首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yeast enolase is rapidly inactivated by butanedione in borate buffer, complete inactivation correlating with the modification of 1. 8 arginyl residues per subunit. Protection against inactivation is provided by either an equilibrium mixture of substrates or inorganic phosphate, a competitive inhibitor of the enzyme. Complete protection by substrates correlates with the shielding of 1. 3 arginyl residues per subunit, while phosphate protects 1. 0 arginyl residue per subunit from modification.  相似文献   

2.
Thymidylate synthetase from amethopterin-resistant Lactobacilluscasei is rapidly and completely inactivated by 2,3-butanedione in borate buffer, a reagent that is highly selective for the modification of arginyl residues. The reversible inactivation follows pseudo-first order kinetics and is enhanced by borate buffer. dUMP and dTMP afford significant protection against inactivation while (±)-5,10-methylenetetrahydrofolate and 7,8-dihydrofolate provide little protection. Unlike native enzyme, butanedione-modified thymidylate synthetase is incapable of interacting with 5-fluoro-2′-deoxyuridylate and 5,10-(+)-methylenetetrahydrofolate to form stable ternary complex. The results suggest that arginyl residues participate in the functional binding of dUMP.  相似文献   

3.
4.
F Marcus 《Biochemistry》1976,15(16):3505-3509
Modification of pig kidney fructose-1,6-bisphosphatase with 2,3-butanedione in borate buffer (pH 7.8) leads to the loss of the activation of the enzyme by monovalent cations, as well as to the loss of allosteric adenosine 5'-monophosphate (AMP) inhibition. In agreement with the results obtained for the butanedione modification of arginyl residues in other enzymes, the effects of modification can be reversed upon removal of excess butanedione and borate. Significant protection to the loss of K+ activation was afforded by the presence of the substrate fructose 1,6-bisphosphate, whereas AMP preferentially protected against the loss of AMP inhibition. The combination of both fructose 1,6-bisphosphate and AMP fully protected against the changes in enzyme properties on butanedione treatment. Under the latter conditions, one arginyl residue per mole of enzyme subunit was modified, whereas three arginyl residues were modified by butanedione under conditions leading to the loss of both potassium activation and AMP inhibition. Thus, the modification of two arginyl residues per subunit would appear to be responsible for the change in enzyme properties. The present results, as well as those of a previous report on the subject (Marcus, F. (1975), Biochemistry 14, 3916-3921) support the conclusion that one arginyl residue per subunit is essential for monovalent cation activation, and another arginyl residue is essential for AMP inhibition. A likely role of the latter residue could be its involvement in the binding of the phosphate group of AMP.  相似文献   

5.
Yeast hexokinase PII is rapidly inactivated (assayed at pH 8.0) by either butanedione in borate buffer or phenylglyoxal, reagents which are highly selective for the modification of arginyl residues. MgATP alone offers no protection against inactivation, consistent with low affinity of hexokinase for this nucleotide in the absence of sugar. Glucose provides slight protection against inactivation, while the combined presence of glucose and MgATP gives significant protection, suggesting that modified arginyl residues may lie at the active site, possibly serving to bind the anionic polyphosphate of the nucleotide in the ternary enzyme:sugar:nucleotide complex. Extrapolation to complete inactivation suggests that inactivation by butanedione correlates with the modification of 4.2 arginyl residues per subunit, and complete protection against inactivation by the combined presence of glucose and MgATP correlates with the protection of 2 to 3 arginyl residues per subunit. When the modified enzyme is assayed at pH 6.5, significant activity remains. However, modification by butanedione in borate buffer abolishes the burst-type slow transient process, observed when the enzyme is assayed at pH 6.5, to such an extent that after extensive modification the kinetic assays are characterized by a lag-type slow transient process. But even after extensive modification, hexokinase PII still demonstrates negative cooperativity with MgATP and is still strongly activated by citrate when assayed at pH 6.5.  相似文献   

6.
Essential arginyl residues in Escherichia coli alkaline phosphatase   总被引:8,自引:0,他引:8  
F J Daemen  J F Riordan 《Biochemistry》1974,13(14):2865-2871
  相似文献   

7.
8.
Yeast enolase (EC 4.2.1.11) is rapidly inactivated at pH 6.1 by three different water-soluble carbodiimides — 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride, 1-cyclohexyl-3-(2-morpholinoethyl)-carbodiimide metho-p-toluenesulfonate, and 1-ethyl-3-(4-azonia-4,4-dimethylpentyl)-carbodiimide iodide. Inactivation is most likely due to the modification of essential carboxyl residues at the enzyme active site.  相似文献   

9.
The H+-translocating adenosine-5'-triphosphatase (ATPase) purified from the yeast Schizosaccharomyces pombe is inactivated upon incubation with the arginine modifier 2,3-butanedione. The inactivation of the enzyme is maximal at pH values above 8.5. The modified enzyme is reactivated when incubated in the absence of borate after removal of 2,3-butanedione. The extent of inactivation is half maximal at 10 mM 2,3-butanedione for an incubation of 30 min at 30 degrees C at pH 7.0. Under the same conditions, the time-dependence of inactivation is biphasic in a semi-logarithmic plot with half-lives of 10.9 min and 65.9 min. Incubation with 2,3-butanedione lowering markedly the maximal rate of ATPase activity does not modify the Km for MgATP. These data suggest that two classes of arginyl residues play essential role in the plasma membrane ATPase activity. Magnesium adenosine 5'-triphosphate (MgATP) and magnesium adenosine 5'-diphosphate (MgADP), the specific substrate and product, protect partially against enzyme inactivation by 2,3-butanedione. Free ATP or MgGTP which are not enzyme substrates do not protect. Free magnesium, another effector of enzyme activity, exhibits partial protection at magnesium concentrations up to 0.5 mM, while increased inactivation is observed at higher Mg2+ concentrations. These protections indicate either the existence of at least one reactive arginyl in the substrate binding site or a general change of enzyme conformation induced by MgATP, MgADP or free magnesium.  相似文献   

10.
Reaction of yeast phosphoglycerate kinase with either butanedione or cyclohexanedione can result in modification of up to all 13 arginyl residues with total loss of activity; however, extrapolation to zero activity for partially modified preparations indicates that up to 7 arginyls are essential. Whereas 20 mm 3-phosphoglycerate affords partial protection of activity toward both reagents, 20 mm MgATP affords complete protection of activity and protects 2 arginyls against modification by butanedione and 1 arginyl against modification by cyclohexanedione. With butanedione the modification could be reversed with total recovery of activity, suggesting that only arginyl groups were modified, which is consistent with the amino acid analysis of the modified protein. Only at high cyclohexanedione concentrations or long reaction times was a yellow product obtained that showed loss of lysyl residues. Circular dichroism spectra show that even when all the arginyls are modified by butanedione or up to 10 modified by cyclohexanedione there is no change observed in the far or near ultraviolet, indicating that there is no detectable conformational change concomitant with modification, which is confirmed by hydrodynamic studies. It is concluded that at least one, possibly two, arginyls of yeast phosphoglycerate kinase are essential for its action on ATP.  相似文献   

11.
12.
Yeast 3-phosphoglycerate kinase (ATP:3-phospho-D-glycerate 1-phospho-transferase, EC 2.7.2.3) is inactivated by phenylglyoxal. Loss of activity correlates with the modification of two arginyl residues, both of which are protected by all of the substrates. The modification is not accompanied by any significant conformational change as determined by optical rotatory dispersion. Ultraviolet difference spectrophotometry indicates that the inactivated enzyme retains its capacity for binding the nucleotide substrates whereas the spectral perturbation characteristic of 3-phosphoglycerate binding is abolished in the modified enzyme. The data suggest that at least one of the two essential arginyl residues is located at or near the 3-phosphoglycerate binding site. A likely role of this residue could be its interaction with the negatively charged phosphate or carboxylate groups of 3-phosphoglycerate.  相似文献   

13.
1. A new and efficient method for preparation of pure phosphoglyceromutase from baker's yeast (Saccharomyces cerevisiae) is described. Proteolytic alterations of the enzyme during extraction can be minimized by grinding the dried yeast with aluminium oxide at low temperature. 2. Yeast phosphoglyceromutase contains four highly similar, probably idential subunits of molecular weight 28000, a conclusion based on the following observations. Polyacrylamide gel electrophoresis containing dodecylsulphate or urea gives a single band, indicating that the enzyme is composed of four subunits similar in their molecular weight and net charge. Cyanogen bromide cleavage and tryptic digestion of the enzyme yield the number of peptides expected for identical subunites from the amino acid composition analysis. 3. The purified phosphoglyceromutase preparation has bisphosphoglyceromutase activity synthesizing 2,3-bisphosphoglycerate from 1,3-bisphosphoglycerate and 3-phosphoglycerate. It has been reported that yeast phosphoglyceromutase catalyzes the hydrolysis of 2,3-bisphosphoglycerate at the same active site which catalyzes the phosphoglyceromutase reaction [Sasaki, R. et al (1971) Biochim. Biophys, Acta, 227, 584-594, 595-607]. Immunological studies and chemical modification experiments indicate that bisphosphoglyceromutase activity also is due to the phosphoglyceromutase protein and involves amino groups which have been shown to be essential for the other two activities.  相似文献   

14.
The inactivation of yeast hexokinase A (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) by phenylglyoxal obeys pseudo first-order kinetics. Formation of a reversible enzyme-reagent complex prior to modification is suggested by the observed saturation kinetics. Loss of activity correlates with the incorporation of 1 mol of [14C]phenylglyoxal per mol 50 000 dalton subunit. No significant conformational change occurs concomitantly. Inactivation is attributable to modification of an arginyl residue. The pattern of protection by substrates and analogs favors an interaction of this essential residue with the terminal phosphoryl group of ATP or glucose 6-phosphate.  相似文献   

15.
J F Riordan 《Biochemistry》1973,12(20):3915-3923
  相似文献   

16.
The inactivation of yeast hexokinase A (ATP:d-hexose 6-phosphotransferase, EC 2.7.1.1) by phenylglyoxal obeys pseudo first-order kinetics. Formation of a reversible enzyme-reagent complex prior to modification is suggested by the observed saturation kinetics. Loss of activity correlates with the incorporation of 1 mol of [14C]phenylglyoxal per mol 50 000 dalton subunit. No significant conformational occurs concomitantly. Inactivation is attributable to modification of an arginyl residue. The pattern of protection by substrates and analogs favors an interaction of this essential residue with the terminal phosphoryl group of ATP or glucose 6-phosphate.  相似文献   

17.
Phosphoglycerate mutase is inactivated by butanedione in borate buffer. Inactivation by 0.13 mM reagent correlates with the modification of one arginyl residue per subunit, and is prevented by either 2, 3-diphosphoglycerate or 3-phosphoglycerate. With 0.50 mM butanedione, inactivation is accompanied by the modification of three arginyl residues per subunit, two of which are protected by the combined presence of cofactor and substrate.  相似文献   

18.
Selective chemical modification of arginyl residues   总被引:2,自引:0,他引:2  
T P King 《Biochemistry》1966,5(11):3454-3459
  相似文献   

19.
Rabbit muscle pyruvate kinase is inactivated by 2,3-butanedione in borate buffer. The inactivation follows pseudo-first-order kinetics with a calculated second-order rate constant of 4.6 m?1 min?1. The modification can be reversed with almost total recovery of activity by elimination of the butanedione and borate buffer, suggesting that only arginyl groups are modified; this result agrees with the loss of arginine detected by amino acid analysis of the modified enzyme. Using the kinetic data, it was estimated that the reaction of a single butanedione molecule per subunit of the enzyme is enough to completely inactivate the protein. The inactivation is partially prevented by phosphoenolpyruvate in the presence of K+ and Mg2+, but not by the competitive inhibitors lactate and bicarbonate. These findings point to an essential arginyl residue being located near the phosphate binding site of phosphoenolpyruvate.  相似文献   

20.
The inactivation of cytoplasmic malate dehydrogenase (L-malate: NAD+ oxidoreductase, EC 1.1.1.37) from porcine heart and the specific modification of arginyl residues have been found to occur when the enzyme is inhibited with the reagent butanedione in sodium borate buffer. The inactivation of the enzyme was found to follow pseudo-first order kinetics. This loss of enzymatic activity was concomitant with the modification of 4 arginyl residues per molecule of enzyme. All 4 residues could be made inaccessible to modification when a malate dehydrogenase-NADH-hydroxymalonate ternary complex was formed. Only 2 of the residues were protected by NADH alone and appear to be essential. Studies of the butanedione inactivation in sodium phosphate buffer and of reactivation of enzymatic activity, upon the removal of excess butanedione and borate, support the role of borate ion stabilization in the inactivation mechanism previously reported by Riordan (Riordan, J.F. (1970) Fed. Proc. 29, Abstr. 462; Riordan, J.F. (1973) Biochemistry 12, 3915-3923). Protection from inactivation was also provided by the competitive inhibitor AMP, while nicotinamide exhibited no effect. Such results suggest that the AMP moiety of the NADH molecule is of major importance in the ability of NADH to protect the enzyme. When fluorescence titrations were used to monitor the ability of cytoplasmic malate dehydrogenase to form a binary complex with NADH and to form a ternary complex with NADH and hydroxymalonate, only the formation of ternary complex seemed to be effected by arginine modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号