首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yeast phosphofructokinase contains 83 +/- 2 cysteinyl residues/enzyme oligomer. On the basis of their reactivity toward 5,5-dithiobis(2-nitrobenzoic acid), the accessible cysteinyl residues of the native enzyme may be classified into three groups. For titrations performed with N-ethylmaleimide, subdivisional classes of reactivity are evidenced. In each case, the 6 to 8 most reactive cysteines are not protected by fructose 6-phosphate from chemical labeling and do not seem involved in subsequent enzyme inactivation. Differential labeling studies as well as direct protection experiments in the presence of fructose 6-phosphate, indicate that 12 -SH groups/enzyme oligomer (i.e. three -SH groups per binding site) are protected by the allosteric substrate from the chemical modification. Specific labeling by the differential method of the cysteinyl residues protected by fructose 6-phosphate and further separation of the two types of subunits constituting yeast phosphofructokinase, show that the substrate binding sites are localized exclusively on subunits of beta type. Thus, alpha subunits are not implicated directly in the catalytic mechanism of yeast phosphofructokinase reaction.  相似文献   

2.
The two cysteinyl residues present in histidine decarboxylase from Lactobacillus 30a differ greatly in reactivity. One (class 1) reacts readily in the native state with dithiobis-(2-nitrobenzoate) with complete loss of enzyme activity; the other (class 2) reacts only after denaturation of the enzyme (Lane, R. S., and Snell, E. E. (1976) Biochemistry 15, 4175-4179). These differences in reactivity permitted use of covalent (disulfide) chromatography to isolate separate peptides that contain these two residues. Sequence analysis showed that the class 1 cysteinyl residue is at position 147 in a hydrophilic portion of the alpha chain (Huynh, Q. K., Recsei, P. A., Vaaler, G. L., and Snell, E. E. (1984) J. Biol. Chem. 259, 2833-2839), while the class 2 cysteinyl residue is present at position 71, adjacent to a hydrophobic portion of the same chain. Cysteinyl peptides identical with or homologous to the class 2 cysteinyl peptide of the Lactobacillus 30a enzyme were isolated from the alpha subunits of histidine decarboxylases from Lactobacillus buchneri and Clostridium perfringens, respectively. The L. buchneri enzyme also contained a peptide homologous to the class 1 cysteinyl peptide from Lactobacillus 30a. However, no corresponding peptide was present in the enzyme from C. perfringens, in which the second cysteinyl residue of the alpha chain occupies position 3, very near the essential pyruvoyl residue. This enzyme, unlike those from Lactobacillus 30a or L. buchneri, also contains one cysteinyl residue in its beta chain. Although Cys 147 is an active site residue in histidine decarboxylase from Lactobacillus 30a, the absence of a corresponding residue in the C. perfringens enzyme confirms previous indications (Recsei, P. A., and Snell, E. E. (1982) J. Biol. Chem. 257, 7196-7202) that this SH group is not essential for decarboxylase action.  相似文献   

3.
Y Worku  J P Luzio  A C Newby 《FEBS letters》1984,167(2):235-240
Inactivation of both cytosolic 5'-nucleotidase and ecto-5'-nucleotidase by diethylpyrocarbonate indicated the presence of an essential histidyl residue which in the cytosolic enzyme was conclusively located at the active site. Inactivation by thiol reagents indicated the presence of an essential cysteinyl residue in both enzymes. The data suggest that both 5'-nucleotidases belong to a group of histidine phosphatases which also includes glucose-6-phosphatase and acid phosphatase. A working hypothesis for the catalytic mechanism of these enzymes is proposed.  相似文献   

4.
Gamma-aminobutyrate transaminase (GABA-T), a key homodimeric enzyme of the GABA shunt, converts the major inhibitory neurotransmitter GABA to succinic semialdehyde. We previously overexpressed, purified and characterized human brain GABA-T. To identify the structural and functional roles of the cysteinyl residue at position 321, we constructed various GABA-T mutants by site-directed mutagenesis. The purified wild type GABA-T enzyme was enzymatically active, whereas the mutant enzymes were inactive. Reaction of 1.5 sulfhydryl groups per wild type dimer with 5,5 cent-dithiobis-2-nitrobenzoic acid (DTNB) produced about 95% loss of activity. No reactive -SH groups were detected in the mutant enzymes. Wild type GABA-T, but not the mutants, existed as an oligomeric species of Mr = 100,000 that was dissociable by 2-mercaptoethanol. These results suggest that the Cys321 residue is essential for the catalytic function of GABA-T, and that it is involved in the formation of a disulfide link between two monomers of human brain GABA-T.  相似文献   

5.
Ribulose-l,5-bisphosphate carboxylase (E.C. 4.1.1.39) isolated from Chromatium strain D contains 64 free cysteinyl -SH groups per mol (Mr 5.11 × 105) as determined using three different titrants: p-[14C]chloromercuribenzoate, the Ellman reagent, and [14C]iodoacetamide.Distribution of -SH groups in the two constituent subunits (A and B) isolated from spinach and Chromatium ribulose-1,5-bisphosphate carboxylases was determined to be for spinach, 9 in A and 3 in B; and for Chromatium, 7 in A and 1 in B.The relationship between the numbers of -SH groups blocked vs residual activities of both the ribulose-1,5-bisphosphate carboxylase and oxygenase reactions was examined by titration with p-chloromercuribenzoate. In both spinach and Chromatium enzymes, antisigmoidal curves were obtained for the degree of the enzyme activity loss in relation to the numbers of -SH groups masked. However, at alkaline pH the Chromatium enzyme shows a sharp decline in both carboxylase and oxygenase activities, apparently due to the alkali dissociation of the enzyme molecule accompanied by its structural deformation. The functional role of -SH groups in the ribulose-1,5-bisphosphate carboxylase molecule is discussed in relation to two constituent enzyme reactions, and it is concluded that in both enzyme sources the active sites are probably the same for the two reactions.  相似文献   

6.
Holotryptophanase inactivated by oxidation of cysteinyl residues showed a different absorption spectrum from the native enzyme. At pH 8.0, the native enzyme preferentially existed as a 337-nm species (active form), whereas in the inactive enzyme a 420-nm species (inactive form) was dominant. During the reactivation of the enzyme by reduction with dithiothreitol, an increase at 337 nm and a decrease at 420 nm were observed with concomitant increase in enzymatic activity, which was accompanied by the appearance of two cysteinyl residues per monomer. Specific S-cyanylation of cysteinyl residues by nitrothiocyanobenzoic-acid-inactivated apotryptophanase with the modification of one cysteinyl residue per monomer, whereas holotryptophanase was highly resistant to inactivation with nitrothiocyanobenzoic acid. The essential role of the active-site-bound pyridoxal 5'-phosphate in protection against inactivation was confirmed by the agreement of the K1/2 (protection) of 5.0 microM for pyridoxal 5'-phosphate with Km of 2.0 microM in enzyme catalysis. The inactivation by nitrothiocyanobenzoic acid caused a similar shift in the equilibrium between the 337-nm species and 420-nm species, i.e. decrease of the 337-nm species and increase of the 420-nm species. From the pH dependence of the equilibrium between these two species, pKa of 7.9 and 7.4 was obtained for the inactive and the dithiothreitol-activated enzyme, respectively, indicating that cysteinyl residue(s) participated in lowering the pKa of the interconversion between the 337-nm species (active form) and 420-nm species (inactive form). The possible role of cysteinyl residues in the function of tryptophanase is discussed.  相似文献   

7.
本文应用对-SH基特异性结合的自旋标记物对Cu_2Zn_2-SOD进行自旋标记研究,进一步观察了电离辐射对-SH基部位的影响,实验结果:(1)自旋标记后的Cu_2Zn_2-SOD表现出典型的弱固定化的ESR波谱信号特征。标记对Cu_2Zn_2-SOD的UV谱无明显影响。这表明该游离-SH基是位于酶蛋白分子的相对表层而不是包埋在疏水内部。(2)标记保温后立即取样及保温后17小时取样测酶活力,发现与未标记酶的活力相同。这表明该-SH基与酶的催化活性无直接关系。(3)在10—100Krad γ-射线照射下,酶活性及ESR信号幅度均随照射剂量增加而下降,两者之间有一定的相关性。  相似文献   

8.
The active site lysyl residue (K239) of the thermostable aspartate aminotransferase [EC 2.6.1.1] was replaced by cysteinyl residue by means of site-directed mutagenesis. The K239C mutant enzyme obtained was catalytically inactive. The reaction of the cysteinyl residue of the K239C mutant enzyme with ethylenimine led to the formation of S-(beta-aminoethylcysteinyl (SAEC) residue. The K239SAEC mutant enzyme obtained showed about 25% of the activity of wild-type enzyme, and absorbed at 375 nm, which suggested the internal Schiff base formation.  相似文献   

9.
Enzyme I is the first protein of the phospho transfer sequence in the bacterial phosphoenolpyruvate:glycose phosphotransferase system. This protein exhibits a temperature-dependent monomer/dimer equilibrium. The nucleotide sequence of Escherichia coli ptsI indicates four -SH residues per subunit (Saffen, D. W., Presper, K. A., Doering, T. L., and Roseman, S. (1987) J. Biol. Chem. 262, 16241-16253). In the present experiments, the sulfhydryl groups of the E. coli enzyme were studied with various -SH-specific reagents. Titration of Enzyme I with 5,5'-dithiobis-2-nitrobenzoic acid also revealed four reacting -SH groups. The kinetics of the 5,5'-dithiobis-2-nitrobenzoic acid reaction with Enzyme I exhibit biphasic character, with pseudo-first order rate constants of 2.3 x 10(-2)/s and 2.3 x 10(-3)/s at pH 7.5, at room temperature. Fractional amplitudes associated with the rate constants were 25 +/- 5% for the fast and 75 +/- 5% for the slow rate. The "slow" rate was influenced by ligands that react with Enzyme I (the protein HPr, Mg2+, Mg2+ plus P-enolpyruvate), and also by temperature (at the temperature range where the monomer/dimer association occurs). The fractional ratio of the two rates remained at 1:3 under these conditions. Thus, under all conditions tested, two classes of -SH groups were detected, one reacting more rapidly than the other three -SH groups. Modification of the "fast" -SH group results in an active enzyme capable of forming dimer, whereas modification of the slow -SH groups results in inactive and monomeric Enzyme I. The enzyme was labeled with pyrene maleimide under conditions where only the more reactive sulfhydryl group was derivatized. Hydrolysis by trypsin followed by reverse-phase high performance liquid chromatography analysis of the peptide mixture resulted in only one fluorescent peak. This peak was not observed when the more reactive sulfhydryl residue was protected prior to pyrene maleimide labeling. Amino acid sequencing of the fluorescent peak indicated that the more reactive residue is the C-terminal amino acid residue, cysteine 575. The results provide a means for selectively labeling Enzyme I with a fluorophore at a single site while retaining full catalytic activity.  相似文献   

10.
The essential sulphydryl group of bovine liver rhodanese (thiosulphate: cyanide sulphurtrasferase, E.C. 2.8.1.1.) is modified by sulphite produced during the enzymatic reaction or added to the fully active enzyme. The enzyme treated with labelled reagent incorporates 1 equivalent of SO23- and loses one -SH group with the formation of a S-sulphonate group at the active site. Mercaptoethanol is effective in both restoring enzyme activity and removing bound sulphite from protein. The inactivation process is dependent on the presence of oxygen and is antagonized by chelation of metal ions, that catalyze sulphite autoxidation, or by scavenging free radicals with mannitol or benzoate. Since the presence of superoxide dismutase and/or catalase protects the enzyme only to a small extent, the inactivation process should be attributed to sulphite radicals rather than intermediates of oxygen reduction.  相似文献   

11.
Chemical modification of the proteasome with N-ethylmaleimide (NEM) was performed for the purpose of identifying amino acid residues that play a role in the enzyme's proteolytic function. Modification of the proteasome with NEM specifically and irreversibly suppressed one of the three peptidase activities of the enzyme, viz., the "trypsin-like" activity. Leupeptin, a reversible competitive inhibitor of this activity, protected the activity from NEM inactivation, suggesting that NEM modifies a residue in the leupeptin binding site. Comparisons of enzyme samples labeled with [14C]NEM either in the presence or in the absence of leupeptin allowed the identification of a proteasome subunit containing an NEM-modified, leupeptin-protected cysteinyl residue. The leupeptin protection experiments suggest that residues of this subunit contribute to the active site responsible for the proteasome's trypsin-like activity. This subunit was purified by reverse-phase high-performance liquid chromatography. Peptide mapping and N-terminal amino acid sequencing were employed to acquire information about the primary structure of the subunit, including the sequence surrounding the leupeptin-protected cysteinyl residue. The sequencing data suggest that this proteasome subunit is evolutionarily related to other proteasome subunits that have been sequenced, which show no homology to other known proteases. The assignment of a catalytic function to a member of the proteasome family supports the hypothesis that proteasome subunits represent a structurally and possibly mechanistically novel group of proteases.  相似文献   

12.
When oxidized to cysteic acid by performic acid or converted to carboxymethylcysteine by alkylation of the reduced enzyme with iodoacetate, a total of six half-cystine residues/subunit are found in L-threonine dehydrogenase (L-threonine: NAD+ oxidoreductase, EC 1.1.1.103; L-threonine + NAD(+)----2-amino-3-oxobutyrate + NADH) from Escherichia coli K-12. Of this total, two exist in disulfide linkage, whereas four are titratable under denaturing conditions by dithiodipyridine, 5,5'-dithiobis(2-nitrobenzoic acid), or p-mercuribenzoate. The kinetics of enzyme inactivation and of modification by the latter two reagents indicate that threonine dehydrogenase has no free thiols that selectively react with bulky compounds. While incubation of the enzyme with a large excess of iodoacetamide causes less than 10% loss of activity, the native dehydrogenase is uniquely reactive with and completely inactivated by iodoacetate. The rate of carboxymethylation by iodoacetate of one -SH group/subunit is identical with the rate of inactivation and the carboxymethylated enzyme is no longer able to bind Mn2+. NADH (0.5 mM) provides 40% protection against this inactivation; 60 to 70% protection is seen in the presence of saturating levels of NADH plus L-threonine. Such results coupled with an analysis of the kinetics of inactivation caused by iodoacetate are interpreted as indicating the inhibitor first forms a reversible complex with a positively charged moiety in or near the microenvironment of a reactive -SH group in the enzyme before irreversible alkylation occurs. Specific alkylation of one -SH group/enzyme subunit apparently causes protein conformational changes that entail a loss of catalytic activity and the ability to bind Mn2+.  相似文献   

13.
Exonuclease from Crotalus adamanteus venom has only threonine as N-terminimal amono acid residue. It was examined for its amino acid composition, -SH and S-S groups. It has no free -SH groups and seven S-S bonds. The analysis of the carbohydrate residues in the enzyme proves that it is a glycoprotein. It contains neutral sugars (9.2%), amino sugars (1.9%) and ten sialic acid residues per molecule. The venom exonuclease is a metalloenzyme. This is proven by the existence of Mg2+, Zn2+ and Ca2+ and their specific role in the catalytic reactions. The enzyme contains also triacylglycerols (1.54%) and cholesterol esters (1.43%). The influence of the non-protein moieties of the exonuclease on its catalytic ability has been discussed.  相似文献   

14.
Previously we have established that a highly reactive cysteinyl group on the alpha subunit is at the aldehyde site of the (alpha beta) dimeric Vibrio harveyi luciferase. Three isomeric bifunctional reagents have been synthesized and used to further delineate the luciferase aldehyde site. These probes differ in their relative positions of and distances between the two functional groups active in chemical and photochemical labelings, respectively. Each of the probes can effectively and reversibly inactivate luciferase by forming a disulfide linkage primarily to the reactive cysteinyl residue. Upon subsequent photolysis, a diazoacetate arm in each probe was activated for photochemical labeling of amino acid residues within reach. After reductive regeneration of the reactive cysteinyl residue, 0.35-0.40 probe per dimeric luciferase was found to have been photochemically incorporated, correlating well with the degree of irreversible enzyme inactivation. Low but significant amounts of the three isomeric probes initially attached to the alpha reactive cysteine through a disulfide have been found to photochemically tag certain residues on beta. The latter residues are estimated to be no more than 8-11 A away from the alpha reactive cysteine. Thus the reactive cysteinyl residue, and hence the aldehyde site, must be at or near the alpha beta subunit interface. Furthermore, the structural integrity of the microenvironment surrounding this reactive cysteinyl residue is crucial to luciferase activity. An HPLC method for the isolation of luciferase alpha and beta subunits has also been developed.  相似文献   

15.
It has been appreciated for many years that the luciferase from the luminous marine bacterium Vibrio harveyi has a highly reactive cysteinyl residue which is protected from alkylation by binding of flavin. Alkylation of the reactive thiol, which resides in a hydrophobic pocket, leads to inactivation of the enzyme. To determine conclusively whether the reactive thiol is required for the catalytic mechanism, we have constructed a mutant by oligonucleotide directed site-specific mutagenesis in which the reactive cysteinyl residue, which resides at position 106 of the α subunit, has been replaced with a seryl residue. The resulting α106Ser luciferase retains full activity in the bioluminescence reaction, although the mutant enzyme has a ca 100-fold increase in the FMNH2 dissociation constant. The α106Ser luciferase is still inactivated by N-ethylmaleimide, albeit at about 1/10 the rate of the wild-type (α106Cys) enzyme, demonstrating the existence of a second, less reactive, cysteinyl residue that was obscured in the wild-type enzyme by the highly reactive cysteinyl residue at position α106. An α106Ala variant luciferase was also active, but the α106Val mutant enzyme was about 50-fold less active than the wild type. All three variants (Ser, Ala and Val) appeared to have somewhat reduced affinities for the aldehyde substrate, the valine mutant being the most affected. It is interesting to note that the α106 mutant luciferases are much less subject to aldehyde substrate inhibition than is the wild-type V. harveyi luciferase, suggesting that the molecular mechanism of aldehyde substrate inhibition involves the Cys at α106.  相似文献   

16.
Enterobacter aerogenes glycerol dehydrogenase (GlDH EC 1.1.1.6), a tetrameric NAD + specific enzyme catalysing the interconversion of glycerol and dihydroxyacetone, was inactivated on reaction with pyridoxal 5′-phosphate (PLP) and o -phthalaldehyde (OPA). Fluorescence spectra of PLP-modified, sodium borohydride-reduced GlDH indicated the specific modification of ? -amino groups of lysine residues. The extent of inhibition was concentration and time dependent. NAD + and NADH provided complete protection against enzyme inactivation by PLP, indicating the reactive lysine is at or near the coenzyme binding site. Modification of GlDH by the bifunctional reagent OPA, which reacts specifically with proximal ? -NH 2 group of lysines and -SH group of cysteines to form thioisoindole derivatives, inactivated the enzyme. Molecular weight determinations of the modified enzyme indicated the formation of intramolecular thioisoindole formation. Glycerol partially protected the enzyme against OPA inactivation, whereas NAD + was ineffective. These results show that the lysine involved in the OPA reaction is different from the PLP-reactive lysine, which is at or near the coenzyme binding site. DTNB titration showed the presence of only a single cysteine residue per monomer of GlDH. This could be participating with a proximal lysine residue to form a thioisoindole derivative observed as a result of OPA modification.  相似文献   

17.
Site-directed spin-labeling of proteins whereby the spin-label methyl 3-(2,2,5,5-tetramethyl-1-oxypyrrolinyl)methanethiolsulfonate (SLMTS) is reacted with the -SH groups of cysteinyl residues incorporated into a protein by mutagenesis has been successfully applied to investigate secondary structure and conformational transitions of proteins. In these studies, it is expected that the spin-label moiety adopts different conformations dependent on its local environment. To determine the conformation of SLMTS in solution reacted with L-cysteine (SLMTCys) and bound in the active site of the Glu240Cys mutant of TEM-1 beta-lactamase, we have synthesized SLMTS both of natural abundance isotope composition and in site-specifically deuterated forms for electron nuclear double resonance (ENDOR) studies. ENDOR-determined electron-proton distances from the unpaired electron of the nitroxyl group of the spin-label to the methylene and methyl protons of SLMTS showed three conformations of the oxypyrrolinyl ring with respect to rotation around the S-S bond dependent on the solvent dielectric constant. For SLMTCys, two conformations of the molecule were compatible with the ENDOR-determined electron-nucleus distances to the side-chain methylene protons and to H(alpha) and H(beta1,2) of cysteine. To determine SLMTS conformation reacted with the Glu240Cys mutant of TEM-1 beta-lactamase, enzyme was overexpressed in both ordinary and perdeuterated minimal medium. Resonance features of H(alpha) and H(beta1,2) of the Cys240 residue of the mutant and of the side-chain methylene protons within the spin-label moiety yielded electron-proton distances that sterically accommodated the two conformations of free SLMTCys in solution.  相似文献   

18.
The FAD-containing NADH oxidase from Streptococcus faecalis 10C1, which catalyzes the four-electron reduction of O2----2H2O, has been purified by an improved procedure for analyses of its structural and redox properties. The enzyme is apparently a dimer of two identical subunits, each containing 1 mol of FAD. Dithionite reduction of the enzyme proceeds in two distinct phases corresponding to approximately 0.5 and 1.1 eq/FAD, respectively. Thiol assays of the NADH oxidase, reduced anaerobically with 1 eq of NADH/FAD prior to denaturation, are consistent with the presence of a single redox-active cysteinyl residue/subunit. Analysis of the cysteinyl peptides of the oxidase, identified in tryptic digests of the enzyme labeled metabolically with [35S]cysteine, reveals a sequence which is closely related to the redox-active cysteinyl peptide sequence recently determined for the streptococcal flavoprotein NADH peroxidase. A second cysteinyl peptide sequence, when aligned with residues 3-17 of the peroxidase NH2-terminal sequence, reveals identity in 7 of 15 positions and satisfies several of the criteria described for ADP-binding structures. Additional probes of the structural and redox properties of the NADH oxidase, including visible circular dichroism spectroscopy and sensitivity to inactivation by hydrogen peroxide, provide further evidence for a fundamental structural connection between flavin-dependent NADH oxidase and peroxidase functions.  相似文献   

19.
T-kinin (Ile-Ser-Bradykinin) has been isolated only from the plasma of the rat and it is unclear whether the peptide, or its biosynthetic precursor, T-kininogen, circulates in the human. An NH2-terminally directed antiserum to T-kinin was raised in rabbits using an immunogen prepared by coupling the free -SH group of T-kinin extended from its COOH-terminus by a cysteinyl residue to an -NH2 group on human serum albumin. A radioimmunoassay was developed using this antiserum and 125I-labelled [Tyr10]T-kinin as tracer that was sensitive (least-detectable concentration 3 fmol/tube) and relatively specific for T-kinin (cross-reactivity with bradykinin and kallidin less than 1%). Treatment of rat plasma with an excess of trypsin in the presence of a kininase inhibitor generated T-kinin immunoreactivity equivalent to 455 +/- 71 pmol/ml (mean +/- S.E.M.; n = 9) and this immunoreactivity was eluted from a reversed-phase HPLC column as a single peak with the same retention time as synthetic T-kinin. In contrast, treatment of plasma from healthy human subjects (n = 8) and from patients (n = 8) with inflammation due to acute or chronic gastrointestinal disease under the same conditions did not generate any detectable T-kinin immunoreactivity. It is concluded, therefore, that T-kininogen, the biosynthetic precursor of T-kinin in the rat, is either absent from the plasma of human subjects or is present in a concentration less than 30 fmol/ml. Similarly, T-kininogen is probably not an acute phase reactant in humans.  相似文献   

20.
Captopril (CpSH), an angiotensin converting enzyme (ACE) inhibitor, is reported to provide protection against free-radical mediated damage. The purpose of this study was to investigate, by means of pulse radiolysis technique, the behaviour of CpSH towards radiation-induced radicals in the absence and in the presence of copper(II) ions, which can play a relevant role in the metal catalysed generation of reactive oxygen species. The results indicate that the -SH group is crucial in determining the radical scavenging action of CpSH and the nature of the resulting CpSH transient products in the absence or in the presence of oxygen.

In the presence of Cu(II), the -SH group is still involved in the biological action of the molecule participating both in the one-electron reduction of Cu(II) with formation of CpSSCp, and in Cu(I) chelation. This conclusion is supported by the Raman spectroscopic data which allow to identify the CpSH sites involved in the copper complex at different pH.

These results suggest that CpSH may potentially inhibit oxidative damage both through free radical scavenging and metal chelation. Considering the low CpSH concentration in vivo, the metal chelation mechanism, more than the direct radical scavenging, could play the major role in moderating the toxicological effects of free radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号