首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial delivery systems are gaining increasing interest as potential vaccination vectors to deliver either proteins or nucleic acids for gene expression in the recipient. Bacterial delivery systems for gene expression in vivo usually contain small multicopy plasmids. We have shown before that bacteria containing a herpesvirus bacterial artificial chromosome (BAC) can reconstitute the virus replication cycle after cocultivation with fibroblasts in vitro. In this study we addressed the question of whether bacteria containing a single plasmid with a complete viral genome can also reconstitute the viral replication process in vivo. We used a natural mouse pathogen, the murine cytomegalovirus (MCMV), whose genome has previously been cloned as a BAC in Escherichia coli. In this study, we tested a new application for BAC-cloned herpesvirus genomes. We show that the MCMV BAC can be stably maintained in certain strains of Salmonella enterica serovar Typhimurium as well and that both serovar Typhimurium and E. coli harboring the single-copy MCMV BAC can reconstitute a virus infection upon injection into mice. By this procedure, a productive virus infection is regenerated only in immunocompromised mice. Virus reconstitution in vivo causes elevated titers of specific anti-MCMV antibodies, protection against lethal MCMV challenge, and strong expression of additional genes introduced into the viral genome. Thus, the reconstitution of infectious virus from live attenuated bacteria presents a novel concept for multivalent virus vaccines launched from bacterial vectors.  相似文献   

2.
We studied the in vivo biological properties of viruses reconstituted from the genome of murine gammaherpesvirus 68 (MHV-68) cloned as an infectious bacterial artificial chromosome (BAC). Recombinant virus RgammaHV68A98.01, containing BAC vector sequences, is attenuated in vivo as determined by (i) viral titers in the lungs during the acute phase of infection, (ii) the extent of splenomegaly, and (iii) the number of latently infected spleen cells reactivating virus in an ex vivo reactivation assay. Since the BAC vector sequences were flanked by loxP sites, passaging the virus in fibroblasts expressing Cre recombinase resulted in the generation of recombinant virus RgammaHV68A98.02, with biological properties comparable to those of wild-type MHV-68. On the basis of these data we conclude (i) that excision of BAC vector sequences from cloned MHV-68 genomes is critical for reconstitution of the wild-type phenotypic properties of this virus and (ii) that the BAC-cloned MHV-68 genome is suitable for the construction of mutants and mutant libraries whose phenotypes can be reliably assessed in vivo.  相似文献   

3.
Murine cytomegalovirus (MCMV) Smith strain has been cloned as a bacterial artificial chromosome (BAC) named pSM3fr and used for analysis of virus gene functions in vitro and in vivo. When sequencing the complete BAC genome, we identified a frameshift mutation within the open reading frame (ORF) encoding MCMV chemokine homologue MCK-2. This mutation would result in a truncated MCK-2 protein. When mice were infected with pSM3fr-derived virus, we observed reduced virus production in salivary glands, which could be reverted by repair of the frameshift mutation. When looking for the source of the mutation, we consistently found that virus stocks of cell culture-passaged MCMV Smith strain are mixtures of viruses with or without the MCK-2 mutation. We conclude that the MCK-2 mutation in the pSM3fr BAC is the result of clonal selection during the BAC cloning procedure.  相似文献   

4.
Canine herpesvirus (CHV) is an attractive candidate not only for use as a recombinant vaccine to protect dogs from a variety of canine pathogens but also as a viral vector for gene therapy in domestic animals. However, developments in this area have been impeded by the complicated techniques used for eukaryotic homologous recombination. To overcome these problems, we used bacterial artificial chromosomes (BACs) to generate infectious BACs. Our findings may be summarized as follows: (i) the CHV genome (pCHV/BAC), in which a BAC flanked by loxP sites was inserted into the thymidine kinase gene, was maintained in Escherichia coli; (ii) transfection of pCHV/BAC into A-72 cells resulted in the production of infectious virus; (iii) the BAC vector sequence was almost perfectly excisable from the genome of the reconstituted virus CHV/BAC by co-infection with CHV/BAC and a recombinant adenovirus that expressed the Cre recombinase; and (iv) a recombinant virus in which the glycoprotein C gene was deleted was generated by lambda recombination followed by Flp recombination, which resulted in a reduction in viral titer compared with that of the wild-type virus. The infectious clone pCHV/BAC is useful for the modification of the CHV genome using bacterial genetics, and CHV/BAC should have multiple applications in the rapid generation of genetically engineered CHV recombinants and the development of CHV vectors for vaccination and gene therapy in domestic animals.  相似文献   

5.
Cytomegaloviruses (CMVs) are members of the Betaherpesvirinae subfamily of the Herpesviridae, and their properties of latency, large DNA size, gene redundancy, and ability to be cloned as bacterial artificial chromosomes (BACs) suggest their utility as vaccine vectors. While the K181 strain of murine CMV (MCMV) is widely used to study MCMV biology, a BAC clone of this virus had not previously been produced. We report here the construction of a BAC clone of the K181(Perth) strain of MCMV. The in vivo and in vitro growth characteristics of virus derived from the K181 BAC were similar to those of wild-type K181. The utility of the K181 BAC as a method for the rapid production of vaccine vectors was assessed. A vaccine strain of BAC virus, expressing the self-fertility antigen, murine zona pellucida 3, was produced rapidly using standard bacterial genetics techniques and rendered female BALB/c mice infertile with a single intraperitoneal inoculation. In addition, attenuated vaccine strains lacking the open reading frames m07 to m12 exhibited no reduction in efficacy compared to the full-length vaccine strain. In conclusion, we describe the production of a K181-based BAC virus which behaved essentially as wild-type K181 and allowed the rapid production of effective viral vaccine vectors.  相似文献   

6.
Bacterial artificial chromosomes (BACs) are well-established cloning vehicles for functional genomics and for constructing targeting vectors and infectious viral DNA clones. Red-recombination-based mutagenesis techniques have enabled the manipulation of BACs in Escherichia coli without any remaining operational sequences. Here, we describe that the F-factor-derived vector sequences can be inserted into a novel position and seamlessly removed from the present location of the BAC-cloned DNA via synchronous Red-recombination in E. coli in an en passant mutagenesis-based procedure. Using this technique, the mini-F elements of a cloned infectious varicella zoster virus (VZV) genome were specifically transposed into novel positions distributed over the viral DNA to generate six different BAC variants. In comparison to the other constructs, a BAC variant with mini-F sequences directly inserted into the junction of the genomic termini resulted in highly efficient viral DNA replication-mediated spontaneous vector excision upon virus reconstitution in transfected VZV-permissive eukaryotic cells. Moreover, the derived vector-free recombinant progeny exhibited virtually indistinguishable genome properties and replication kinetics to the wild-type virus. Thus, a sequence-independent, efficient, and easy-to-apply mini-F vector transposition procedure eliminates the last hurdle to perform virtually any kind of imaginable targeted BAC modifications in E. coli. The herpesviral terminal genomic junction was identified as an optimal mini-F vector integration site for the construction of an infectious BAC, which allows the rapid generation of mutant virus without any unwanted secondary genome alterations. The novel mini-F transposition technique can be a valuable tool to optimize, repair or restructure other established BACs as well and may facilitate the development of gene therapy or vaccine vectors.  相似文献   

7.
为构建全基因组鸡马立克氏病病毒814株感染性细菌人工染色体(bacterial artificial chromosome, BAC), 首先通过构建表达Eco-gpt(xanthine-guanine phosphoribosyl transferase, XGPRT, gpt)的哺乳动物细胞基因转移遗传选择标记(1.3 kb)和带有细菌人工染色体的基本功能基因序列的鸡马立克氏病病毒重组病毒转移载体pUAB-gpt-BAC11, 将重组病毒转移载体与鸡马立克氏病病毒细胞总DNA共转染鸡胚成纤维细胞, 在选择培养基中经过8轮加压筛选, 获得并纯化重组病毒; 将重组病毒细胞总DNA电转化大肠杆菌, 筛选共获得38个BAC分子克隆化病毒, 提取BAC-DNA转染鸡胚成纤维细胞以拯救重组病毒。结果表明, MDV-BAC2 DNA再次启动病毒感染, 拯救了重组鸡马立克氏病病毒。成功构建了鸡马立克氏病病毒814株基因组全长感染性细菌人工染色体, 为方便利用现代RED/ET基因重组系统对病毒进行反向遗传操作提供了技术平台; 同时为研究鸡马立克氏病病毒的基因功能和开发新型马立克氏病疫苗奠定了基础。  相似文献   

8.
9.
Gammaherpesviruses cause important infections of humans, in particular in immunocompromised patients. Recently, murine gammaherpesvirus 68 (MHV-68) infection of mice has been developed as a small animal model of gammaherpesvirus pathogenesis. Efficient generation of mutants of MHV-68 would significantly contribute to the understanding of viral gene functions in virus-host interaction, thereby further enhancing the potential of this model. To this end, we cloned the MHV-68 genome as a bacterial artificial chromosome (BAC) in Escherichia coli. During propagation in E. coli, spontaneous recombination events within the internal and terminal repeats of the cloned MHV-68 genome, affecting the copy number of the repeats, were occasionally observed. The gene for the green fluorescent protein was incorporated into the cloned BAC for identification of infected cells. BAC vector sequences were flanked by loxP sites to allow the excision of these sequences using recombinase Cre and to allow the generation of recombinant viruses with wild-type genome properties. Infectious virus was reconstituted from the BAC-cloned MHV-68. Growth of the BAC-derived virus in cell culture was indistinguishable from that of wild-type MHV-68. To assess the feasibility of mutagenesis of the cloned MHV-68 genome, a mutant virus with a deletion of open reading frame 4 was generated. Genetically modified MHV-68 can now be analyzed in functionally modified mouse strains to assess the role of gammaherpesvirus genes in virus-host interaction and pathogenesis.  相似文献   

10.
11.
The complete genome of bovine herpesvirus 1 (BoHV-1) strain V155 has been cloned as a bacterial artificial chromosome (BAC). Following electroporation into Escherichia coli strain DH10B, the BoHV-1 BAC was stably propagated over multiple generations of its host. BAC DNA recovered from DH10B cells and transfected into bovine cells produced a cytopathic effect which was indistinguishable from that of the parent virus. Analysis of the replication kinetics of the viral progeny indicated that insertion of the BAC vector into the thymidine kinase gene did not affect viral replication. Specific manipulation of the BAC was demonstrated by deleting the gene encoding glycoprotein E by homologous recombination in DH10B cells facilitated by GET recombination. These studies illustrate that the propagation and manipulation of herpesviruses in bacterial systems will allow for rapid and accurate characterization of BoHV-1 genes. In turn, this will allow for the full utilization of BoHV-1 as a vaccine vector.  相似文献   

12.
The complete genome of Marek's disease virus serotype 1 (MDV-1) strain 584Ap80C was cloned in Escherichia coli as a bacterial artificial chromosome (BAC). BAC vector sequences were introduced into the U(S)2 locus of the MDV-1 genome by homologous recombination. Viral DNA containing the BAC vector was used to transform Escherichia coli strain DH10B, and several colonies harboring the complete MDV-1 genome as an F plasmid (MDV-1 BACs) were identified. DNA from various MDV-1 BACs was transfected into chicken embryo fibroblasts, and from 3 days after transfection, infectious MDV-1 was obtained. Growth of MDV-1 recovered from BACs was indistinguishable from that of the parental virus, as assessed by plaque formation and determination of growth curves. In one of the MDV-1 BAC clones, sequences encoding glycoprotein B (gB) were deleted by one-step mutagenesis using a linear DNA fragment amplified by PCR. Mutant MDV-1 recovered after transfection of BAC DNA that harbored a 2.0-kbp deletion of the 2.6-kbp gB gene were able to grow and induce MDV-1-specific plaques only on cells providing MDV-1 gB in trans. The gB-negative virus reported here represents the first MDV-1 mutant with a deletion of an essential gene and demonstrates the power and usefulness of BACs to analyze genes and gene products in slowly growing and strictly cell-associated herpesviruses.  相似文献   

13.
Rigorous investigation of many functions encoded by cytomegaloviruses (CMVs) requires analysis in the context of virus-host interactions. To facilitate the construction of rhesus CMV (RhCMV) mutants for in vivo studies, a bacterial artificial chromosome (BAC) containing an enhanced green fluorescent protein (EGFP) cassette was engineered into the intergenic region between unique short 1 (US1) and US2 of the full-length viral genome by Cre/lox-mediated recombination. Infectious virions were recovered from rhesus fibroblasts transfected with pRhCMV/BAC-EGFP. However, peak virus yields of cells infected with reconstituted progeny were 10-fold lower than wild-type RhCMV, suggesting that inclusion of the 9-kb BAC sequence impeded viral replication. Accordingly, pRhCMV/BAC-EGFP was further modified to enable efficient excision of the BAC vector from the viral genome after transfection into mammalian cells. Allelic exchange was performed in bacteria to substitute the cre recombinase gene for egfp. Transfection of rhesus fibroblasts with pRhCMV/BAC-Cre resulted in a pure progeny population lacking the vector backbone without the need of further manipulation. The genomic structure of the BAC-reconstituted virus, RhCMV-loxP(r), was identical to that of wild-type RhCMV except for the residual loxP site. The presence of the loxP sequence did not alter the expression profiles of neighboring open reading frames. In addition, RhCMV-loxP(r) replicated with wild-type kinetics both in tissue culture and seronegative immunocompetent macaques. Restriction analysis of the viral genome present within individual BAC clones and virions revealed that (i) RhCMV exhibits a simple genome structure and that (ii) there is a variable number of a 750-bp iterative sequence present at the S terminus.  相似文献   

14.
In recent years, several laboratories have reported on the cloning of herpes simplex virus type 1 (HSV-1) genomes as bacterial artificial chromosomes (BACs) in Escherichia coli and on procedures to manipulate these genomes by using the bacterial recombination machinery. However, the HSV-BACs reported so far are either replication incompetent or infectious, with a deletion of one or more viral genes due to the BAC vector insertion. For use as a multipurpose clone in research on HSV-1, we attempted to generate infectious HSV-BACs containing the full genome of HSV-1 without any loss of viral genes. Our results were as follows. (i) E. coli (YEbac102) harboring the full-length HSV-1 genome (pYEbac102) in which a BAC flanked by loxP sites was inserted into the intergenic region between U(L)3 and U(L)4 was constructed. (ii) pYEbac102 was an infectious molecular clone, given that its transfection into rabbit skin cells resulted in production of infectious virus (YK304). (iii) The BAC vector sequence was almost perfectly excisable from the genome of the reconstituted virus YK304 by coinfection of Vero cells with YK304 and a recombinant adenovirus, AxCANCre, expressing Cre recombinase. (iv) As far as was examined, the reconstituted viruses from pYEbac102 could not be phenotypically differentiated from wild-type viruses in vitro and in vivo. Thus, the viruses grew as well in Vero cells as did the wild-type virus and exhibited wild-type virulence in mice on intracerebral inoculation. (v) The infectious molecular clone pYEbac102 is in fact useful for mutagenesis of the HSV-1 genome by bacterial genetics, and a recombinant virus carrying amino acid substitutions in both copies of the alpha0 gene was generated. pYEbac102 will have multiple applications to the rapid generation of genetically engineered HSV-1 recombinants in basic research into HSV-1 and in the development of HSV vectors in human therapy.  相似文献   

15.
Continuous protein production with baculovirus expression vectors in insect-cell bioreactors is characterized by a dramatic drop in heterologous protein production within a few weeks. This is mainly due to the spontaneous deletion of the heterologous gene(s) from the baculovirus genome and/or to the rapid accumulation of defective interfering baculoviruses (DIs). Cell culture experiments with bacmid-derived baculoviruses showed that spontaneous deletions in the foreign bacterial artificial chromosome (BAC) sequences readily occurred. These deletions correlated with a low density of baculovirus homologous (repeat) regions (hrs), which are located dispersed throughout the baculovirus genome and are believed to act as origins of viral DNA replication (oris). To test the hypothesis that deletions are more likely to occur in regions with a low ori density, the properties of bacmid-derived baculoviruses with an additional hr in the unstable BAC sequences were compared to the standard bacmid-derived baculovirus in a continuous cascaded insect-cell bioreactor configuration. All viruses were equipped with a green fluorescent protein (GFP) gene and a gene encoding the classical swine fever virus E2 glycoprotein (CSFV-E2). The insertion of an extra hr in the BAC vector led to improved genetic stability of adjacent sequences, resulting in prolonged protein expression. The maintenance of the BAC sequences appeared to be dependent on the orientation of the inserted hr. The advantages of the utilization of hrs to improve the stability of baculovirus expression vectors for the large-scale protein production in insect-cell bioreactors are discussed.  相似文献   

16.
Molecular cloning and physical mapping of murine cytomegalovirus DNA.   总被引:32,自引:27,他引:5       下载免费PDF全文
Murine cytomegalovirus (MCMV) Smith strain DNA is cleaved by restriction endonuclease HindIII into 16 fragments, ranging in size from 0.64 to 22.25 megadaltons. Of the 16 HindIII fragments, 15 were cloned in plasmid pACYC177 in Escherichia coli HB101 (recA). The recombinant plasmid clones were characterized by cleavage with the enzymes XbaI and EcoRI. In addition, fragments generated by double digestion of cloned fragments with HindIII and XbaI were inserted into the plasmid vector pACYC184. The results obtained after hybridization of 32P-labeled cloned fragments to Southern blots of MCMV DNA cleaved with HindIII, XbaI, EcoRI, BamHI, ApaI, ClaI, EcoRV, or KpnI allowed us to construct complete physical maps of the viral DNA for the restriction endonucleases HindIII, XbaI, and EcoRI. On the basis of the cloning and mapping experiments, it was calculated that the MCMV genome spans about 235 kilobase pairs, corresponding to a molecular weight of 155,000,000. All fragments were found to be present in equimolar concentrations, and no cross-hybridization between any of the fragments was seen. We conclude that the MCMV DNA molecule consists of a long unique sequence without large terminal or internal repeat regions. Thus, the structural organization of the MCMV genome is fundamentally different from that of the human cytomegalovirus or herpes simplex virus genome.  相似文献   

17.
Kaposi's sarcoma-associated herpesvirus (KSHV) is considered the etiologic agent of Kaposi's sarcoma and several lymphoproliferative disorders. Recently, the KSHV genome was cloned into a bacterial artificial chromosome and used to construct a recombinant KSHV carrying a deletion of the viral interferon regulatory factor gene (F. C. Zhou, Y. J. Zhang, J. H. Deng, X. P. Wang, H. Y. Pan, E. Hettler, and S. J. Gao, J. Virol. 76:6185-6196, 2002). The K8.1 glycoprotein is a structural component of the KSHV particle and is thought to facilitate virus entry by binding to heparan sulfate moieties on cell surfaces. To further address the role of K8.1 in virus infectivity, a K8.1-null recombinant virus (BAC36DeltaK8.1) was constructed by deletion of most of the K8.1 open reading frame and insertion of a kanamycin resistance gene cassette within the K8.1 gene. Southern blotting and diagnostic PCR confirmed the presence of the engineered K8.1 gene deletion. Transfection of the wild-type genome (BAC36) and mutant genome (BAC36DeltaK8.1) DNAs into 293 cells in the presence or absence of the complementing plasmid (pCDNAK8.1A), transiently expressing the K8.1A gene, produced infectious virions in the supernatants of transfected cells. These results demonstrated that the K8.1 glycoprotein is not required for KSHV entry into 293 cells.  相似文献   

18.
Zhang Z  Rowe J  Wang W  Sommer M  Arvin A  Moffat J  Zhu H 《Journal of virology》2007,81(17):9024-9033
To efficiently generate varicella-zoster virus (VZV) mutants, we inserted a bacterial artificial chromosome (BAC) vector in the pOka genome. We showed that the recombinant VZV (VZV(BAC)) strain was produced efficiently from the BAC DNA and behaved indistinguishably from wild-type virus. Moreover, VZV's cell-associated nature makes characterizing VZV mutant growth kinetics difficult, especially when attempts are made to monitor viral replication in vivo. To overcome this problem, we then created a VZV strain carrying the luciferase gene (VZV(Luc)). This virus grew like the wild-type virus, and the resulting luciferase activity could be quantified both in vitro and in vivo. Using PCR-based mutagenesis, open reading frames (ORF) 0 to 4 were individually deleted from VZV(Luc) genomes. The deletion mutant viruses appeared after transfection into MeWo cells, except for ORF4, which was essential. Growth curve analysis using MeWo cells and SCID-hu mice indicated that ORF1, ORF2, and ORF3 were dispensable for VZV replication both in vitro and in vivo. Interestingly, the ORF0 deletion virus showed severely retarded growth both in vitro and in vivo. The growth defects of the ORF0 and ORF4 mutants could be fully rescued by introducing wild-type copies of these genes back into their native genome loci. This work has validated and justified the use of the novel luciferase VZV BAC system to efficiently generate recombinant VZV variants and ease subsequent viral growth kinetic analysis both in vitro and in vivo.  相似文献   

19.
水痘-带状疱疹病毒(VZV)属于疱疹病毒科α亚科,其原发感染为水痘,潜伏再度激活则引起带状疱疹。目前对其基因功能和疫苗的减毒机制尚不十分清楚。细菌人工染色(BAC)是一种新的用于大分子DNA克隆的载体系统,它具有容量大、遗传稳定、操作简单等优点。将VZV全基因组克隆至BAC系统构建成VZV的感染性克隆,并利用现代基因修饰技术可极大促进对该病毒的研究。就近年来以BAC为基础VZV感染性克隆技术的建立和应用做一综述。  相似文献   

20.
An Epstein-Barr virus (EBV) genome in Burkitt's lymphoma-derived cell line Akata was cloned into a bacterial artificial chromosome (BAC) vector. The BAC clone, designated AK-BAC, was rapidly and precisely modified by means of efficient homologous recombination in Escherichia coli. This system was used to produce recombinant EBVs with transgenes. An expression cassette of green fluorescent protein (GFP) was inserted into AK-BAC, and the resultant BAC clone, AK-BAC-GFP, was transfected into Akata cells. We found that transfected BAC plasmids efficiently formed episomes in EBV-positive Akata cells. Mixtures of wild-type and AK-BAC-GFP viruses were then produced and used to infect EBV-negative Akata cells. We obtained cell clones that harbored only AK-BAC-GFP but no wild-type episome. These cell clones produced infectious viruses after stimulating virus production, and the recombinant viruses of AK-BAC-GFP efficiently immortalized primary B lymphocytes. We further revised the method so that any kind of cDNA could be rapidly inserted into the unique I-PpoI site that had been artificially introduced into AK-BAC. The AK-BAC system will have a broad range of applications, such as genetic analyses of various viral gene products and development of viral vectors for human gene therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号