首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bihani S  Das A  Prashar V  Ferrer JL  Hosur MV 《Proteins》2009,74(3):594-602
HIV-1 protease is an effective target for design of different types of drugs against AIDS. HIV-1 protease is also one of the few enzymes that can cleave substrates containing both proline and nonproline residues at the cleavage site. We report here the first structure of HIV-1 protease complexed with the product peptides SQNY and PIV derived by in situ cleavage of the oligopeptide substrate SQNYPIV, within the crystals. In the structure, refined against 2.0-A resolution synchrotron data, a carboxyl oxygen of SQNY is hydrogen-bonded with the N-terminal nitrogen atom of PIV. At the same time, this proline nitrogen atom does not form any hydrogen bond with catalytic aspartates. These two observations suggest that the protonation of scissile nitrogen, during peptide bond cleavage, is by a gem-hydroxyl of the tetrahedral intermediate rather than by a catalytic aspartic acid.  相似文献   

2.
The efficacy of HIV-1 protease inhibition therapies is often compromised by the appearance of mutations in the protease molecule that lower the binding affinity of inhibitors while maintaining viable catalytic activity and substrate affinity. The V82F/I84V double mutation is located within the binding site cavity and affects all protease inhibitors in clinical use. KNI-764, a second-generation inhibitor currently under development, maintains significant potency against this mutation by entropically compensating for enthalpic losses, thus minimizing the loss in binding affinity. KNI-577 differs from KNI-764 by a single functional group critical to the inhibitor response to the protease mutation. This single difference changes the response of the two inhibitors to the mutation by one order of magnitude. Accordingly, a structural understanding of the inhibitor response will provide important guidelines for the design of inhibitors that are less susceptible to mutations conveying drug resistance. The structures of the two compounds bound to the wild type and V82F/I84V HIV-1 protease have been determined by X-ray crystallography at 2.0 A resolution. The presence of two asymmetric functional groups, linked by rotatable bonds to the inhibitor scaffold, allows KNI-764 to adapt to the mutated binding site cavity more readily than KNI-577, with a single asymmetric group. Both inhibitors lose about 2.5 kcal/mol in binding enthalpy when facing the drug-resistant mutant protease; however KNI-764 gains binding entropy while KNI-577 loses binding entropy. The gain in binding entropy by KNI-764 accounts for its low susceptibility to the drug-resistant mutation. The heat capacity change associated with binding becomes more negative when KNI-764 binds to the mutant protease, consistent with increased desolvation. With KNI-577, the opposite effect is observed. Structurally, the crystallographic B factors increase for KNI-764 when it is bound to the drug-resistant mutant. The opposite is observed for KNI-577. Consistent with these observations, it appears that KNI-764 is able to gain binding entropy by a two-fold mechanism: it gains solvation entropy by burying itself deeper within the binding pocket and gains conformational entropy by losing interaction with the protease.  相似文献   

3.
Human thrombopoietin (hTPO) primarily stimulates megakaryocytopoiesis and platelet production and is neutralized by the mouse TN1 antibody. The thermodynamic characteristics of TN1 antibody–hTPO complexation were analyzed by isothermal titration calorimetry (ITC) using an antigen‐binding fragment (Fab) derived from the TN1 antibody (TN1‐Fab). To clarify the mechanism by which hTPO is recognized by TN1‐Fab the conformation of free TN1‐Fab was determined to a resolution of 2.0 Å using X‐ray crystallography and compared with the hTPO‐bound form of TN1‐Fab determined by a previous study. This structural comparison revealed that the conformation of TN1‐Fab does not substantially change after hTPO binding and a set of 15 water molecules is released from the antigen‐binding site (paratope) of TN1‐Fab upon hTPO complexation. Interestingly, the heat capacity change (ΔCp) measured by ITC (?1.52 ± 0.05 kJ mol?1 K?1) differed significantly from calculations based upon the X‐ray structure data of the hTPO‐bound and unbound forms of TN1‐Fab (?1.02 ~ 0.25 kJ mol?1 K?1) suggesting that hTPO undergoes an induced‐fit conformational change combined with significant desolvation upon TN1‐Fab binding. The results shed light on the structural biology associated with neutralizing antibody recognition.  相似文献   

4.
Amprenavir is one of six protease inhibitors presently approved for clinical use in the therapeutic treatment of AIDS. Biochemical and clinical studies have shown that, unlike other inhibitors, Amprenavir is severely affected by the protease mutation I50V, located in the flap region of the enzyme. TMC-126 is a second-generation inhibitor, chemically related to Amprenavir, with a reported extremely low susceptibility to existing resistant mutations including I50V. In this paper, we have studied the thermodynamic and molecular origin of the response of these two inhibitors to the I50V mutation and the double active-site mutation V82F/I84V that affects all existing clinical inhibitors. Amprenavir binds to the wild-type HIV-1 protease with high affinity (5.0 x 10(9) M(-1) or 200 pM) in a process equally favored by enthalpic and entropic contributions. The mutations I50V and V82F/I84V lower the binding affinity of Amprenavir by a factor of 147 and 104, respectively. TMC-126, on the other hand, binds to the wild-type protease with extremely high binding affinity (2.6 x 10(11) M(-1) or 3.9 pM) in a process in which enthalpic contributions overpower entropic contributions by almost a factor of 4. The mutations I50V and V82F/I84V lower the binding affinity of TMC-126 by only a factor of 16 and 11, respectively, indicating that the binding affinity of TMC-126 to the drug-resistant mutants is still higher than the affinity of Amprenavir to the wild-type protease. Analysis of the data for TMC-126 and KNI-764, another second-generation inhibitor, indicates that their low susceptibility to mutations is caused by their ability to compensate for the loss of interactions with the mutated target by a more favorable entropy of binding.  相似文献   

5.
KNI-272 is a powerful HIV-1 protease inhibitor with a reported inhibition constant in the picomolar range. In this paper, a complete experimental dissection of the thermodynamic forces that define the binding affinity of this inhibitor to the wild-type and drug-resistant mutant V82F/184V is presented. Unlike other protease inhibitors, KNI-272 binds to the protease with a favorable binding enthalpy. The origin of the favorable binding enthalpy has been traced to the coupling of the binding reaction to the burial of six water molecules. These bound water molecules, previously identified by NMR studies, optimize the atomic packing at the inhibitor/protein interface enhancing van der Waals and other favorable interactions. These interactions offset the unfavorable enthalpy usually associated with the binding of hydrophobic molecules. The association constant to the drug resistant mutant is 100-500 times weaker. The decrease in binding affinity corresponds to an increase in the Gibbs energy of binding of 3-3.5 kcal/mol, which originates from less favorable enthalpy (1.7 kcal/mol more positive) and entropy changes. Calorimetric binding experiments performed as a function of pH and utilizing buffers with different ionization enthalpies have permitted the dissection of proton linkage effects. According to these experiments, the binding of the inhibitor is linked to the protonation/deprotonation of two groups. In the uncomplexed form these groups have pKs of 6.0 and 4.8, and become 6.6 and 2.9 in the complex. These groups have been identified as one of the aspartates in the catalytic aspartyl dyad in the protease and the isoquinoline nitrogen in the inhibitor molecule. The binding affinity is maximal between pH 5 and pH 6. At those pH values the affinity is close to 6 x 10(10) M(-1) (Kd = 16 pM). Global analysis of the data yield a buffer- and pH-independent binding enthalpy of -6.3 kcal/mol. Under conditions in which the exchange of protons is zero, the Gibbs energy of binding is -14.7 kcal/mol from which a binding entropy of 28 cal/K mol is obtained. Thus, the binding of KNI-272 is both enthalpically and entropically favorable. The structure-based thermodynamic analysis indicates that the allophenylnorstatine nucleus of KNI-272 provides an important scaffold for the design of inhibitors that are less susceptible to resistant mutations.  相似文献   

6.
Luque I  Freire E 《Proteins》2002,49(2):181-190
A major goal in ligand and drug design is the optimization of the binding affinity of selected lead molecules. However, the binding affinity is defined by the free energy of binding, which, in turn, is determined by the enthalpy and entropy changes. Because the binding enthalpy is the term that predominantly reflects the strength of the interactions of the ligand with its target relative to those with the solvent, it is desirable to develop ways of predicting enthalpy changes from structural considerations. The application of structure/enthalpy correlations derived from protein stability data has yielded inconsistent results when applied to small ligands of pharmaceutical interest (MW < 800). Here we present a first attempt at an empirical parameterization of the binding enthalpy for small ligands in terms of structural information. We find that at least three terms need to be considered: (1) the intrinsic enthalpy change that reflects the nature of the interactions between ligand, target, and solvent; (2) the enthalpy associated with any possible conformational change in the protein or ligand upon binding; and, (3) the enthalpy associated with protonation/deprotonation events, if present. As in the case of protein stability, the intrinsic binding enthalpy scales with changes in solvent accessible surface areas. However, an accurate estimation of the intrinsic binding enthalpy requires explicit consideration of long-lived water molecules at the binding interface. The best statistical structure/enthalpy correlation is obtained when buried water molecules within 5-7 A of the ligand are included in the calculations. For all seven protein systems considered (HIV-1 protease, dihydrodipicolinate reductase, Rnase T1, streptavidin, pp60c-Src SH2 domain, Hsp90 molecular chaperone, and bovine beta-trypsin) the binding enthalpy of 25 small molecular weight peptide and nonpeptide ligands can be accounted for with a standard error of +/-0.3 kcal x mol(-1).  相似文献   

7.
The three-dimensional structures of indinavir and three newly synthesized indinavir analogs in complex with a multi-drug-resistant variant (L63P, V82T, I84V) of HIV-1 protease were determined to approximately 2.2 A resolution. Two of the three analogs have only a single modification of indinavir, and their binding affinities to the variant HIV-1 protease are enhanced over that of indinavir. However, when both modifications were combined into a single compound, the binding affinity to the protease variant was reduced. On close examination, the structural rearrangements in the protease that occur in the tightest binding inhibitor complex are mutually exclusive with the structural rearrangements seen in the second tightest inhibitor complex. This occurs as adaptations in the S1 pocket of one monomer propagate through the dimer and affect the conformation of the S1 loop near P81 of the other monomer. Therefore, structural rearrangements that occur within the protease when it binds to an inhibitor with a single modification must be accounted for in the design of inhibitors with multiple modifications. This consideration is necessary to develop inhibitors that bind sufficiently tightly to drug-resistant variants of HIV-1 protease to potentially become the next generation of therapeutic agents.  相似文献   

8.
9.
Interaction kinetic and thermodynamic analyses provide information beyond that obtained in general inhibition studies, and may contribute to the design of improved inhibitors and increased understanding of molecular interactions. Thus, a biosensor-based method was used to characterize the interactions between HIV-1 protease and seven inhibitors, revealing distinguishing kinetic and thermodynamic characteristics for the inhibitors. Lopinavir had fast association and the highest affinity of the tested compounds, and the interaction kinetics were less temperature-dependent as compared with the other inhibitors. Amprenavir, indinavir and ritonavir showed non-linear temperature dependencies of the kinetics. The free energy, enthalpy and entropy (DeltaG, DeltaH, DeltaS) were determined, and the energetics of complex association (DeltaG(on), DeltaH(on), DeltaS(on)) and dissociation (DeltaG(off), DeltaH(off), DeltaS(off)) were resolved. In general, the energetics for the studied inhibitors was in the same range, with the negative free energy change (DeltaG < 0) due primarily to increased entropy (DeltaS > 0). Thus, the driving force of the interaction was increased degrees of freedom in the system (entropy) rather than the formation of bonds between the enzyme and inhibitor (enthalpy). Although the DeltaG(on) and DeltaG(off) were in the same range for all inhibitors, the enthalpy and entropy terms contributed differently to association and dissociation, distinguishing these phases energetically. Dissociation was accompanied by positive enthalpy (DeltaH(off) > 0) and negative entropy (DeltaS(off) < 0) changes, whereas association for all inhibitors except lopinavir had positive entropy changes (DeltaS(on) > 0), demonstrating unique energetic characteristics for lopinavir. This study indicates that this type of data will be useful for the characterization of target-ligand interactions and the development of new inhibitors of HIV-1 protease.  相似文献   

10.
HIV-1 protease is a small homodimeric enzyme that ensures maturation of HIV virions by cleaving the viral precursor Gag and Gag-Pol polyproteins into structural and functional elements. The cleavage sites in the viral polyproteins share neither sequence homology nor binding motif and the specificity of the HIV-1 protease is therefore only partially understood. Using an extensive data set collected from 16 years of HIV proteome research we have here created a general and predictive rule-based model for HIV-1 protease specificity based on rough sets. We demonstrate that HIV-1 protease specificity is much more complex than previously anticipated, which cannot be defined based solely on the amino acids at the substrate's scissile bond or by any other single substrate amino acid position only. Our results show that the combination of at least three particular amino acids is needed in the substrate for a cleavage event to occur. Only by combining and analyzing massive amounts of HIV proteome data it was possible to discover these novel and general patterns of physico-chemical substrate cleavage determinants. Our study is an example how computational biology methods can advance the understanding of the viral interactomes.  相似文献   

11.
Because the human immunodeficiency virus type 1 protease (HIV-1-PR) is an essential enzyme in the viral life cycle, its inhibition can control AIDS. The folding of single-domain proteins, like each of the monomers forming the HIV-1-PR homodimer, is controlled by local elementary structures (LES, folding units stabilized by strongly interacting, highly conserved, as a rule hydrophobic, amino acids). These LES have evolved over myriad generations to recognize and strongly attract each other, so as to make the protein fold fast and be stable in its native conformation. Consequently, peptides displaying a sequence identical to those segments of the monomers associated with LES are expected to act as competitive inhibitors and thus destabilize the native structure of the enzyme. These inhibitors are unlikely to lead to escape mutants as they bind to the protease monomers through highly conserved amino acids, which play an essential role in the folding process. The properties of one of the most promising inhibitors of the folding of the HIV-1-PR monomers found among these peptides are demonstrated with the help of spectrophotometric assays and circular dichroism spectroscopy.  相似文献   

12.
13.
The binding of four epitope-related peptides and three library-derived, epitope-unrelated peptides of different lengths (10-14 amino acids) and sequence by anti-p24 (HIV-1) monoclonal antibody CB4-1 and its Fab fragment was studied by isothermal titration calorimetry. The binding constants K(A) at 25 degrees C vary between 5.1 x 10(7) M (-1) for the strongest and 1.4 x 10(5) M (-1) for the weakest binder. For each of the peptides complex formation is enthalpically driven and connected with unfavorable entropic contributions; however, the ratio of enthalpy and entropy contributions to deltaG(0) differs markedly for the individual peptides. A plot of -deltaH(0) vs -TdeltaS(0) shows a linear correlation of the data for a wide variety of experimental conditions as expected for a process with deltaC(p) much larger than deltaS(0). The dissimilarity of deltaC(p) and deltaS(0) also explains why deltaH(0) and TdeltaS(0) show similar temperature dependences resulting in relatively small changes of deltaG(0) with temperature. The heat capacity changes deltaC(p) upon antibody-peptide complex formation determined for three selected peptides vary only in a small range, indicating basic thermodynamic similarity despite different key residues interacting in the complexes. Furthermore, the comparison of van't Hoff and calorimetric enthalpies point to a non-two-state binding mechanism. Protonation effects were excluded by measurements in buffers of different ionization enthalpies. Differences in the solution conformation of the peptides as demonstrated by circular dichroic measurements do not explain different binding affinities of the peptides; specifically a high helix content in solution is not essential for high binding affinity despite the helical epitope conformation in the crystal structure of p24.  相似文献   

14.
BtDyP from Bacteroides thetaiotaomicron (strain VPI-5482) and TyrA from Shewanella oneidensis are dye-decolorizing peroxidases (DyPs), members of a new family of heme-dependent peroxidases recently identified in fungi and bacteria. Here, we report the crystal structures of BtDyP and TyrA at 1.6 and 2.7 A, respectively. BtDyP assembles into a hexamer, while TyrA assembles into a dimer; the dimerization interface is conserved between the two proteins. Each monomer exhibits a two-domain, alpha+beta ferredoxin-like fold. A site for heme binding was identified computationally, and modeling of a heme into the proposed active site allowed for identification of residues likely to be functionally important. Structural and sequence comparisons with other DyPs demonstrate a conservation of putative heme-binding residues, including an absolutely conserved histidine. Isothermal titration calorimetry experiments confirm heme binding, but with a stoichiometry of 0.3:1 (heme:protein).  相似文献   

15.
The crystal structure of a cysteine protease ervatamin B, isolated from the medicinal plant Ervatamia coronaria, has been determined at 1.63 A. The unknown primary structure of the enzyme could also be traced from the high-quality electron density map. The final refined model, consisting of 215 amino acid residues, 208 water molecules, and a thiosulfate ligand molecule, has a crystallographic R-factor of 15.9% and a free R-factor of 18.2% for F > 2sigma(F). The protein belongs to the papain superfamily of cysteine proteases and has some unique properties compared to other members of the family. Though the overall fold of the structure, comprising two domains, is similar to the others, a few natural substitutions of conserved amino acid residues at the interdomain cleft of ervatamin B are expected to increase the stability of the protein. The substitution of a lysine residue by an arginine (residue 177) in this region of the protein may be important, because Lys --> Arg substitution is reported to increase the stability of proteins. Another substitution in this cleft region that helps to hold the domains together through hydrogen bonds is Ser36, replacing a conserved glycine residue in the others. There are also some substitutions in and around the active site cleft. Residues Tyr67, Pro68, Val157, and Ser205 in papain are replaced by Trp67, Met68, Gln156, and Leu208, respectively, in ervatamin B, which reduces the volume of the S2 subsite to almost one-fourth that of papain, and this in turn alters the substrate specificity of the enzyme.  相似文献   

16.
Rhomboids are intramembrane proteases that use a catalytic dyad of serine and histidine for proteolysis. They are conserved in both prokaryotes and eukaryotes and regulate cellular processes as diverse as intercellular signalling, parasitic invasion of host cells, and mitochondrial morphology. Their widespread biological significance and consequent medical potential provides a strong incentive to understand the mechanism of these unusual enzymes for identification of specific inhibitors. In this study, we describe the structure of Escherichia coli rhomboid GlpG covalently bound to a mechanism‐based isocoumarin inhibitor. We identify the position of the oxyanion hole, and the S1‐ and S2′‐binding subsites of GlpG, which are the key determinants of substrate specificity. The inhibitor‐bound structure suggests that subtle structural change is sufficient for catalysis, as opposed to large changes proposed from previous structures of unliganded GlpG. Using bound inhibitor as a template, we present a model for substrate binding at the active site and biochemically test its validity. This study provides a foundation for a structural explanation of rhomboid specificity and mechanism, and for inhibitor design.  相似文献   

17.
Phospho-Ser/Thr protein phosphatases (PPs) are dinuclear metalloenzymes classed into two large families, PPP and PPM, on the basis of sequence similarity and metal ion dependence. The archetype of the PPM family is the α isoform of human PP2C (PP2Cα), which folds into an α/β domain similar to those of PPP enzymes. The recent structural studies of three bacterial PPM phosphatases, Mycobacterium tuberculosis MtPstP, Mycobacterium smegmatis MspP, and Streptococcus agalactiae STP, confirmed the conservation of the overall fold and dinuclear metal center in the family, but surprisingly revealed the presence of a third conserved metal-binding site in the active site. To gain insight into the roles of the three-metal center in bacterial enzymes, we report structural and metal-binding studies of MtPstP and MspP. The structure of MtPstP in a new trigonal crystal form revealed a fully active enzyme with the canonical dinuclear metal center but without the third metal ion bound to the catalytic site. The absence of metal correlates with a partially unstructured flap segment, indicating that the third manganese ion contributes to reposition the flap, but is dispensable for catalysis. Studies of metal binding to MspP using isothermal titration calorimetry revealed that the three Mn2+-binding sites display distinct affinities, with dissociation constants in the nano- and micromolar range for the two catalytic metal ions and a significantly lower affinity for the third metal-binding site. In agreement, the structure of inactive MspP at acidic pH was determined at atomic resolution and shown to lack the third metal ion in the active site. Structural comparisons of all bacterial phosphatases revealed positional variations in the third metal-binding site that are correlated with the presence of bound substrate and the conformation of the flap segment, supporting a role of this metal ion in assisting enzyme-substrate interactions.  相似文献   

18.
The structural and functional role of conserved residue G86 in HIV‐1 protease (PR) was investigated by NMR and crystallographic analyses of substitution mutations of glycine to alanine and serine (PRG86A and PRG86S). While PRG86S had undetectable catalytic activity, PRG86A exhibited ~6000‐fold lower catalytic activity than PR. 1H‐15N NMR correlation spectra revealed that PRG86A and PRG86S are dimeric, exhibiting dimer dissociation constants (Kd) of ~0.5 and ~3.2 μM, respectively, which are significantly lower than that seen for PR with R87K mutation (Kd > 1 mM). Thus, the G86 mutants, despite being partially dimeric under the assay conditions, are defective in catalyzing substrate hydrolysis. NMR spectra revealed no changes in the chemical shifts even in the presence of excess substrate, indicating very poor binding of the substrate. Both NMR chemical shift data and crystal structures of PRG86A and PRG86S in the presence of active‐site inhibitors indicated high structural similarity to previously described PR/inhibitor complexes, except for specific perturbations within the active site loop and around the mutation site. The crystal structures in the presence of the inhibitor showed that the region around residue 86 was connected to the active site by a conserved network of hydrogen bonds, and the two regions moved further apart in the mutants. Overall, in contrast to the role of R87 in contributing significantly to the dimer stability of PR, G86 is likely to play an important role in maintaining the correct geometry of the active site loop in the PR dimer for substrate binding and hydrolysis. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
A novel mechanism of inhibiting HIV-1 protease (HIVp) is presented. Using computational solvent mapping to identify complementary interactions and the Multiple Protein Structure method to incorporate protein flexibility, we generated a receptor-based pharmacophore model of the flexible flap region of the semiopen, apo state of HIVp. Complementary interactions were consistently observed at the base of the flap, only within a cleft with a specific structural role. In the closed, bound state of HIVp, each flap tip docks against the opposite monomer, occupying this cleft. This flap-recognition site is filled by the protein and cannot be identified using traditional approaches based on bound, closed structures. Virtual screening and dynamics simulations show how small molecules can be identified to complement this cleft. Subsequent experimental testing confirms inhibitory activity of this new class of inhibitor. This may be the first new inhibitor class for HIVp since dimerization inhibitors were introduced 17 years ago.  相似文献   

20.
Clinical inhibitor amprenavir (APV) is less effective on HIV‐2 protease (PR2) than on HIV‐1 protease (PR1). We solved the crystal structure of PR2 with APV at 1.5 Å resolution to identify structural changes associated with the lowered inhibition. Furthermore, we analyzed the PR1 mutant (PR1M) with substitutions V32I, I47V, and V82I that mimic the inhibitor binding site of PR2. PR1M more closely resembled PR2 than PR1 in catalytic efficiency on four substrate peptides and inhibition by APV, whereas few differences were seen for two other substrates and inhibition by saquinavir (SQV) and darunavir (DRV). High resolution crystal structures of PR1M with APV, DRV, and SQV were compared with available PR1 and PR2 complexes. Val/Ile32 and Ile/Val47 showed compensating interactions with SQV in PR1M and PR1, however, Ile82 interacted with a second SQV bound in an extension of the active site cavity of PR1M. Residues 32 and 82 maintained similar interactions with DRV and APV in all the enzymes, whereas Val47 and Ile47 had opposing effects in the two subunits. Significantly diminished interactions were seen for the aniline of APV bound in PR1M and PR2 relative to the strong hydrogen bonds observed in PR1, consistent with 15‐ and 19‐fold weaker inhibition, respectively. Overall, PR1M partially replicates the specificity of PR2 and gives insight into drug resistant mutations at residues 32, 47, and 82. Moreover, this analysis provides a structural explanation for the weaker antiviral effects of APV on HIV‐2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号