首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Extreme selective environments are commonly believed to funnel evolution toward a few predictable outcomes. Caves are well‐known extreme environments with characteristically adapted faunas that are similar in appearance, physiology, and behavior all over the world, even if not closely related. Morphological diversity between closely related cave species has been explained by difference in time since colonization and different ecological influence from the surface. Here, we tested a more classical hypothesis: morphological diversity is niche‐based, and different morphologies reflect properties of microhabitats within caves. We analyzed seven communities with altogether 30 species of the subterranean amphipod (crustacean) genus Niphargus using multivariate morphometrics, multinomial logit models cross‐validation, and phylogenetic reconstruction. Species clustered into four distinct ecomorph classes—small pore, cave stream, cave lake, and lake giants—associated with specific cave microhabitats and of multiple independent phylogenetic origins. Traits commonly regarded as adaptations to caves, such as antenna length, were shown to be related to microhabitat parameters, such as flow velocity. These results demonstrate that under the selection pressure of extreme environment, the ecomorphological structure of communities can converge. Thus, morphological diversity does not result from adaptive response to temporal and ecological gradients, but from fine‐level niche partitioning.  相似文献   

3.
4.
Background and Aims There is still debate regarding the direction and strength of plant interactions under intermediate to high levels of stress. Furthermore, little is known on how disturbance may interact with physical stress in unproductive environments, although recent theory and models have shown that this interplay may induce a collapse of plant interactions and diversity. The few studies assessing such questions have considered the intensity of biotic interactions but not their importance, although this latter concept has been shown to be very useful for understanding the role of interactions in plant communities. The objective of this study was to assess the interplay between stress and disturbance for plant interactions in dry calcareous grasslands. Methods A field experiment was set up in the Dordogne, southern France, where the importance and intensity of biotic interactions undergone by four species were measured along a water stress gradient, and with and without mowing disturbance. Key Results The importance and intensity of interactions varied in a very similar way along treatments. Under undisturbed conditions, plant interactions switched from competition to neutral with increasing water stress for three of the four species, whereas the fourth species was not subject to any significant biotic interaction along the gradient. Responses to disturbance were more species-specific; for two species, competition disappeared with mowing in the wettest conditions, whereas for the two other species, competition switched to facilitation with mowing. Finally, there were no significant interactions for any species in the disturbed and driest conditions. Conclusions At very high levels of stress, plant performances become too weak to allow either competition or facilitation and disturbance may accelerate the collapse of interactions in dry conditions. The results suggest that the importance and direction of interactions are more likely to be positively related in stressful environments.  相似文献   

5.
Although recent work has shown that both deterministic and stochastic processes are important in structuring microbial communities, the factors that affect the relative contributions of niche and neutral processes are poorly understood. The macrobiological literature indicates that ecological disturbances can influence assembly processes. Thus, we sampled bacterial communities at 4 and 16 weeks following a wildfire and used null deviation analysis to examine the role that time since disturbance has in community assembly. Fire dramatically altered bacterial community structure and diversity as well as soil chemistry for both time-points. Community structure shifted between 4 and 16 weeks for both burned and unburned communities. Community assembly in burned sites 4 weeks after fire was significantly more stochastic than in unburned sites. After 16 weeks, however, burned communities were significantly less stochastic than unburned communities. Thus, we propose a three-phase model featuring shifts in the relative importance of niche and neutral processes as a function of time since disturbance. Because neutral processes are characterized by a decoupling between environmental parameters and community structure, we hypothesize that a better understanding of community assembly may be important in determining where and when detailed studies of community composition are valuable for predicting ecosystem function.  相似文献   

6.
1. Although caves are generally perceived as isolated habitats, at the local scale, they are often interconnected via a network of fissures in the bedrock. Accordingly, caves in close proximity are expected to host the same, or very similar, animal communities. 2. We explored the extent to which subterranean arthropod communities are homogenous at a local spatial scale of less than 1 km2, along with which cave-specific environmental features result in a departure from the expected homogeneous pattern. We approached this question by studying richness and turnover in terrestrial invertebrate communities of 27 caves in a small karst massif in the Western Italian Alps. 3. Specialised subterranean species were homogeneously distributed among caves and were not influenced by seasonality. The only factor driving their distribution was the distance from the cave entrance, with deeper caves yielding a greater diversity of species. 4. Significant spatio-temporal turnover in species not specialised to subterranean life was observed. In summer, there was a significant homogenisation of the community and a more even distribution of species among sites; in winter, these species were missing or found exclusively at greater depths, where environmental conditions were more stable. Furthermore, caves at lower elevations yielded, on average, a greater diversity and abundance of these species. 5. This study demonstrated that the theoretical expectation of no turnover in community composition in caves in close proximity is not always met. Turnover can be mostly attributed to seasonal patterns and sampling depth; thus, our findings have implications for planning sampling and monitoring activities in caves.  相似文献   

7.
Waterbird communities are prone to strong temporal changes both seasonally and annually, but little is known about how this affects their functional diversity and community assembly. Detecting temporal trends in taxonomic and functional diversity within (alpha diversity) and between (beta diversity) communities in breeding and wintering seasons could give insight into the ecological processes driving those trends. In this study, we investigated trends in wintering and breeding waterbirds within and between eleven wetlands in Mediterranean Spain, using a 28‐year time‐series up to 2017. We assessed the temporal trends in taxonomic and functional diversity measures, and compared observed functional diversity values with null expectations, in order to explore the mechanisms driving community assembly. We found increases over time in species richness and in the occupied functional space for both wintering and breeding communities, indicating that species with distinct functional roles were added in both seasons. However, the distribution of the abundances in the functional space was different for breeding and wintering communities. Dissimilarity of species and functional traits decreased among wetlands, suggesting that some of the same functional traits were added to the different wetlands, increasing regional homogenization through time. This is reflected in increases over time in mean body mass, diet plasticity and in the importance of fish in waterbird diets, plus declines in the dietary importance of invertebrates and in plasticity of feeding strata. Furthermore, species composition between wintering and breeding communities, but not trait composition, has become more similar through time. Our results highlight that annual changes, and especially seasonal changes, in the composition of waterbird communities have different effects on their functional diversity, and are influenced by opposing community assembly mechanisms.  相似文献   

8.
Extreme weather events are expected to increase in frequency and magnitude due to climate change. Their effects on vegetation are widely unknown. Here, experimental grassland and heath communities in Central Europe were exposed either to a simulated single drought or to a prolonged heavy rainfall event. The magnitude of manipulations imitated the local 100-year weather extreme according to extreme value statistics. Overall productivity of both plant communities remained stable in the face of drought and heavy rainfall, despite significant effects on tissue die-back. Grassland communities were more resistant against the extreme weather events than heath communities. Furthermore, effects of extreme weather events on community tissue die-back were modified by functional diversity, even though conclusiveness in this part is limited by the fact that only one species composition was available per diversity level within this case study. More diverse grassland communities exhibited less tissue die-back than less complex grassland communities. On the other side, more diverse heath communities were more vulnerable to extreme weather events compared to less complex heath communities. Furthermore, legumes did not effectively contribute to the buffering against extreme weather events in both vegetation types. Tissue die-back proved a strong stress response in plant communities exposed to 100-year extreme weather events, even though one important ecosystem function, namely productivity, remained surprisingly stable in this experiment. Theories and concepts on biodiversity and ecosystem functioning (insurance hypothesis, redundancy hypothesis) may have to be revisited when extreme weather conditions are considered.  相似文献   

9.
10.
Vilkamaa P  Hippa H  Taylor SJ 《ZooKeys》2011,(135):69-75
Camptochaeta prolixasp. n. (Diptera, Sciaridae) is described from caves in Nevada, and three other congeneric species are recorded from caves in Nevada and Arkansas, United States. The new species shows some indication to a subterranean mode of life, including long antenna and legs, and in some specimens, reduction of the eye bridge.  相似文献   

11.
Research in eco-evolutionary dynamics and community genetics has demonstrated that variation within a species can have strong impacts on associated communities and ecosystem processes. Yet, these studies have centred around individual focal species and at single trophic levels, ignoring the role of phenotypic variation in multiple taxa within an ecosystem. Given the ubiquitous nature of local adaptation, and thus intraspecific variation, we sought to understand how combinations of intraspecific variation in multiple species within an ecosystem impacts its ecology. Using two species that co-occur and demonstrate adaptation to their natal environments, black cottonwood (Populus trichocarpa) and three-spined stickleback (Gasterosteus aculeatus), we investigated the effects of intraspecific phenotypic variation on both top-down and bottom-up forces using a large-scale aquatic mesocosm experiment. Black cottonwood genotypes exhibit genetic variation in their productivity and consequently their leaf litter subsidies to the aquatic system, which mediates the strength of top-down effects from stickleback on prey abundances. Abundances of four common invertebrate prey species and available phosphorous, the most critically limiting nutrient in freshwater systems, are dictated by the interaction between genetic variation in cottonwood productivity and stickleback morphology. These interactive effects fit with ecological theory on the relationship between productivity and top-down control and are comparable in strength to the effects of predator addition. Our results illustrate that intraspecific variation, which can evolve rapidly, is an under-appreciated driver of community structure and ecosystem function, demonstrating that a multi-trophic perspective is essential to understanding the role of evolution in structuring ecological patterns.  相似文献   

12.
Relatively stable physical conditions in caves allow for the examination of the relationship between geochemical processes and the activity of microorganisms, reflected in substantial rock alterations, formation of new structures, surface deterioration and cave expansion. Although caves are considered as extreme environments, they are inhabited by microbial communities with unexpected diversity. While Proteobacteria and Actinobacteria are the most ubiquitous groups, also the presence of Archaea has been frequently noted recently. Here, we present a summary of results on diversity of cave microorganisms in the context of taxon distribution as well as the contribution and role of individual taxa in cave ecosystems.  相似文献   

13.
Most parasites and parasitoids are adapted to overcome defense mechanisms of their specific hosts and hence colonize a narrow range of host species. Accordingly, an increase in host functional or phylogenetic dissimilarity is expected to increase the species diversity of parasitoids. However, the local diversity of parasitoids may be driven by the accessibility and detectability of hosts, both increasing with increasing host abundance. Yet, the relative importance of these two mechanisms remains unclear. We parallelly reared communities of saproxylic beetle as potential hosts and associated parasitoid Hymenoptera from experimentally felled trees. The dissimilarity of beetle communities was inferred from distances in seven functional traits and from their evolutionary ancestry. We tested the effect of host abundance, species richness, functional, and phylogenetic dissimilarities on the abundance, species richness, and Shannon diversity of parasitoids. Our results showed an increase of abundance, species richness, and Shannon diversity of parasitoids with increasing beetle abundance. Additionally, abundance of parasitoids increased with increasing species richness of beetles. However, functional and phylogenetic dissimilarity showed no effect on the diversity of parasitoids. Our results suggest that the local diversity of parasitoids, of ephemeral and hidden resources like saproxylic beetles, is highest when resources are abundant and thereby detectable and accessible. Hence, in some cases, resources do not need to be diverse to promote parasitoid diversity.  相似文献   

14.
A new troglobitic sigillid genus, Kasella , is found in the submarine caves of the Ryukyu Islands. Sigillids are primitive podocopid ostracods having ancient characters such as unequal valves and many small adductor muscle scars. Kasella is possibly derived from the sigillid Cardobairdia , a deep-sea muddy bottom inhabitant, or its relatives. Submarine caves are characterized as both 'safe places', where biological factors such as competition and predation are reduced, and as 'crypts', representing dark and oligotrophic environments. It is likely that Kasella has successfully colonized hard substrates in caves, particularly exploiting the crevices on cave walls and ceilings. Kasella may have adapted to this cryptic habitat in response to strong cytheroidean competition and predation by, for example, gastropods that do not survive well in dark and oligotrophic submarine caves. In adapting to an oligotrophic cave environment, Kasella has undergone significant divergence in carapace morphology, possibly accompanying functional and behavioural changes.  相似文献   

15.
Among numerous mechanisms shaping the unimodal relationship between diversity and community biomass, the trade-off model of “CRS” theory is the most famous one. However, recent researches indicate that this relationship may also emerge under the neutral model where all species are identical with each other. By using an individual-based spatially-explicit model, we evaluated the underlying mechanisms shaping this curve for both models under different disturbance levels. We found unimodal relationships emerged for both models at low and medium disturbance levels; the richness for the trade-off community was lower than the neutral community for most of the environment severity levels, especially at the benign environment due to the strong competitive exclusions among species. Whereas under high disturbance level, the positive relationships emerged for both models; both communities had similar richness with their curves nearly overlapped with each other, that is, because the high disturbance intensity strongly decreased the competitive exclusions within the trade-off community. Our results indicate that although the underlying mechanisms are totally different, both models will produce the similar relationship between diversity and community biomass under different disturbance levels.  相似文献   

16.
Understanding the resistance of plant communities to invasion is urgent in times of changes in the physical environment due to climate change and changes in the resident communities due to biodiversity loss. Here, we test the interaction between repeated drought or heavy rainfall events and functional diversity of grassland and heath communities on invasibility, measured as the number of plant individuals invading from the matrix vegetation. Invasibility of experimental plant communities was influenced by extreme weather events, although no change in above‐ground productivity of the resident communities was observed. Drought decreased invasibility while heavy rainfall increased invasibility, a pattern that is consistent with the fluctuating resource hypothesis. Higher community diversity generally decreased invasibility, which can be explained by a combination of the fluctuating resource hypothesis and niche theory. The effects of the physical environment (extreme weather events) and diversity resistance (community composition) were additive, as they were independent from each other. Differences in the composition of invading species sets were found, and Indicator Species Analysis revealed several invading species with significant affinity to one particular extreme weather event or community composition. This finding supports niche theory and contradicts neutral species assembly. Our data supports theories which predict decreased resistance of plant communities due to both increased climate variability and biodiversity loss. The effects of these two factors, however, appear to be independent from each other.  相似文献   

17.
Anchialine caves in coastal locations develop in two ways: by pseudokarst processes that form talus caves, sea caves, tafoni, fissure caves and lava tubes, and by karst dissolutional processes that form stream caves, flank margin caves, and blue holes. Pseudokarst caves are of minor importance in anchialine cave habitat development, with some lava tubes being notable exceptions. Dissolution caves provide the most extensive, variable, and long-term environments for anchialine habitats. The Carbonate Island Karst Model (CIKM) allows dissolutional cave development in carbonate coasts to be understood as the interplay between freshwater and marine water mixing, sea-level change, rock maturity, and interaction with adjacent non-carbonate rocks. Glacioeustatic sea-level changes of the Quaternary have moved all coastal anchialine cave environments repeatedly through a vertical range of over 100 m, and modern anchialine environments could not develop at their current elevations until ~4,000 years ago when sea level reached its present position. Blue holes form by a variety of mechanisms, but the most common is upward stoping and collapse from deep dissolutional voids. As a result, they provide vertical connection between different levels of horizontal cave development produced by a variety of earlier sea-level positions. Blue holes are overprinted by successive sea-level fluctuations; each sea-level event adds complexity to the habitats within blue holes and the cave systems they connect. Blue holes can reach depths below the deepest glacioeustatic sea-level lowstand, and thereby provide a refugia for anchialine species when cave passages above are drained by Quaternary sea-level fall. Blue holes represent the most significant anchialine cave environment in the world, and may provide clues to anchialine cave species colonization and speciation events.  相似文献   

18.

Background and Aims

Despite general agreement regarding the adaptive importance of plasticity, evidence for the role of environmental resource availability in plants is scarce. In arid and semi-arid environments, the persistence and dominance of perennial species depends on their capacity to tolerate drought: tolerance could be given on one extreme by fixed traits and, on the other, by plastic traits. To understand drought tolerance of species it is necessary to know the plasticity of their water economy-related traits, i.e. the position in the fixed–plastic continuum.

Methods

Three conspicuous co-existing perennial grasses from a Patagonian steppe were grown under controlled conditions with four levels of steady-state water availability. Evaluated traits were divided into two groups. The first was associated with potential plant performance and correlated with fitness, and included above-ground biomass, total biomass, tillering and tiller density at harvest. The second group consisted of traits associated with mechanisms of plant adjustment to environmental changes and included root biomass, shoot/root ratio, tiller biomass, length of total elongated leaf, length of yellow tissue divided by time and final length divided by the time taken to reach final length.

Key Results and Conclusions

The most plastic species along this drought gradient was the most sensitive to drought, whereas the least plastic and slowest growing was the most tolerant. This negative relationship between tolerance and plasticity was true for fitness-related traits but was trait-dependent for underlying traits. Remarkably, the most tolerant species had the highest positive plasticity (i.e. opposite to the default response to stress) in an underlying trait, directly explaining its drought resistance: it increased absolute root biomass. The niche differentiation axis that allows the coexistence of species in this group of perennial dryland grasses, all limited by soil surface moisture, would be a functional one of fixed versus plastic responses.  相似文献   

19.
Many species with restricted gene flow repeatedly respond similarly to local selection pressures. To fully understand the genetic mechanisms behind this process, the phylogeographic history of the species (inferred from neutral markers) as well as the loci under selection need to be known. Here we sequenced an intron in the arginine kinase gene (Ark), which shows strong clinal variation between two locally adapted ecotypes of the flat periwinkle, Littorina fabalis. The ‘small-sheltered'' ecotype was almost fixed for one haplotype, H1, in populations on both sides of the North Sea, unlike the ‘large-moderately exposed ecotype'', which segregated for ten different haplotypes. This contrasts with neutral markers, where the two ecotypes are equally variable. H1 could have been driven to high frequency in an ancestral population and then repeatedly spread to sheltered habitats due to local selection pressures with the colonization of both sides of the North Sea, after the last glacial maximum (∼18 000 years ago). An alternative explanation is that a positively selected mutation, in or linked to Ark, arose after the range expansion and secondarily spread through sheltered populations throughout the distribution range, causing this ecotype to evolve in a concerted fashion. Also, we were able to sequence up to four haplotypes consistently from some individuals, suggesting a gene duplication in Ark.  相似文献   

20.
We introduce the first analytical model of asymmetric community dynamics to yield Hubbell's neutral theory in the limit of functional equivalence among all species. Our focus centers on an asymmetric extension of Hubbell's local community dynamics, while an analogous extension of Hubbell's metacommunity dynamics is deferred to an appendix. We find that mass-effects may facilitate coexistence in asymmetric local communities and generate unimodal species abundance distributions indistinguishable from those of symmetric communities. Multiple modes, however, only arise from asymmetric processes and provide a strong indication of non-neutral dynamics. Although the exact stationary distributions of fully asymmetric communities must be calculated numerically, we derive approximate sampling distributions for the general case and for nearly neutral communities where symmetry is broken by a single species distinct from all others in ecological fitness and dispersal ability. In the latter case, our approximate distributions are fully normalized, and novel asymptotic expansions of the required hypergeometric functions are provided to make evaluations tractable for large communities. Employing these results in a Bayesian analysis may provide a novel statistical test to assess the consistency of species abundance data with the neutral hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号