduction into the mutant of the wild-type fuc+ region containing both the regulatory and structural genes abolished the novel growth abilities onl-galactose andd-arabinose, whereas transduction into the mutant of a fuc deletion abolished the growth abilities on all three sugars. Introduction of the wild-type fucR+ (which encodes the activator protein for the fuc regulon) on a multicopy plasmid depressed the growth abilities of the mutant onl-galactose andd-arabinose, but not onl-fucose. The results suggest that the effector specificity of the activator protein in the mutant was broadened. It is proposed that an adaptive response of an activator-controlled system is more likely than that of a repressor-controlled system to achieve fixation in a population, because the first variant to emerge in response to a novel metabolic demand has a good chance of having an altered specificity of regulation. Such a change entails little or no metabolic liability during the absence of the novel substrate. In contrast, the first variant of a negatively controlled system to emerge has an overwhelming chance of being the result of a random mutation that destroys repressor function. Although negatively controlled systems can be more opportunistic in exploiting new conditions than positively controlled systems, an adaptive change is less likely to become fixed because of the cost associated with gratuitous constitutive gene expression in the absence of the substrate. 相似文献
12.
Increase in d-tagatose Production Rate by Site-directed Mutagenesis of l-arabinose Isomerase from Geobacillus thermodenitrificans 总被引:2,自引:0,他引:2
Among single-site mutations of l-arabinose isomerase derived from Geobacillus thermodenitrificans, two mutants were produced having the lowest and highest activities of d-tagatose production. Site-directed mutagenesis at these sites showed that the aromatic ring at amino acid 164 and the size
of amino acid 475 were important for d-tagatose production. Among double-site mutations, one mutant converted d-galactose into d-tagatose with a yield of 58% whereas the wild type gave 46% d-tagatose conversion after 300 min at 65 °C.
Received 31 August 2005; Revisions requested 27 September 2005; Revisions received 8 November 2005; Accepted 8 November 2005 相似文献
13.
Yoshinori Takagi Teruhide Sugisawa Tatsuo Hoshino 《Applied microbiology and biotechnology》2009,82(6):1049-1056
A single-stage continuous fermentation process for the production of 2-keto-l-gulonic acid (2KGA) from l-sorbose using Ketogulonigenium vulgare DSM 4025 was developed. The chemostat culture with the dilution rate that was calculated based on the relationship between
the 2KGA production rate and the 2KGA concentration was feasible for production with high concentration of 2KGA. In this system,
112.2 g/L of 2KGA on the average was continuously produced from 114 g/L of l-sorbose. A steady state of the fermentation was maintained for the duration of more than 110 h. The dilution rate was kept
in the range of 0.035 and 0.043 h−1, and the 2KGA productivity was 3.90 to 4.80 g/L/h. The average molar conversion yield of 2KGA from l-sorbose was 91.3%. Under the optimal conditions, l-sorbose concentration was kept at 0 g/L. Meanwhile, the dissolved oxygen level was changing in response to the dilution rate
and 2KGA concentration. In the dissolved oxygen (DO) range of 16% to 58%, it was revealed that the relationship between DO
and D possessed high degree of positive correlation under the l-sorbose limiting condition (complete consumption of l-sorbose). Increasing D closer to the critical value for washing out point of the continuous fermentation, DO value tended to be gradually increased
up to 58%. In conclusion, an efficient and reproducible continuous fermentation process for 2KGA production by K. vulgare DSM 4025 could be developed using a medium containing baker’s yeast without using a second helper microorganism. 相似文献
14.
Costantino Iadecola M.D. Xiaohong Xu Fangyi Zhang Jingru Hu Esam E. El-Fakahany 《Neurochemical research》1994,19(4):501-505
We studied the dose-response characteristics and the temporal profile of inhibition of brain nitric oxide (NO) synthase (NOS) elicited by i.v. administration of the NOS inhibitor nitro-l-arginine methyl ester (L-NAME). L-NAME was administered i.v. in awake rats equipped with a venous cannula. L-NAME was injected in cumulative doses of 5, 10, 20 and 40 mg/kg and rats were sacrificed 30 min after the last dose. NOS catalytic activity was assayed in forebrain cytosol as the conversion of [3H]l-arginine into [3H]l-citrulline. L-NAME attenuated brain NOS activity in a dose-dependent manner but enzyme activity could not be inhibited by more than 50%. After a single 20 mg/kg injection of L-NAME the inhibition of brain NOS activity was time dependent and reached a stable level at 2 hrs (52% of vehicle). Inhibition after a single injection was still present at 96 hrs, albeit to a lower magnitude. We conclude that intravenous administration of L-NAME in rats at concentrations commonly used in physiological experiments leads to a dose and time-dependent but partial inhibition of brain NOS catalytic activity. The finding that the inhibition persists for several days after a single administration is consistent with the hypothesis that nitro-L-arginine, the active principle of L-NAME, binds to NOS irreversibly. 相似文献
15.
Soyoung Shin Srinidi Mohan Ho-Leung Fung 《Biochemical and biophysical research communications》2011,(4):660
We examined the relative contributory roles of extracellular vs. intracellular l-arginine (ARG) toward cellular activation of endothelial nitric oxide synthase (eNOS) in human endothelial cells. EA.hy926 human endothelial cells were incubated with different concentrations of 15N4-ARG, ARG, or l-arginine ethyl ester (ARG-EE) for 2 h. To modulate ARG transport, siRNA for ARG transporter (CAT-1) vs. sham siRNA were transfected into cells. ARG transport activity was assessed by cellular fluxes of ARG, 15N4-ARG, dimethylarginines, and l-citrulline by an LC–MS/MS assay. eNOS activity was determined by nitrite/nitrate accumulation, either via a fluorometric assay or by15N-nitrite or estimated 15N3-citrulline concentrations when 15N4-ARG was used to challenge the cells. We found that ARG-EE incubation increased cellular ARG concentration but no increase in nitrite/nitrate was observed, while ARG incubation increased both cellular ARG concentration and nitrite accumulation. Cellular nitrite/nitrate production did not correlate with cellular total ARG concentration. Reduced 15N4-ARG cellular uptake in CAT-1 siRNA transfected cells vs. control was accompanied by reduced eNOS activity, as determined by 15N-nitrite, total nitrite and 15N3-citrulline formation. Our data suggest that extracellular ARG, not intracellular ARG, is the major determinant of NO production in endothelial cells. It is likely that once transported inside the cell, ARG can no longer gain access to the membrane-bound eNOS. These observations indicate that the “l-arginine paradox” should not consider intracellular ARG concentration as a reference point. 相似文献
16.
The functions and applications of l-α-dipeptides (dipeptides) have been poorly studied compared with proteins or amino acids. Only a few dipeptides, such as
aspartame (l-aspartyl-l-phenylalanine methyl ester) and l-alanyl-l-glutamine (Ala-Gln), are commercially used. This can be attributed to the lack of an efficient process for dipeptide production
though various chemical or chemoenzymatic method have been reported. Recently, however, novel methods have arisen for dipeptide
synthesis including a nonribosomal peptide-synthetase-based method and an l-amino acid α-ligase-based method, both of which enable dipeptides to be produced through fermentative processes. Since it
has been revealed that some dipeptides have unique physiological functions, the progress in production methods will undoubtedly
accelerate the applications of dipeptides in many fields. In this review, the functions and applications of dipeptides, mainly
in commercial use, and methods for dipeptide production including already proven processes as well as newly developed ones
are summarized. As aspartame and Ala-Gln are produced using different industrial processes, the manufacturing processes of
these two dipeptides are compared to clarify the characteristics of each procedure. 相似文献
17.
Syntheses of l-dopa 1a glucoside 10a,b and dl-dopa 1b glycosides 10–18 with d-glucose 2, d-galactose 3, d-mannose 4, d-fructose 5, d-arabinose 6, lactose 7, d-sorbitol 8 and d-mannitol 9 were carried out using amyloglucosidase from Rhizopus mold, β-glucosidase isolated from sweet almond and immobilized β-glucosidase. Invariably, l-dopa and dl-dopa gave low to good yields of glycosides 10–18 at 12–49% range and only mono glycosylated products were detected through glycosylation/arylation at the third or fourth
OH positions of l-dopa 1a and dl-dopa 1b. Amyloglucosidase showed selectivity with d-mannose 4 to give 4-O-C1β and d-sorbitol 8 to give 4-O-C6-O-arylated product. β-Glucosidase exhibited selectivity with d-mannose 4 to give 4-O-C1β and lactose 7 to give 4-O-C1β product. Immobilized β-glucosidase did not show any selectivity. Antioxidant and angiotensin converting enzyme inhibition
(ACE) activities of the glycosides were evaluated glycosides, out of which l-3-hydroxy-4-O-(β-d-galactopyranosyl-(1′→4)β-d-glucopyranosyl) phenylalanine 16 at 0.9 ± 0.05 mM and dl-3-hydroxy-4-O-(β-d-glucopyranosyl) phenylalanine 11b,c at 0.98 ± 0.05 mM showed the best IC50 values for antioxidant activity and dl-3-hydroxy-4-O-(6-d-sorbitol)phenylalanine 17 at 0.56 ± 0.03 mM, l-dopa-d-glucoside 10a,b at 1.1 ± 0.06 mM and dl-3-hydroxy-4-O-(d-glucopyranosyl)phenylalanine 11a-d at 1.2 ± 0.06 mM exhibited the best IC50 values for ACE inhibition.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
18.
Bouchra Harraki Pascale Guiraud Marie-Hélène Rochat Henri Faure Marie-Jeanne Richard Michelle Fussellier Alain Favier 《Biometals》1994,7(3):237-243
Radioactive zinc was used to study the effect of a binary parenteral nutrient solution, composed of amino acids and glucose, on zinc uptake by fibroblasts. The influence of addition of taurine, l-glutamine and of the increase in l-histidine content of the admixture was assessed. The pure mixture was highly toxic for cells and so it was diluted 1/5 in tyrode buffer with 2% albumin. As compared with cells incubated in the buffer containing albumin, zinc absorption was significantly higher (P < 0.05) in the presence of the amino acids of the mixture. Amino acids thus increased bioavailability by displacing zinc bound to albumin. When the histidine concentration in the nutrient medium (4.2 mm) was doubled, inhibition was noted after 30 min of incubation and zinc uptake thereafter remained comparable to that in histidine-free medium. The addition of glutamine (4.2 mm), usually not present in binary mixtures, resulted in significant differences as compared with glutamine-free control medium. Taurine (0.8 mm), led to a constant increase in zinc uptake by fibroblasts as compared with that obtained with taurine-free mixture. However, ultrafiltration showed that taurine was not able to displace zinc from albumin. 相似文献
19.
N-Acyl-D-glutamate amidohydrolase (D-AGase) was inhibited by 94 % when 1 mol/l N-acetyl-DL- glutamate was used as a substrate. The addition of 1 mM Co2+ stabilized D-AGase. Moreover, the substrate inhibition was weakened to 88% with the addition of 0.4 mM Co2+ to the reaction mixture. Although D-AGase is a zinc-metalloenzyme, the addition of Zn2+ from 0.01 to 10 mM did not increase the D-glutamic acid production in the saturated substrate. Under optimal conditions, 0.38 M D-glutamic acid was obtained from N-acyl-DL-glutamate with 100% of the theoretical yield after 48 h. 相似文献
20.
M. Helanto K. Kiviharju T. Granström M. Leisola A. Nyyssölä 《Applied microbiology and biotechnology》2009,83(1):77-83
l-Ribose is a rare and expensive sugar that can be used as a precursor for the production of l-nucleoside analogues, which are used as antiviral drugs. In this work, we describe a novel way of producing l-ribose from the readily available raw material l-arabinose. This was achieved by introducing l-ribose isomerase activity into l-ribulokinase-deficient Escherichia coli UP1110 and Lactobacillus plantarum BPT197 strains. The process for l-ribose production by resting cells was investigated. The initial l-ribose production rates at 39°C and pH 8 were 0.46 ± 0.01 g g−1 h−1 (1.84 ± 0.03 g l−1 h−1) and 0.27 ± 0.01 g g−1 h−1 (1.91 ± 0.1 g l−1 h−1) for E. coli and for L. plantarum, respectively. Conversions were around 20% at their highest in the experiments. Also partially purified protein precipitates
having both l-arabinose isomerase and l-ribose isomerase activity were successfully used for converting l-arabinose to l-ribose. 相似文献