首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Glassop D  Smith SE  Smith FW 《Planta》2005,222(4):688-698
A very large number of plant species are capable of forming symbiotic associations with arbuscular mycorrhizal (AM) fungi. The roots of these plants are potentially capable of absorbing P from the soil solution both directly through root epidermis and root hairs, and via the AM fungal pathway that delivers P to the root cortex. A large number of phosphate (P) transporters have been identified in plants; tissue expression patterns and kinetic information supports the roles of some of these in the direct root uptake pathways. Recent work has identified additional P transporters in several unrelated species that are strongly induced, sometimes specifically, in AM roots. The primary aim of the work described in this paper was to determine how mycorrhizal colonisation by different species of AM fungi influenced the expression of members of the Pht1 gene families in the cereals Hordeum vulgare (barley), Triticum aestivum (wheat) and Zea mays (maize). RT-PCR and in-situ hybridisation, showed that the transporters HORvu;Pht1;8 (AY187023), TRIae;Pht1;myc (AJ830009) and ZEAma;Pht1;6 (AJ830010), had increased expression in roots colonised by the AM fungi Glomus intraradices,Glomus sp. WFVAM23 and Scutellospora calospora. These findings add to the increasing body of evidence indicating that plants that form AM associations with members of the Glomeromycota have evolved phosphate transporters that are either specifically or preferentially involved in scavenging phosphate from the apoplast between intracellular AM structures and root cortical cells. Operation of mycorrhiza-inducible P transporters in the AM P uptake pathway appears, at least partially, to replace uptake via different P transporters located in root epidermis and root hairs. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

3.
4.
Fluctuations in intracellular calcium levels generate signalling events and regulate different cellular processes. Whilst the implication of Ca2+ in plant responses during arbuscular mycorrhiza (AM) interactions is well documented, nothing is known about the regulation or role of this secondary messenger in the fungal symbiont. The spatio-temporal expression pattern of putatively Ca2+-related genes of Glomus intraradices BEG141 encoding five proteins involved in membrane transport and one nuclear protein kinase, was investigated during the AM symbiosis. Expression profiles related to successful colonization of host roots were observed in interactions of G. intraradices with roots of wild-type Medicago truncatula (line J5) compared to the mycorrhiza-defective mutant dmi3/Mtsym13. Symbiotic fungal activity was monitored using stearoyl-CoA desaturase and phosphate transporter genes. Laser microdissection based-mapping of fungal gene expression in mycorrhizal root tissues indicated that the Ca2+-related genes were differentially upregulated in arbuscules and/or in intercellular hyphae. The spatio-temporal variations in gene expression suggest that the encoded proteins may have different functions in fungal development or function during symbiosis development. Full-length cDNA obtained for two genes with interesting expression profiles confirmed a close similarity with an endoplasmic reticulum P-type ATPase and a Vcx1-like vacuolar Ca2+ ion transporter functionally characterized in other fungi and involved in the regulation of cell calcium pools. Possible mechanisms are discussed in which Ca2+-related proteins G. intraradices BEG141 may play a role in mobilization and perception of the intracellular messenger by the AM fungus during symbiotic interactions with host roots.  相似文献   

5.
Arbuscular mycorrhizal (AM) symbiosis, established between AM fungi (AMF) and roots of higher plants, occurs in most terrestrial ecosystems. It has been well demonstrated that AM symbiosis can improve plant performance under various environmental stresses, including drought stress. However, the molecular basis for the direct involvement of AMF in plant drought tolerance has not yet been established. Most recently, we cloned two functional aquaporin genes, GintAQPF1 and GintAQPF2, from AM fungus Glomus intraradices. By heterologous gene expression in yeast, aquaporin localization, activities and water permeability were examined. Gene expressions during symbiosis in expose to drought stress were also analyzed. Our data strongly supported potential water transport via AMF to host plants. As a complement, here we adopted the monoxenic culture system for AMF, in which carrot roots transformed by Ri-T DNA were cultured with Glomus intraradices in two-compartment Petri dishes, to verify the aquaporin gene functions in assisting AMF survival under polyethylene glycol (PEG) treatment. Our results showed that 25% PEG significantly upregulated the expression of two aquaporin genes, which was in line with the gene functions examined in yeast. We therefore concluded that the aquaporins function similarly in AMF as in yeast subjected to osmotic stress. The study provided further evidence to the direct involvement of AMF in improving plant water relations under drought stresses.  相似文献   

6.
7.
A time course study was conducted to investigate disease development and molecular defense response in common bean (Phaseolus vulgaris L.) plants colonized by a mixture of five arbuscular mycorrhizal (AM) fungi, namely, Glomus mosseae, G. intraradices, G. clarum, Gigaspora gigantea, and Gigaspora margarita, and post-infected with the soil-borne pathogen Rhizoctonia solani. Results showed that pre-colonization of bean plants by AM fungi significantly reduced disease severity and disease incidence. DNA fingerprinting using the differential display technique revealed a genetic polymorphism (86.8 %) in bean plants that resulted from the colonization by AM fungi. Two genetic mechanisms were recorded: (1) switching on of new genes and (2) induction of other active genes, including the defense genes chitinase and β-1,3-glucanase, to a highly expressed state.  相似文献   

8.
We studied the role of modification in root exudation induced by colonization with Glomus intraradices and Glomus mosseae in the growth of Phytophthora nicotianae in tomato roots. Plants were grown in a compartmentalized plant growth system and were either inoculated with the AM fungi or received exudates from mycorrhizal plants, with the corresponding controls. Three weeks after planting, the plants were inoculated or not with P. nicotianae growing from an adjacent compartment. At harvest, P. nicotianae biomass was significantly reduced in roots colonized with G. intraradices or G. mosseae in comparison to non-colonized roots. Conversely, pathogen biomass was similar in non-colonized roots supplied with exudates collected from mycorrhizal or non-mycorrhizal roots, or with water. We cannot rule out that a mycorrhiza-mediated modification in root exudation may take place, but our results did not support that a change in pathogen chemotactic responses to host root exudates may be involved in the inhibition of P. nicotianae.  相似文献   

9.
Volatile organic compounds (VOCs) emitted by plant roots have important functions that can influence the rhizospheric environment. The aim of this study was to examine the effects of arbuscular mycorrhizal (AM) fungi on the profile of root VOCs. Sorghum (Sorghum bicolor) plants were grown in pots inoculated with either Glomus mosseae or Glomus intraradices, which formed mycorrhiza with the roots. Control plants were grown in pots inoculated with sterile inoculum and did not form mycorrhiza. Forty-four VOCs were determined using headspace solid-phase microextraction (HS-SPME) and gas chromatography–mass spectrometry (GC-MS). Alkanes were the most abundant type of VOCs emitted by both mycorrhizal and non-mycorrhizal plants. Both the quantity and type of volatiles were dramatically altered by the presence of AM fungi, and these changes had species specificity. Compared with non-mycorrhizal plants, mycorrhizal plants emitted more alcohols, alkenes, ethers and acids but fewer linear-alkanes. The AM fungi also influenced the morphological traits of the host roots. The total root length and specific root length of mycorrhizal plants were significantly greater than those of non-mycorrhizal plants; however, both the incidence and length of root-hair were dramatically decreased. Our findings confirm that AM fungi can alter the profile of VOCs emitted by roots as well as the root morphology of sorghum plants, indicating that AM fungi have the potential to help plants adapt to and alter soil environments.  相似文献   

10.
The mobilization of inorganic phosphate (Pi) in planta is a complex process regulated by a number of developmental and environmental cues. Plants possess many Pi transporters that acquire Pi from the rhizosphere and translocate it throughout the plant. A few members of the high-affinity Pht1 family of Pi transporters have been functionally characterized and, for the most part, have been shown to be involved in Pi acquisition. We recently demonstrated that the Arabidopsis Pi transporter, Pht1;5, plays a key role in translocating Pi between tissues. Loss-of-function pht1;5 mutant seedlings accumulated more P in shoots relative to wild type but less in roots. In contrast, overexpression of Pht1;5 resulted in a lower P shoot:root ratio compared with wild type. Also, the rosette leaves of Pht1;5-overexpression plants senesced early and contained less P, whereas reproductive organs accumulated more P than those of wild type. Herein we report the molecular response of disrupting Pht1;5 expression on other factors known to modulate P distribution. The results reveal reciprocal mis-regulation of PHO1, miR399d, and At4 in the pht1;5 mutant and Pht1;5-overexpressor, consistent with the corresponding changes in P distribution in these lines. Together our studies reveal a complex role for Pht1;5 in regulating Pi homeostasis.  相似文献   

11.
Versaw  Wayne K.  Chiou  Tzyy-Jen  Harrison  Maria J. 《Plant and Soil》2002,244(1-2):239-245
Most vascular plants acquire phosphate from their environment either directly, via the roots, or indirectly, via a symbiotic interaction with arbuscular mycorrhizal (AM) fungi. The symbiosis develops in the plant roots where the fungi colonize the cortex of the root to obtain carbon from the plant host, while assisting the plant with acquisition of phosphate and other mineral nutrients from the soil solution. As a first step toward understanding the molecular basis of the symbiosis and phosphate utilization, we have cloned and characterized phosphate transporter genes from the AM fungi Glomus versiforme and Glomus intraradices, and from the roots of a host plant, Medicago truncatula. Expression analyses and localization studies indicate that each of these transporters has a role in phosphate uptake from the soil solution.  相似文献   

12.
The symbiosis between plant roots and arbuscular mycorrhizal (AM) fungi has been shown to affect both the diversity and productivity of agricultural communities. In this study, we characterized the AM fungal communities of Solanum tuberosum L. (potato) roots and of the bulk soil in two nearby areas of northern Italy, in order to verify if land use practices had selected any particular AM fungus with specificity to potato plants. The AM fungal large-subunit (LSU) rRNA genes were subjected to nested PCR, cloning, sequencing, and phylogenetic analyses. One hundred eighty-three LSU rRNA sequences were analyzed, and eight monophyletic ribotypes, belonging to Glomus groups A and B, were identified. AM fungal communities differed between bulk soil and potato roots, as one AM fungal ribotype, corresponding to Glomus intraradices, was much more frequent in potato roots than in soils (accounting for more than 90% of sequences from potato samples and less than 10% of sequences from soil samples). A semiquantitative heminested PCR with specific primers was used to confirm and quantify the AM fungal abundance observed by cloning. Overall results concerning the biodiversity of AM fungal communities in roots and in bulk soils from the two studied areas suggested that potato roots were preferentially colonized by one AM fungal species, G. intraradices.  相似文献   

13.
14.
15.
Martin CA  Stutz JC 《Mycorrhiza》2004,14(4):241-244
Capsicum annuum (pepper) plants were inoculated with the arbuscular mycorrhizal (AM) fungi Glomus intraradices Smith and Schenck, an undescribed Glomus sp. (AZ 112) or a mixture of these isolates. Control plants were non-mycorrhizal. Plants were grown for 8 weeks at moderate (20.7–25.4°C) or high (32.1–38°C) temperatures. Colonization of pepper roots by G. intraradices or the Glomus isolate mixture was lower at high than at moderate temperatures, but colonization by Glomus AZ112 was somewhat increased at high temperatures. Pepper shoot and root dry weights and leaf P levels were affected by an interaction between temperature and AM fungal treatments. At moderate temperatures, shoot dry weights of plants colonized by the Glomus isolate mixture or non-AM plants were highest, while root dry weights were highest for non-AM plants. At high temperatures, plants colonized by Glomus AZ112 or the non-AM plants had the lowest shoot and root dry weights. AM plants had generally higher leaf P levels at moderate temperatures and lower P levels at high temperatures than non-AM plants. AM plants also had generally higher specific soil respiration than non-AM plants regardless of temperature treatment. At moderate temperatures, P uptake by all AM plants was enhanced relative to non-AM plants but there was no corresponding enhancement of growth, possibly because less carbon was invested in root growth or root respiratory costs increased. At high temperatures, pepper growth with the G. intraradices isolate and the Glomus isolate mixture was enhanced relative to non-AM controls, despite reduced levels of AM colonization and, therefore, apparently less fungal P transfer to the plant.  相似文献   

16.
Three arbuscular mycorrhizal (AM) fungi (Glomus mosseae, Glomus claroideum, and Glomus intraradices) were compared for their root colonizing ability and activity in the root of Astragalus sinicus L. under salt-stressed soil conditions. Mycorrhizal formation, activity of fungal succinate dehydrogenase, and alkaline phosphatase, as well as plant biomass, were evaluated after 7 weeks of plant growth. Increasing the concentration of NaCl in soil generally decreased the dry weight of shoots and roots. Inoculation with AM fungi significantly alleviated inhibitory effect of salt stress. G. intraradices was the most efficient AM fungus compared with the other two fungi in terms of root colonization and enzyme activity. Nested PCR revealed that in root system of plants inoculated with a mix of the three AM fungi and grown under salt stress, the majority of mycorrhizal root fragments were colonized by one or two AM fungi, and some roots were colonized by all the three. Compared to inoculation alone, the frequency of G. mosseae in roots increased in the presence of the other two fungal species and highest level of NaCl, suggesting a synergistic interaction between these fungi under salt stress.  相似文献   

17.
AM 真菌影响三叶草根系抗氧化酶活性的系统效应   总被引:1,自引:0,他引:1  
本文对三叶草接种AM 真菌根内球囊霉, 用盆栽试验和分根试验测定根系的菌根侵染率和抗氧化酶活性, 研究AM 真菌对根系抗氧化酶活性的影响以及该影响的系统性。结果表明, 盆栽试验中接种根内球囊霉显著提高了根系中SOD、POD、CAT 的活性, 表明AM 真菌可以促进根系的抗氧化酶活性; 分根试验中一半根系接种了根内球囊霉的植株, 其另一半未接种的根系SOD、POD 活性也增加, 表明AM 真菌对根系抗氧化酶系统的促进具有系统效应。由于抗氧化酶系统是植物产生抗逆性的生理生化基础, 可以推测, AM 真菌对根系抗氧化酶活性的系统性提高有助于保护根系整体, 而非仅仅保护受侵染根段。  相似文献   

18.

Background

Phosphorus (P) is essential for plant growth and development. Phosphate (Pi) transporter genes in the Pht1 family play important roles in Pi uptake and translocation in plants. Although Pht1 family genes have been well studied in model plants, little is known about their functions in soybean, an important legume crop worldwide.

Principal Findings

We identified and isolated a complete set of 14 Pi transporter genes (GmPT1-14) in the soybean genome and categorized them into two subfamilies based on phylogenetic analysis. Then, an experiment to elucidate Pi transport activity of the GmPTs was carried out using a yeast mutant defective in high-affinity Pi transport. Results showed that 12 of the 14 GmPTs were able to complement Pi uptake of the yeast mutant with Km values ranging from 25.7 to 116.3 µM, demonstrating that most of the GmPTs are high-affinity Pi transporters. Further results from qRT-PCR showed that the expressions of the 14 GmPTs differed not only in response to P availability in different tissues, but also to other nutrient stresses, including N, K and Fe deficiency, suggesting that besides functioning in Pi uptake and translocation, GmPTs might be involved in synergistic regulation of mineral nutrient homeostasis in soybean.

Conclusions

The comprehensive analysis of Pi transporter function in yeast and expression responses to nutrition starvation of Pht1 family genes in soybean revealed their involvement in other nutrient homeostasis besides P, which could help to better understand the regulation network among ion homeostasis in plants.  相似文献   

19.
20.
A microarray carrying 5,648 probes of Medicago truncatula root-expressed genes was screened in order to identify those that are specifically regulated by the arbuscular mycorrhizal (AM) fungus Gigaspora rosea, by Pi fertilisation or by the phytohormones abscisic acid and jasmonic acid. Amongst the identified genes, 21% showed a common induction and 31% a common repression between roots fertilised with Pi or inoculated with the AM fungus G. rosea, while there was no obvious overlap in the expression patterns between mycorrhizal and phytohormone-treated roots. Expression patterns were further studied by comparing the results with published data obtained from roots colonised by the AM fungi Glomus mosseae and Glomus intraradices, but only very few genes were identified as being commonly regulated by all three AM fungi. Analysis of Pi concentrations in plants colonised by either of the three AM fungi revealed that this could be due to the higher Pi levels in plants inoculated by G. rosea compared with the other two fungi, explaining that numerous genes are commonly regulated by the interaction with G. rosea and by phosphate. Differential gene expression in roots inoculated with the three AM fungi was further studied by expression analyses of six genes from the phosphate transporter gene family in M. truncatula. While MtPT4 was induced by all three fungi, the other five genes showed different degrees of repression mirroring the functional differences in phosphate nutrition by G. rosea, G. mosseae and G. intraradices. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号