首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We highlight conditions under which coincidence of van't Hoff and calorimetric enthalpies can be experimentally verified for reactions of biochemical interest. First, we clarify that, often, chemical equations in condensed phase do not explicitly contain information on all processes involved. Second, we underline that the accuracy of electrochemical methods is much higher than that of other non-calorimetric techniques. Electrochemical data on the binding of ethidium ion to DNA are re-examined to verify that the entropy evaluated as the temperature derivative of the free energy agrees in full with the calorimetric one. Third, we point out that unfolding or self-association enthalpies of redox proteins can be reliably obtained by electromotive force measurements, taking advantage of their linkage to redox enthalpies. Thermodynamic cycles coupling biochemical transformations to redox systems are briefly discussed.  相似文献   

2.
We report the first calorimetric investigation of steroid diamine binding to a DNA duplex. Absorption spectroscopy, batch calorimetry, and differential scanning calorimetry (DSC) have been used to detect, monitor, and thermodynamically characterize the binding of the steroid diamine, dipyrandium, to poly d(AT). The following thermodynamic data for the binding in 16 mM Na+ at 25 degrees C have been obtained: delta G degree = -6.5 kcal/mol, delta H degree = +4.2 kcal/mol, and delta S = +36 e.u. We interpret the endothermic binding enthalpy in terms of steroid-induced conformational changes in the duplex (e.g. "kinking"). The large positive entropy is interpreted in terms of binding-induced release of bound water and condensed sodium ions. The salt-dependence of the binding constant is interpreted in terms of dipyrandium site-binding involving only one of the two charged ends of the steroid. The optical and DSC curves for the unsaturated steroid-poly d(AT) complexes exhibit biphasic behavior. A comparison of the van't Hoff and the calorimetric transition enthalpies reveals that steroid binding reduces the cooperativity of the transition.  相似文献   

3.
Horn JR  Brandts JF  Murphy KP 《Biochemistry》2002,41(23):7501-7507
The complexity of binding reactions, including the linkage with other equilibria, is becoming increasingly apparent in biological processes such as signal transduction. Understanding these interactions requires obtaining thermodynamic profiles for each of the equilibria that occur in a binding event. Concern has been raised as to whether linked equilibria contribute differently to thermodynamics, such as DeltaH degrees and DeltaC(p), obtained from calorimetric and van't Hoff methods. We have previously shown that linked equilibria do not contribute differently to the van't Hoff and calorimetrically determined DeltaH degrees for processes such as linked folding or hydration. Here, examples of proton and ion linkage are examined. We show that there is no reason to expect the calorimetric and van't Hoff DeltaH degrees to be different, even without prior knowledge of the presence or absence of linked equilibria, as long as the system is permitted to equilibrate. However, it is possible to create experimental scenarios that result in and discrepancies. Furthermore, it is found that the presence of linked equilibria in all cases can result in "nonconventional" DeltaH degrees and DeltaC(p) profiles, making data analysis nontrivial.  相似文献   

4.
The pH-induced unstacking of rRpA has been investigated by batch calorimetry and uv spectroscopy. Equilibrium uv melting curves confirmed that the adenine bases in rApA are stacked at pH7 but unstacked at pH 1.5. The enthalpy change accompanying this pH-induced unstacking is +2.65 kcal (mole of A-A stack)-1 as measured by batch calorimetry. This represents the first direct determination of this important parameter for a dinucleoside phosphate. It is noted that the calorimetrically determined value reported here is considerably lower than published van't Hoff enthalpies but is consistent with values that can be derived from calorimetric data on polymers.  相似文献   

5.
We report the first direct determination of binding enthalpies for the complexation of monomeric daunomycin with a series of 10 polymeric DNA duplexes. These measurements were accomplished by using a recently developed stopped-flow microcalorimeter capable of detecting reaction heats on the microjoule level. This enhanced sensitivity allowed us to measure daunomycin-DNA binding enthalpies at monomeric drug concentrations (e.g., 10-20 microM), thereby precluding the need to correct for daunomycin self-association, as has been required in previous batch calorimetric studies [Remeta, D. P., Marky, L. A., & Breslauer, K. J. (1984) Abstracts of Pittsburgh Conference and Exposition on Analytical Chemistry and Applied Spectroscopy, 838a; Breslauer, K. J., Remeta, D. P., Chou, W. Y., Ferrante, R., Curry, J., Zaunczkowski, D., Snyder, J. G., & Marky, L. A. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 8922-8926]. We correct the published daunomycin-DNA binding enthalpies measured by batch calorimetry at higher drug concentrations (e.g., 0.5-1.0 M) for the enthalpy contribution associated with the binding-induced disruption of drug aggregates. The requisite correction term was obtained from a van't Hoff analysis of temperature-dependent NMR measurements on daunomycin solutions. We find remarkable agreement between the net binding enthalpies derived from these corrected batch calorimetric data and the corresponding binding enthalpies measured directly by stopped-flow microcalorimetry. The enhanced sensitivity of the stopped-flow instrument also allowed us to evaluate the influence of drug binding density on the daunomycin-DNA binding enthalpies. This assessment was accomplished by conducting stopped-flow calorimetric measurements over a range of seven different drug-to-phosphate ratios (r). For most of the 10 DNA host duplexes studied, we find that the daunomycin binding enthalpies exhibit small but significant r dependencies. The sensitivity of the stopped-flow instrument also enabled us to detect significant dilution enthalpies for several of the drug-free DNA duplexes, a quantity generally assumed to be negligible in previous studies. We discuss the binding enthalpies, their dependence on binding density, and the duplex dilution enthalpies in terms of the influence of base composition, sequence, conformation/hydration, and binding cooperativity on the sign and the magnitudes of the daunomycin-DNA binding enthalpy data reported here.  相似文献   

6.

Background

In theory, binding enthalpies directly obtained from calorimetry (such as ITC) and the temperature dependence of the binding free energy (van't Hoff method) should agree. However, previous studies have often found them to be discrepant.

Methods

Experimental binding enthalpies (both calorimetric and van't Hoff) are obtained for two host-guest pairs using ITC, and the discrepancy between the two enthalpies is examined. Modeling of artificial ITC data is also used to examine how different sources of error propagate to both types of binding enthalpies.

Results

For the host-guest pairs examined here, good agreement, to within about 0.4 kcal/mol, is obtained between the two enthalpies. Additionally, using artificial data, we find that different sources of error propagate to either enthalpy uniquely, with concentration error and heat error propagating primarily to calorimetric and van't Hoff enthalpies, respectively.

Conclusions

With modern calorimeters, good agreement between van't Hoff and calorimetric enthalpies should be achievable, barring issues due to non-ideality or unanticipated measurement pathologies. Indeed, disagreement between the two can serve as a flag for error-prone datasets. A review of the underlying theory supports the expectation that these two quantities should be in agreement.

General significance

We address and arguably resolve long-standing questions regarding the relationship between calorimetric and van't Hoff enthalpies. In addition, we show that comparison of these two quantities can be used as an internal consistency check of a calorimetry study.  相似文献   

7.
F Zhang  E S Rowe 《Biochemistry》1992,31(7):2005-2011
The interactions of n-butanol with dipalmitoylphosphatidylcholine (DPPC) were studied using titration calorimetry and differential scanning calorimetry (DSC). DSC results indicated that n-butanol induces the interdigitated phase in DPPC above 10 mg/mL butanol. A new application of titration calorimetry for measuring partition coefficients of nonsaturating solutes into lipids was developed. The partition coefficients and the heat of binding of n-butanol into DPPC were measured for the L beta', P beta', L alpha, and L beta I phases of DPPC. The partition coefficients were temperature dependent and ranged from 70 to 110 for the L beta I phase, from 170 to 183 for the L alpha phase, and similar to that for the L beta I phase in the P beta' phase. The binding to the L beta' phase could not be detected, giving an upper limit for this partition coefficient of 23. The enthalpies for binding to the L beta I and L alpha phases were 1.0 and 1.5 kcal/mol, respectively. The van't Hoff enthalpy was in good agreement with the calorimetric enthalpy for the partitioning into the L alpha phase; however, it was greater than the calorimetric enthalpy for the L beta I phase, suggesting that the interaction of n-butanol with this phase is cooperative in some way.  相似文献   

8.
To evaluate the length and sequence dependence of the unusual interaction properties observed for nonalternating A/T sequences in deoxyribonucleic acid (DNA) [Wilson, W. D., Wang, Y. H., Krishnamoorthy, C. R., & Smith, J. C. (1985) Biochemistry 24, 3991-3999], we have synthesized the oligomers d(A-T)6, dA10 X dT10, and d(A6-T6) and evaluated their interaction with the intercalator propidium. Propidium visible spectral shifts on adding all three oligomers are quite similar. Low-temperature spectrophotometric binding measurements indicate that d(A-T)6 has a significantly larger binding constant for propidium than dA10.dT10, as with the analogous alternating and nonalternating DNA polymers. The oligomer dA10.dT10 displays positive cooperativity in its propidium binding isotherm, and its binding constant increases with increasing temperature while d(A-T)6 does not display positive cooperativity, and its binding constant decreases with temperature, again as with the analogous polymers. van't Hoff plots indicate that the propidium binding enthalpies are approximately -9 and +6 kcal/mol for the alternating and nonalternating DNA samples, respectively. The mixed-sequence self-complementary oligomer d(A6-T6) has an unusual low-temperature binding isotherm which suggests a single strong binding site and a larger number of weaker binding sites which bind propidium cooperatively. A van't Hoff plot indicates that the cooperative sites d(A-T)6 have binding constants and binding enthalpies similar to dA10.dT10. Similar rate constants are observed in the sodium dodecyl sulfate driven dissociation reaction of propidium from d(A-T)6 and d(A6-T6), but the association reaction of propidium is significantly slower with d(A6-T6) than with d(A-T)6.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Thermodynamic benchmark study using Biacore technology   总被引:1,自引:0,他引:1  
A total of 22 individuals participated in this benchmark study to characterize the thermodynamics of small-molecule inhibitor-enzyme interactions using Biacore instruments. Participants were provided with reagents (the enzyme carbonic anhydrase II, which was immobilized onto the sensor surface, and four sulfonamide-based inhibitors) and were instructed to collect response data from 6 to 36 degrees C. van't Hoff enthalpies and entropies were calculated from the temperature dependence of the binding constants. The equilibrium dissociation and thermodynamic constants determined from the Biacore analysis matched the values determined using isothermal titration calorimetry. These results demonstrate that immobilization of the enzyme onto the sensor surface did not alter the thermodynamics of these interactions. This benchmark study also provides insights into the opportunities and challenges in carrying out thermodynamic studies using optical biosensors.  相似文献   

10.
The 1:1 complexation reaction between Ba(2+) and 18-crown-6 ether is re-examined using isothermal titration calorimetry (ITC), with the goal of clarifying previously reported discrepancies between reaction enthalpies estimated directly (calorimetric) and indirectly, from the temperature dependence of the reaction equilibrium constant K (van't Hoff). The ITC thermograms are analyzed using three different non-linear fit models based on different assumptions about the data error: constant, proportional to the heat and proportional but correlated. The statistics of the fitting indicate a preference for the proportional error model, in agreement with expectations for the conditions of the experiment, where uncertainties in the delivered titrant volume should dominate. With attention to proper procedures for propagating statistical error in the van't Hoff analysis, the differences between Delta H(cal) and Delta H(vH) are deemed statistically significant. In addition, statistically significant differences are observed for the Delta H(cal) estimates obtained for two different sources of Ba(2+), BaCl(2) and Ba(NO(3))(2). The effects are tentatively attributed to deficiencies in the standard procedure in ITC of subtracting a blank obtained for pure titrant from the thermogram obtained for the sample.  相似文献   

11.
Through the use of CD and DSC, the thermal unfolding of holo serum retinol binding protein containing a single, tightly bound retinol ligand was studied at pH 7.4. The DSC endotherm of the holoprotein ([retinol]/[protein] = 1) was asymmetric about the transition temperature of 78 degrees C. Using changes in ellipticity at 230 nm, the thermal unfolding curve was also asymmetric about the inflection point centered near 78 degrees C. van't Hoff enthalpies were determined by three means and compared to the calorimetric enthalpy (delta Hcal) of 200 kcal/mol. A van't Hoff enthalpy of 190 kcal/mol was determined from the dependence of transition temperature on the concentration of the ligand-bound protein. This value agreed well with the van't Hoff enthalpies found from fits of the DSC (delta HvH = 184 kcal/mol) and spectroscopic (delta HvH = 181 kcal/mol) curves to a two-state thermodynamic model that included ligand dissociation (NR in equilibrium with U+R, where NR is the native holoprotein, U is the unfolded apoprotein, and R is retinol). Poor agreement was obtained with a two-state model that ignored ligand dissociation (N in equilibrium with U). Furthermore, the NR in equilibrium with U+R model accounted for the asymmetry in both CD and DSC transitions and yielded a much improved fit of the data over the N in equilibrium with U model. From these considerations and simulations on other equilibrium models, it is suggested that the NR in equilibrium with U+R model is the simplest model that describes the thermal unfolding of this ligand-bound protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Kaya H  Chan HS 《Proteins》2000,40(4):637-661
The experimental calorimetric two-state criterion requires the van't Hoff enthalpy DeltaH(vH) around the folding/unfolding transition midpoint to be equal or very close to the calorimetric enthalpy DeltaH(cal) of the entire transition. We use an analytical model with experimental parameters from chymotrypsin inhibitor 2 to elucidate the relationship among several different van't Hoff enthalpies used in calorimetric analyses. Under reasonable assumptions, the implications of these DeltaH(vH)'s being approximately equal to DeltaH(cal) are equivalent: Enthalpic variations among denatured conformations in real proteins are much narrower than some previous lattice-model estimates, suggesting that the energy landscape theory "folding to glass transition temperature ratio" T(f) /T(g) may exceed 6.0 for real calorimetrically two-state proteins. Several popular three-dimensional lattice protein models, with different numbers of residue types in their alphabets, are found to fall short of the high experimental standard for being calorimetrically two-state. Some models postulate a multiple-conformation native state with substantial pre-denaturational energetic fluctuations well below the unfolding transition temperature, or predict a significant post-denaturational continuous conformational expansion of the denatured ensemble at temperatures well above the transition point, or both. These scenarios either disagree with experiments on protein size and dynamics, or are inconsistent with conventional interpretation of calorimetric data. However, when empirical linear baseline subtractions are employed, the resulting DeltaH(vH)/DeltaH(cal)'s for some models can be increased to values closer to unity, and baseline subtractions are found to correspond roughly to an operational definition of native-state conformational diversity. These results necessitate a re-assessment of theoretical models and experimental interpretations.  相似文献   

13.
The thermodynamics of 13 hybridization reactions between 10 base DNA sequences of design 5'-ATGCXYATGC-3' with X, Y = A, C, G, T and their complementary PNA and DNA sequences were determined from isothermal titration calorimetry (ITC) measurements at ambient temperature. For the PNA/DNA hybridization reactions, the binding constants range from 1.8 x 10(6)M(-1)for PNA(TT)/DNA to 4.15 x 10(7)M(-1)for PNA(GA)/DNA and the binding enthalpies range from -194 kJ mol(-1)for PNA(CG)/DNA to -77 kJ mol(-1)for PNA(GT)/DNA. For the corresponding DNA/DNA binding reactions, the binding constants range from 2.9 x 10(5)M(-1)for DNA(GT)/DNA to 1.9 x 10(7)M(-1)for DNA(CC)/DNA and the binding enthalpies range from -223 kJ mol(-1)for DNA(CG)/DNA to -124 kJ mol(-1)for DNA(TT)/DNA. Most of the PNA sequences exhibited tighter binding affinities than their corresponding DNA sequences resulting from smaller entropy changes in the PNA/DNA hybridization reactions. van't Hoff enthalpies and extrapolated Delta G values determined from UV melting studies on the duplexes exhibited closer agreement with the ITC binding enthalpies and Delta G values for the DNA/DNA duplexes than for the PNA/DNA duplexes.  相似文献   

14.
The binding of four epitope-related peptides and three library-derived, epitope-unrelated peptides of different lengths (10-14 amino acids) and sequence by anti-p24 (HIV-1) monoclonal antibody CB4-1 and its Fab fragment was studied by isothermal titration calorimetry. The binding constants K(A) at 25 degrees C vary between 5.1 x 10(7) M (-1) for the strongest and 1.4 x 10(5) M (-1) for the weakest binder. For each of the peptides complex formation is enthalpically driven and connected with unfavorable entropic contributions; however, the ratio of enthalpy and entropy contributions to deltaG(0) differs markedly for the individual peptides. A plot of -deltaH(0) vs -TdeltaS(0) shows a linear correlation of the data for a wide variety of experimental conditions as expected for a process with deltaC(p) much larger than deltaS(0). The dissimilarity of deltaC(p) and deltaS(0) also explains why deltaH(0) and TdeltaS(0) show similar temperature dependences resulting in relatively small changes of deltaG(0) with temperature. The heat capacity changes deltaC(p) upon antibody-peptide complex formation determined for three selected peptides vary only in a small range, indicating basic thermodynamic similarity despite different key residues interacting in the complexes. Furthermore, the comparison of van't Hoff and calorimetric enthalpies point to a non-two-state binding mechanism. Protonation effects were excluded by measurements in buffers of different ionization enthalpies. Differences in the solution conformation of the peptides as demonstrated by circular dichroic measurements do not explain different binding affinities of the peptides; specifically a high helix content in solution is not essential for high binding affinity despite the helical epitope conformation in the crystal structure of p24.  相似文献   

15.
Errors in the numerical values of activation or normal enthalpies, entropies and free enthalpies calculated from Arrhenius or van't Hoff plots, respectively, are due to the neglect of equidimensionality in equations, or to inappropriate approximations. The logarithmization of dimensioned quantities should be avoided, which demands the use of relative concentrations if a change in mole number occurs in the reaction. The application of the Arrhenius plot to enzymic reactions by using Vmax./ET instead of the rate constant of product formation has meaning only if the reaction follows the simplest Michaelis-Menten mechanism; however, the use of the van't Hoff plot using Km is questionable even in the latter case.  相似文献   

16.
Thermodynamics of the thermal dissociation transitions of 10 bp PNA/DNA duplexes and their corresponding DNA/DNA duplexes in 10 mM sodium phosphate buffer (pH 7.0) were determined from differential scanning calorimetry (DSC) measurements. The PNA/DNA transition temperatures ranged from 329 to 343 K and the calorimetric transition enthalpies ranged from 209 +/- 6 to 283 +/- 37 kJ mol(-1). The corresponding DNA/DNA transition temperatures were 7-20 K lower and the transition enthalpies ranged from 72 +/- 29 to 236 +/- 24 kJ mol(-1). Agreement between the DSC and UV monitored melting (UVM) determined transition enthalpies validated analyzing the UVM transitions in terms of a two-state transition model. The transitions exhibited reversibility and were analyzed in terms of an AB = A + B two-state transition model which yielded van't Hoff enthalpies in agreement with the transition enthalpies. Extrapolation of the transition enthalpies and free energy changes to ambient temperatures yielded more negative values than those determined directly from isothermal titration calorimetry measurements on formation of the duplexes. This discrepancy was attributed to thermodynamic differences in the single-strand structures at ambient and at the transition temperatures, as indicated by UVM measurements on single DNA and PNA strands.  相似文献   

17.
Thermal denaturation of two homologous proteins, low-M(r) cysteine-proteinase inhibitors stefins A and B, has been investigated by microcalorimetry. Calorimetric enthalpies, as well as the temperatures at maximum heat capacity, were determined as a function of pH for each protein. Transitions were found reversible at all pH values examined (5.0, 6.5, 8.1) for the thermally more stable stefin A, in contrast to stefin B. Stefin B shows a sharp irreversible transition around 65 degrees C at pH 6.5 and 8.1, probably due to unfolding of a dimeric state followed by oligomerisation. At pH 5.0, both proteins exhibit a reversible transition with temperatures of half-denaturation at 50.2 degrees C and 90.8 degrees C for stefins B and A, respectively. The calorimetric enthalpies, which equal the van't Hoff enthalpies to within 10%, are 293 kJ/mol and 490 kJ/mol for stefins B and A, respectively. Using the predictive method of Ooi and Oobatake (1991) [Proc. Natl Acad. Sci. USA 88, 2859] the thermodynamic functions of unfolding were calculated for stefin B, whose three-dimensional structure has been determined. The calculated enthalpy, heat-capacity change on unfolding and the temperature of half denaturation compare well to the microcalorimetric data.  相似文献   

18.
G Ramsay  E Freire 《Biochemistry》1990,29(37):8677-8683
The temperature and guanidine hydrochloride (GuHCl) dependence of the structural stability of diphtheria toxin has been investigated by high-sensitivity differential scanning calorimetry. In 50 mM phosphate buffer at pH 8.0 and in the absence of GuHCl, the thermal unfolding of diphtheria toxin is characterized by a transition temperature (Tm) of 54.9 degrees C, a calorimetric enthalpy change (delta H) of 295 kcal/mol, and a van't Hoff to calorimetric enthalpy ratio of 0.57. Increasing the GuHCl concentration lowers the transition temperature and the calorimetric enthalpy change. At the same time, the van't Hoff to calorimetric enthalpy ratio increases until it reaches a value of 1 at 0.3 M GuHCl and remains constant thereafter. At low GuHCl concentrations (0-0.3 M), the thermal unfolding of diphtheria toxin is characterized by the presence of two transitions corresponding to the A and B domains of the protein. At higher GuHCl concentrations (0.3-1 M), the A domain is unfolded at all temperatures, and only one transition corresponding to the B domain is observed. Under these conditions, the most stable protein conformation at low temperatures is a partially folded state in which the A domain is unfolded and the B domain folded. A general model that explicitly considers the energetics of domain interactions has been developed in order to account for the stability and cooperative behavior of diphtheria toxin. It is shown that this cooperative domain interaction model correctly accounts for the temperature location as well as the shape and area of the calorimetric curves. Under physiological conditions, domain-domain interactions account for most of the structural stability of the A domain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The contribution of divalent cations and cytosine protonation to conformation and stability of duplex and triplex formation were intensively investigated and characterized by ultraviolet (UV), circular dichroism (CD), differential scanning calorimetry (DSC), and electrophoresis mobility shift assay (EMSA). CD spectra showed that the divalent cations investigated would not significantly distort nucleotide geometry, while UV and DSC melting experiments revealed that the cation binding abilities to duplexes and triplexes were clearly dependent on the types of cations under near physiological conditions. The calorimetric enthalpies were generally underestimated relative to the corresponding van't Hoff enthalpies for Hoogsteen and Watson-Crick transitions, but free energy changes derived from the DSC measurements were in good agreement with those derived from the UV measurements. The adjacent placing of the C(+) x G.C triplets in triplexes lowered the stabilities of not only Hoogsteen base-pairing but also Watson-Crick base-pairing. The protonation contribution of the given cytosine residues might depend on the local and global structure of the protonated cytosine complex. A rigid structural targeted-strand would favor the protonation of cytosine residues. The apparent pK(a) values for parallel duplex and triplex investigated were determined to be 6.4 and 7.6, respectively, which are considerably heightened by 2.1 and 3.3 pH unit as compared to the intrinsic pK(a) value of the free cytosine residues.  相似文献   

20.
We present a study of the adsorption of a positively charged protein to a positively charged spherical polyelectrolyte brush (SPB) by isothermal titration calorimetry (ITC). ITC is used to determine the adsorption isotherm as a function of temperature and of salt concentration (at physiological pH 7.2). At low ionic strength, RNase A is strongly adsorbed by the SPB particles despite the fact that both the SPB particles and the protein are positively charged. Virtually no adsorption takes place when the ionic strength is raised through added salt. This is strong evidence for counterion release as the primary driving force for protein adsorption. We calculated that ~2 counterions were released upon RNase A binding. The adsorption of RNase A into like-charged SPB particles is entropy-driven, and protein protonation was not significant. Temperature-dependent measurements showed a disagreement between the enthalpy derived via the van't Hoff equation and the calorimetric enthalpy. Further analysis shows that van't Hoff analysis leads to the correct enthalpy of adsorption. The additional contributions to the measured enthalpy are potentially sourced from unlinked equilibria such as conformational changes that do not contribute to the binding equilibrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号