首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Proteoglycans (PGs) are composed of a protein moiety and a complex glycosaminoglycan (GAG) polysaccharide moiety. GAG chains are responsible for various biological activities. GAG chains are covalently attached to serine residues of the core protein. The first step in PG biosynthesis is xylosylation of certain serine residues of the core protein. A specific linker tetrasaccharide is then assembled and serves as an acceptor for elongation of GAG chains. If the production of endogenous GAG chains is selectively inhibited, one could determine the role of these endogenous molecules in physiological and developmental functions in a spatiotemporal manner. Biosynthesis of PGs is often blocked with the aid of nonspecific agents such as chlorate, a bleaching agent, and brefeldin A, a fungal metabolite, to elucidate the biological roles of GAG chains. Unfortunately, these agents are highly lethal to model organisms. Xylosides are known to prime GAG chains. Therefore, we hypothesized that modified xylose analogs may able to inhibit the biosynthesis of PGs. To test this, we synthesized a library of novel 4-deoxy-4-fluoroxylosides with various aglycones using click chemistry and examined each for its ability to inhibit heparan sulfate and chondroitin sulfate using Chinese hamster ovary cells as a model cellular system.  相似文献   

2.
Sulfated glycosaminoglycan (GAG) chains are a class of long linear polysaccharides that are covalently attached to multiple core proteins to form proteoglycans (PGs). PGs are major pericellular and extracellular matrix components that surround virtually all mammalian cell surfaces, and create conducive microenvironments for a number of essential cellular events, such as cell adhesion, cell proliferation, differentiation, and cell fate decisions. The multifunctional properties of PGs are mostly mediated by their respective GAG moieties, including chondroitin sulfate (CS), heparan sulfate (HS), and keratan sulfate (KS) chains. Structural divergence of GAG chains is enzymatically generated and strictly regulated by the corresponding biosynthetic machineries, and is the major driving force for PG functions. Recent studies have revealed indispensable roles of GAG chains in stem cell biology and technology. In this review, we summarize the current understanding of GAG chain-mediated stem cell niches, focusing primarily on structural characteristics of GAG chains and their distinct regulatory functions in stem cell maintenance and fate decisions.  相似文献   

3.
《Developmental neurobiology》2017,77(12):1401-1412
In the brain, the extracellular matrix (ECM) plays a central role during neural development and thus modulates critical‐period regulated behavioral ontogeny. The major components of the ECM are glycosaminoglycans (GAGs) including chondroitin sulfate (CS). However, the specific roles of GAGs in behavioral development are largely unknown. It has been shown that xylosides affect the biological functions of GAGs through modulating GAG biosynthesis. Particularly, xylosides affect GAG biosynthesis through priming of GAG chains (priming activity), competing with endogenous core proteins that carry GAG initiation sites (decoy activity), or both. Using birdsong as our model, we investigated, for the first time, how xyloside‐mediated modulation of GAG biogenesis affects song development. Xylosides infused into motor cortex of juvenile birds alter song development by specifically affecting ontogeny of the stereotyped sequence rather than the acoustic structure of syllables. Further analyses reveal that observed changes can be attributed to the priming activity rather than the decoy activity of xylosides. Collectively, these results suggest that regulation of GAG biogenesis through chemical biology approaches may allow promising therapeutic interventions of critical‐period‐dependent central nervous system plasticity. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1401–1412, 2017  相似文献   

4.
X Lin  N Perrimon 《Matrix biology》2000,19(4):303-307
Heparan sulfate proteoglycans (HSPGs) are abundant molecules associated with the cell surface and extracellular matrix, and consist of a protein core to which heparan sulfate (HS) glycosaminoglycan (GAG) chains are attached. Although these molecules have been the focus of intense biochemical studies in vitro, their biological functions in vivo were unclear until recently. We have undertaken an in vivo functional study of HSPGs in Drosophila. Our studies, as well as others, demonstrate the critical roles of HSPGs in several major signaling pathways, including ibroblast growth factor (FGF), Wnt, Hedgehog (Hh) and TGF-beta. Our results also suggest that specific HS GAG chain modifications, as well as specific HSPG protein cores, are involved in specific signaling pathways.  相似文献   

5.
The chondroitin sulfate/dermatan sulfate proteoglycans (CS/DSPGs) of the human umbilical cord vein, arteries and Wharton's jelly matrices were characterized and localized by immunohistochemical analysis. The CS/DSPGs were found to be decorins and biglycans with 43-48 kDa core proteins and are distributed throughout the umbilical cord. A truncated form of decorin having only the approximately 14 kDa NH(2)-terminal portion of the core protein was found exclusively in the vein. The proteoglycans, regardless of their locations, have two types of CS/DS chains, one with approximately 90% CS and approximately 10% DS and the other with approximately 65% CS and approximately 35% DS. The glycosaminoglycan (GAG) chains of the truncated decorin consist of approximately 53% CS and approximately 47% DS. Both decorin and biglycan including the truncated form of decorin could efficiently bind collagen I and fibronectin. The decorin and biglycan with approximately 10% DS and approximately 90% CS were loosely bound in the extracellular matrices, whereas those with approximately 35% DS bound strongly. Together, these data demonstrate that, the GAG chains with 35-47% DS but not those with 10% DS, interact strongly with the matrix. Our data also show that the GAG chain composition is a significant factor in binding of the decorin and biglycan to matrix proteins. The expression of decorin and biglycan with distinctively different CS/DS proportions implies specific biological functions for these PGs in the umbilical cord. The occurrence of the truncated form of decorin exclusively in the umbilical vein suggests a specific functional role.  相似文献   

6.
Syndecan-4 is a cell membrane heparan sulfate proteoglycan that is composed of a core protein and covalently attached glycosaminoglycans (GAG) and N-linked glycosylated (N-glycosylated) chains. Syndecan-4 has been shown to function independent of its GAG chains. Syndecan-4 may derive its biological function from the N-glycosylated chains due to the biological role of N-glycosylated chains in protein folding and cell membrane localization. The objective of the current study was to investigate the role of syndecan-4 N-glycosylated chains and the interaction between GAG and N-glycosylated chains in turkey myogenic satellite cell proliferation, differentiation, and fibroblast growth factor 2 (FGF2) responsiveness. The wild type turkey syndecan-4 and the syndecan-4 without GAG chains were cloned into the expression vector pCMS-EGFP and used as templates to generate syndecan-4 N-glycosylated one-chain and no-chain mutants with or without GAG chains. The wild type syndecan-4, all of the syndecan-4 N-glycosylated chain mutants were transfected into turkey myogenic satellite cells. Cell proliferation, differentiation, and responsiveness to FGF2 were measured. The overexpression of syndecan-4 N-glycosylated mutants with or without GAG chains did not change cell proliferation, differentiation, and responsiveness to FGF2 compared to the wild type syndecan-4 except that the overexpression of syndecan-4 N-glycosylated mutants without GAG chains increased cell proliferation at 48 and 72 h post-transfection. These data suggest that syndecan-4 functions in an FGF2-independent manner, and the N-glycosylated and GAG chains are required for syndecan-4 to regulate turkey myogenic satellite cell proliferation, but not differentiation.  相似文献   

7.
Syndecan-4 is a cell membrane proteoglycan composed of a transmembrane core protein and substituted glycosaminoglycan (GAG) and N-linked glycosylated (N-glycosylated) chains. The core protein has three domains: extracellular, transmembrane and cytoplasmic domains. The GAG and N-glycosylated chains and the cytoplasmic domain of syndecan-4, especially the amino acids: Ser(178) and Tyr(187) are critical in regulation of turkey satellite cell growth and development. How these processes are regulated is still unknown. The objective of the current study was to determine whether the syndecan-4 GAG and N-glycosylated chains and the cytoplasmic domain functions through modulating focal adhesion formation and apoptosis. Twelve mutant clones were generated: a truncated syndecan-4 without the cytoplasmic domain with or without GAG and N-glycosylated chains, and Ser(178) and Tyr(187) mutants with or without GAG and N-glycosylated chains. The wild type syndecan-4 and all of the syndecan-4 mutants were transfected into turkey myogenic satellite cells after which cell apoptosis and focal adhesion formation were measured. Syndecan-4 increased cell membrane localization of β1 integrin and the activity of focal adhesion kinase (FAK) whereas the cytoplasmic domain mutation decreased the phosphorylation of FAK. However, syndecan-4 and syndecan-4 mutants did not influence cell apoptosis. They also had no effect on vinculin or paxillin-containing focal adhesion formation. These results suggested that the syndecan-4 cytoplasmic domain plays an important role in regulating FAK activity and β1 integrin cell membrane localization but not cell apoptosis and vinculin or paxillin-containing focal adhesion formation.  相似文献   

8.
Glycosaminoglycans (GAGs) are natural, linear and negatively charged heteropolysaccharides which are incident in every mammalian tissue. They consist of repeating disaccharide units, which are composed of either sulfated or non-sulfated monosaccharides. Depending on tissue types, GAGs exhibit structural heterogeneity such as the position and degree of sulfation or within their disaccharide units composition being heparin, heparan sulfate, chondroitine sulfate, dermatan sulfate, keratan sulfate, and hyaluronic acid. They are covalently linked to a core protein (proteoglycans) or as free chains (hyaluronan). GAGs affect cell properties and functions either by direct interaction with cell receptors or by sequestration of growth factors. These evidences of divert biological roles of GAGs make their characterization at cell and tissue levels of importance. Thus, non-invasive techniques are interesting to investigate, to qualitatively and quantitatively characterize GAGs in vitro in order to use them as diagnostic biomarkers and/or as therapeutic targets in several human diseases including cancer. Infrared and Raman microspectroscopies and imaging are sensitive enough to differentiate and classify GAG types and subtypes in spite of their close molecular structures. Spectroscopic markers characteristic of reference GAG molecules were identified. Beyond these investigations of the standard GAG spectral signature, infrared and Raman spectral signatures of GAG were searched in complex biological systems like cells. The aim of the present review is to describe the implementation of these complementary vibrational spectroscopy techniques, and to discuss their potentials, advantages and disadvantages for GAG analysis. In addition, this review presents new data as we show for the first time GAG infrared and Raman spectral signatures from conditioned media and live cells, respectively.  相似文献   

9.
The diversity of bone proteoglycan (PG) structure and localisation (pericellular, extracellular in the organic bone matrix) reflects a broad spectrum of biological functions within a unique tissue. PGs play important roles in organizing the bone extracellular matrix, taking part in the structuring of the tissue itself as active regulators of collagen fibrillogenesis. PGs also display selective patterns of reactivity with several constituents including cytokines and growth factors, such as transforming growth factor-beta or osteoprotegerin thereby modulating their bio-availability and biological activity in the bone tissue. In this review, the complex PG composition in bone will be addressed together with the specific role played by PGs (or their GAGs chains) in bone biology, as regulatory molecules for bone resorption and their involvement in bone tumor development. These roles have been determined after modulation of PG expression or mutations in their corresponding genes, which revealed specific roles for these compounds in bone pathologies (e.g. perlecan or glypican-3 mutations observed respectively in chondrodysplasia or dysmorphic syndrome). Finally, the potential therapeutic interest of PGs is discussed based on recent data, more particularly on bone tumor-associated osteolysis as these molecules are involved both in bone resorption and tumor development.  相似文献   

10.
Pancreatic carcinoma (PC) is a cancer type with highly malignant growth and dissemination pattern of which the mechanisms are poorly understood. However, the malignant phenotype is closely linked to extracellular matrix (ECM) of which proteoglycans (PGs) and hyaluronan (HA) play a crucial role in the control of tumor progression and metastasis. In this study, we demonstrated that versican and decorin, two different PGs with contradictory roles and functions in the pathobiology of cancer, were the main matrix PGs in PC presenting a great increase 27- and 7-fold, respectively, in comparison to normal pancreas (NP). PC was characterized by the disproportional increase of versican compared to decorin, about 4 to 1, with a concurrent increase of HA, which may be closely associated with the growth and aggressiveness of this carcinoma. Significant specific post-translational modifications were also observed in both versican and decorin regarding the type, hydrodynamic size, sulfation pattern and extent of uronate epimerization of their glycosaminoglycan chains (GAGs). In particular, chondroitin sulphate (CS) was the predominant GAG type in both PC-associated versican and decorin. The CS of PC-decorin was increased 11-fold, compared to NP in which dermatan sulfate (DS) was the predominant GAG type in both PGs. The sulfation pattern of GAG chains was significantly altered in PC, since 6-sulfated disaccharides predominated in both versican and decorin with a marked presence of non-sulfated disaccharides accompanied by lower hydrodynamic sizes of both CS and DS chains compared to NP. In conclusion, all these findings agree with the highly malignant phenotype of this cancer and, thus, more studies need to be addressed on the roles of the post-translational modifications of versican and decorin in the biology of cancer.  相似文献   

11.
Proteoglycans (PGs) are a major component of the extracellular matrix in many tissues and function as structural and regulatory molecules. PGs are composed of core proteins and glycosaminoglycan (GAG) side chains. The biosynthesis of GAGs starts with the linker region that consists of four sugar residues and is followed by repeating disaccharide units. By exome sequencing, we found that B3GALT6 encoding an enzyme involved in the biosynthesis of the GAG linker region is responsible for a severe skeletal dysplasia, spondyloepimetaphyseal dysplasia with joint laxity type 1 (SEMD-JL1). B3GALT6 loss-of-function mutations were found in individuals with SEMD-JL1 from seven families. In a subsequent candidate gene study based on the phenotypic similarity, we found that B3GALT6 is also responsible for a connective tissue disease, Ehlers-Danlos syndrome (progeroid form). Recessive loss-of-function mutations in B3GALT6 result in a spectrum of disorders affecting a broad range of skeletal and connective tissues characterized by lax skin, muscle hypotonia, joint dislocation, and spinal deformity. The pleiotropic phenotypes of the disorders indicate that B3GALT6 plays a critical role in a wide range of biological processes in various tissues, including skin, bone, cartilage, tendon, and ligament.  相似文献   

12.
To characterize the sulfated proteoglycans (PGs) alterations associated with malignant transformation of epithelial cells in vitro, the localization, charge, size, and composition of cell-associated and secreted sulfated PGs have been compared in rabbit renal proximal-tubule cells in primary culture (Ronco et al., 1990) and in a derived SV-40 transformed cell line (RC.SV1) exhibiting a proximal phenotype and high tumor-inducing ability (Vandewalle et al., 1989). Both normal and transformed cells incorporated PGs into a thick basement membrane layer as shown by ruthenium red staining and immunodetection with a monoclonal antibody raised against the core protein of the bovine basement membrane heparan sulfate-PG (HS-PG). In primary cultures of normal cells, cell-associated PGs were almost identical to those extracted from renal tubule fractions in vivo by their size (Kav = 0.27 vs. 0.26 on Sepharose CL-6B) and composition characterized by the exclusive presence of heparan sulfate glycosaminoglycan (HS-GAG) chains. In addition, the cells secreted a HS-PG with similar biochemical characteristics (Kav = 0.29; 100% HS-GAG chains). The SV-40-transformed RC.SV1 cells also synthesized and secreted a unique PG with the same charge and Kav values and apparently the same core protein (35 kDa) as in nontransformed cells, but three major differences were observed: (i) an increased proportion of PG-associated [35S]sulfate radioactivity released into the culture medium (36 vs. 21%), (ii) the emergence of free GAG chains unincorporated into PGs and detected only in the cell-associated fraction, and (iii) a dramatic change in the composition of GAG chains in which chondroitin sulfate replaced heparan-sulfate. The latter finding is in keeping with the known chondroitin sulfate increase and heparan-sulfate decrease in epithelial tumors. The alterations of PGs observed in this study may play a role in the acquisition and/or maintenance of the malignant phenotype.  相似文献   

13.
Proteoglycans (PGs) are important macromolecules in mammalian cells, consisting of a core protein substituted with carbohydrate chains, known as glycosaminoglycans (GAGs). Simple xylosides carrying hydrophobic aglycons can enter cells and act as primers for GAG chain synthesis, independent of the core protein. Previously it has been shown that aromatic aglycons can be separated from the sugar residue by short linkers without affecting the GAG priming ability. To further investigate the effects of the xylose–aglycon distance on the GAG priming ability, we have synthesized xyloside derivatives with 2-naphthyl and 2-(6-hydroxynaphthyl) moieties connected to xylose, directly, via a methylene bridge, or with oligoethylene glycol linkers of three different lengths. The GAG priming ability and the antiproliferative activity of the xylosides, as well as the composition of the xyloside-primed GAG chains were investigated in a matched pair of human breast fibroblasts and human breast carcinoma cells. An increase of the xylose–aglycon distance from 0.24 to 0.37 nm resulted in an increased GAG priming ability in both cell lines. Further increase of the xylose–aglycon distance did not result in any pronounced effects. We speculate that by increasing the xylose–aglycon distance, and thereby the surface area of the xyloside, to a certain level would make it more accessible for enzymes involved in the GAG synthesis. The compositions of the primed GAG chains varied with different xylosides, independent of the xylose–aglycon distance, probably due to various affinities for enzymes and/or different cellular uptake. Furthermore, no correlations between the antiproliferative activities, the xylose–aglycon distances, and the amounts or compositions of the GAG chains were detected suggesting involvement of other factors such as fine structure of the GAG chains, effects on endogenous PG synthesis, or other unknown factors for the antiproliferative activity.  相似文献   

14.
Proteoglycans (PGs) are critically involved in major cellular processes. Most PG activities are due to the large interactive properties of their glycosaminoglycan (GAG) polysaccharide chains, whose expression and fine structural features are tightly controlled by a complex and highly regulated biosynthesis machinery. Xylosides are known to bypass PG-associated GAG biosynthesis and prime the assembly of free polysaccharide chains. These are, therefore, attractive molecules to interfere with GAG expression and function. Recently, we have developed a new xyloside derivative, C-Xyloside, that shares classical GAG-inducing xyloside activities while exhibiting improved metabolic stability. We have previously shown that C-Xyloside had beneficial effects on skin homoeostasis/regeneration using a number of models, but its precise effects on GAG expression and fine structure remained to be addressed. In this study, we have therefore investigated this in details, using a reconstructed dermal tissue as model. Our results first confirmed that C-Xyloside strongly enhanced synthesis of GAG chains, but also induced significant changes in their structure. C-Xyloside primed GAGs were exclusively chondroitin/dermatan sulfate (CS/DS) that featured reduced chain size, increased O-sulfation, and changes in iduronate content and distribution. Surprisingly, C-Xyloside also affected PG-borne GAGs, the main difference being observed in CS/DS 4-O/6-O-sulfation ratio. Such changes were found to affect the biological properties of CS/DS, as revealed by the significant reduction in binding to Hepatocyte Growth Factor observed upon C-Xyloside treatment. Overall, this study provides new insights into the effect of C-Xyloside on GAG structure and activities, which opens up perspectives and applications of such compound in skin repair/regeneration. It also provides a new illustration about the use of xylosides as tools for modifying GAG fine structure/function relationships.  相似文献   

15.
Syndecan-4 core protein is composed of extracellular, transmembrane, and cytoplasmic domains. The cytoplasmic domain functions in transmitting signals into the cell through the protein kinase C alpha (PKCα) pathway. The glycosaminoglycan (GAG) and N-linked glycosylated (N-glycosylated) chains attached to the extracellular domain influence cell proliferation. The current study investigated the function of syndecan-4 cytoplasmic domain in combination with GAG and N-glycosylated chains in turkey muscle cell proliferation, differentiation, fibroblast growth factor 2 (FGF2) responsiveness, and PKCα membrane localization. Syndecan-4 or syndecan-4 without the cytoplasmic domain and with or without the GAG and N-glycosylated chains were transfected or co-transfected with a small interfering RNA targeting syndecan-4 cytoplasmic domain into turkey muscle satellite cells. The overexpression of syndecan-4 mutants increased cell proliferation but did not change differentiation. Syndecan-4 mutants had increased cellular responsiveness to FGF2 during proliferation. Syndecan-4 increased PKCα cell membrane localization, whereas the syndecan-4 mutants decreased PKCα cell membrane localization compared to syndecan-4. However, compared to the cells without transfection, syndecan-4 mutants increased cell membrane localization of PKCα. These data indicated that the syndecan‐4 cytoplasmic domain and the GAG and N-glycosylated chains are critical in syndecan-4 regulating satellite cell proliferation, responsiveness to FGF2, and PKCα cell membrane localization.  相似文献   

16.
Glycosaminoglycans (GAGs) are heterogeneous, negatively charged, macromolecules that are found in animal tissues. Based on the form of component sugar, GAGs have been categorized into four different families: heparin/heparan sulfate, chondroitin/dermatan sulfate, keratan sulfate, and hyaluronan. GAGs engage in biological pathway regulation through their interaction with protein ligands. Detailed structural information on GAG chains is required to further understanding of GAG–ligand interactions. However, polysaccharide sequencing has lagged behind protein and DNA sequencing due to the non-template-driven biosynthesis of glycans. In this review, we summarize recent progress in the analysis of GAG chains, specifically focusing on techniques related to mass spectroscopy (MS), including separation techniques coupled to MS, tandem MS, and bioinformatics software for MS spectrum interpretation. Progress in the use of other structural analysis tools, such as nuclear magnetic resonance (NMR) and hyphenated techniques, is included to provide a comprehensive perspective.  相似文献   

17.
Cultured monolayers of NMuMG mouse mammary epithelial cells have augmented amounts of cell surface chondroitin sulfate glycosaminoglycan (GAG) when cultured in transforming growth factor-beta (TGF-beta), presumably because of increased synthesis on their cell surface proteoglycan (named syndecan), previously shown to contain chondroitin sulfate and heparan sulfate GAG. This increase occurs throughout the monolayer as shown using soluble thrombospondin as a binding probe. However, comparison of staining intensity of the GAG chains and syndecan core protein suggests variability among cells in the attachment of GAG chains to the core protein. Characterization of purified syndecan confirms the enhanced addition of chondroitin sulfate in TGF-beta: (a) radiosulfate incorporation into chondroitin sulfate is increased 6.2-fold in this proteoglycan fraction and heparan sulfate is increased 1.8-fold, despite no apparent increase in amount of core protein per cell, and (b) the size and density of the proteoglycan are increased, but reduced by removal of chondroitin sulfate. This is shown in part by treatment of the cells with 0.5 mM xyloside that blocks the chondroitin sulfate addition without affecting heparan sulfate. Higher xyloside concentrations block heparan sulfate as well and syndecan appears at the cell surface as core protein without GAG chains. The enhanced amount of GAG on syndecan is partly attributed to an increase in chain length. Whereas this accounts for the additional heparan sulfate synthesis, it is insufficient to explain the total increase in chondroitin sulfate; an approximately threefold increase in chondroitin sulfate chain addition occurs as well, confirmed by assessing chondroitin sulfate ABC lyase (ABCase)-generated chondroitin sulfate linkage stubs on the core protein. One of the effects of TGF-beta during embryonic tissue interactions is likely to be the enhanced synthesis of chondroitin sulfate chains on this cell surface proteoglycan.  相似文献   

18.
The results reported here show that sodium fluoride (NaF) at low concentration (up to 10 microM) increased four times the proliferation rate of avian osteoblasts in culture. Also NaF increases, in a concentration dependent manner, 10 times the alkaline phosphatase activity. However, NaF decreased the incorporation of 35S-sulfate into proteoglycans (PGs) synthesized by osteoblasts (60-65%). Also, we observed that PGs synthesized in the presence of NaF (50 microM) exhibited a higher sensitivity to chondroitinase ABC than PGs synthesized by osteoblasts in the absence of NaF, suggesting an increase in the chondroitin sulfate moieties associated with the core protein of PGs. The modification of glycosaminoglycan (GAG) chains composition was evidenced also by change in the mean charge density of the PGs observed by ion exchange chromatography. Since the ratio of 35SO4/3H-glucosamine incorporated into PGs was similar in the presence and in the absence of NaF (8.2 and 7, respectively), it is not possible to explain differences in mean charge density by changes in the sulfation extent of PGs. No differences were observed in the hydrodynamic size of PG synthesized in the presence of NaF, nor in the hydrodynamic size of the GAG chains. According to these results, we speculate that the stimulatory effect of fluoride on bone mineralization may be mediated, in part, by the changes in the rate of synthesis or in the structural characteristics of bone PGs. The changes produced by fluoride in PGs suggest that these molecules play an inhibitory role in the bone mineralization process.  相似文献   

19.
The structural characteristics of proteoglycans produced by seminiferous peritubular cells and by Sertoli cells are defined. Peritubular cells secrete two proteoglycans designated PC I and PC II. PC I is a high molecular mass protein containing chondroitin glycosaminoglycan (GAG) chains (maximum 70 kDa). PC II has a protein core of 45 kDa and also contains chondroitin GAG chains (maximum 70 kDa). Preliminary results imply that PC II may be a degraded or processed form of PC I. A cellular proteoglycan associated with the peritubular cells is described which has properties similar to those of PC I. Sertoli cells secrete two different proteoglycans, designated SC I and SC II. SC I is a large protein containing both chondroitin (maximum 62 kDa) and heparin (maximum 15 kDa) GAG chains. Results obtained suggest that this novel proteoglycan contains both chondroitin and heparin GAG chains bound to the same core protein. SC II has a 50-kDa protein core and contains chondroitin (maximum 25 kDa) GAG chains. A proteoglycan obtained from extracts of Sertoli cells is described which contains heparin (maximum 48 kDa) GAG chains. In addition, Sertoli cells secrete a sulfoprotein, SC III, which is not a proteoglycan. SC III has properties similar to those of a major Sertoli cell-secreted protein previously defined as a dimeric acidic glycoprotein. The stimulation by follicle-stimulating hormone of the incorporation of [35S]SO2(-4) into moieties secreted by Sertoli cells is shown to represent an increased production or sulfation of SC III (i.e. dimeric acidic glycoprotein), and not an increased production or sulfation of proteoglycans. Results are discussed in relation to the possible functions of proteoglycans in the seminiferous tubule.  相似文献   

20.
S4 (syndecan-4) is a cell membrane heparan sulfate proteoglycan that functions in muscle growth and development. It is composed of a central core protein and two types of side chains: GAGs (glycosaminoglycans) and N-glycosylated (N-linked glycosylated) chains. The N-glycosylated chains and GAG chains are required for S4 to regulate turkey myogenic satellite cell proliferation. The objective of the current study was to determine whether the S4 side chains regulate cell proliferation through muscle cell focal adhesion formation and apoptosis. S4 mutants with only one or without any N-glycosylated chains attached to the core protein with or without GAG chains were generated to study the function of N-glycosylated chains and the interaction between N-glycosylated chains and GAG chains. The wild-type S4 and all of the S4 side chain mutants were transfected into turkey myogenic satellite cells. Cell apoptosis and focal adhesion formation were measured, and PKCα (protein kinase Cα) cell membrane localization was investigated. S4 increased FAK (focal adhesion kinase) activity and the deletion of the side chains decreased this effect. S4 and the S4 mutants had no effect on β1-integrin expression, but increased the cell membrane localization of β1-integrin and PKCα. Furthermore, cell apoptosis and vinculin containing focal adhesions were not affected by S4 and its mutants. The results suggest that S4 and its side chains play important roles in regulating FAK activity, and PKCα and β1-integrin cell membrane localization, but not cell apoptosis and vinculin-containing focal adhesion formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号