首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Disruption or absence of hepatocyte keratins 8 and 18 is associated with chronic hepatitis, marked hepatocyte fragility, and a significant predisposition to stress-induced liver injury. In contrast, pancreatic keratin disruption in transgenic mice that express keratin 18 Arg89 --> Cys (K18C) is not associated with an obvious pancreatic pathology. We compared the effects of keratin filament disruption on pancreatic acini or acinar cell viability, and on cholecystokinin (CCK)-stimulated secretion, in transgenic mice that overexpress wild-type keratin 18 and harbor normal extended keratin filaments (TG2) and K18C mice. We also compared the response of these mice to pancreatitis induced by a choline-deficient ethionine-supplemented diet or by caerulein. Despite extensive cytoplasmic keratin filament disruption, the apicolateral keratin filament bundles appear intact in the acinar pancreas of K18C mice, as determined ultrastructurally and by light microscopy. No significant pancreatitis-associated histologic, serologic, or F-actin/keratin apicolateral redistribution differences were noted between TG2 and K18C mice. Acinar cell viability and yield after collagenase digestion were lower in K18C than in TG2 mice, but the yields of intact acini and their (125)I-CCK uptake and responses to CCK-stimulated secretion were similar. Our results indicate that keratin filament reorganization is a normal physiologic response to pancreatic cell injury, but an intact keratin cytoplasmic filament network is not as essential in protection from cell injury as in the liver. These findings raise the possibility that the abundant apicolateral acinar keratin filaments, which are not as evident in hepatocytes, may play the cytoprotective role that is seen in liver and other tissues. Alternatively, identical keratins may function differently in different tissues.  相似文献   

2.
《The Journal of cell biology》1995,131(5):1303-1314
The two major intermediate filament proteins in glandular epithelia are keratin polypeptides 8 and 18 (K8/18). To evaluate the function and potential disease association of K18, we examined the effects of mutating a highly conserved arginine (arg89) of K18. Expression of K18 arg89-->his/cys and its normal K8 partner in cultured cells resulted in punctate staining as compared with the typical filaments obtained after expression of wild-type K8/18. Generation of transgenic mice expressing human K18 arg89-->cys resulted in marked disruption of liver and pancreas keratin filament networks. The most prominent histologic abnormalities were liver inflammation and necrosis that appeared at a young age in association with hepatocyte fragility and serum transaminase elevation. These effects were caused by the mutation since transgenic mice expressing wild-type human K18 showed a normal phenotype. A relative increase in the phosphorylation and glycosylation of detergent solubilized K8/18 was also noted in vitro and in transgenic animals that express mutant K18. Our results indicate that the highly conserved arg plays an important role in glandular keratin organization and tissue fragility as already described for epidermal keratins. Phosphorylation and glycosylation alterations in the arg mutant keratins may account for some of the potential changes in the cellular function of these proteins. Mice expressing mutant K18 provide a novel animal model for human chronic hepatitis, and for studying the tissue specific function(s) of K8/18.  相似文献   

3.
Simple epithelia express keratins 8 (K8) and 18 (K18) as their major intermediate filament (IF) proteins. One important physiologic function of K8/18 is to protect hepatocytes from drug-induced liver injury. Although the mechanism of this protection is unknown, marked K8/18 hyperphosphorylation occurs in association with a variety of cell stresses and during mitosis. This increase in keratin phosphorylation involves multiple sites including human K18 serine-(ser)52, which is a major K18 phosphorylation site. We studied the significance of keratin hyperphosphorylation and focused on K18 ser52 by generating transgenic mice that overexpress a human genomic K18 ser52→ ala mutant (S52A) and compared them with mice that overexpress, at similar levels, wild-type (WT) human K18. Abrogation of K18 ser52 phosphorylation did not affect filament organization after partial hepatectomy nor the ability of mouse livers to regenerate. However, exposure of S52A-expressing mice to the hepatotoxins, griseofulvin or microcystin, which are associated with K18 ser52 and other keratin phosphorylation changes, resulted in more dramatic hepatotoxicity as compared with WT K18-expressing mice. Our results demonstrate that K18 ser52 phosphorylation plays a physiologic role in protecting hepatocytes from stress-induced liver injury. Since hepatotoxins are associated with increased keratin phosphorylation at multiple sites, it is likely that unique sites aside from K18 ser52, and phosphorylation sites on other IF proteins, also participate in protection from cell stress.  相似文献   

4.
5.
The process of wound repair in adult skin is complex, involving dermal contraction and epithelial migration to repair the lesion and restore the skin's barrier properties. At the wound edge, keratinocytes undergo many changes that engender an epithelialization behavior. The type II keratin 6 and type I keratins 16 and 17 are induced well before cell migration begins, but the role of these proteins is not understood. Forced expression of human K16 in skin epithelia of transgenic mice has been shown to cause dose-dependent skin lesions concomitant with alterations in keratin filament organization and in cell adhesion. Here we show, with the use of a quantitative assay, that these transgenic mice show a delay in the closure of full-thickness skin wounds in situ compared with wild-type and low-expressing K16 transgenic mice. We adapted and validated an ex vivo skin explant culture system to better assess epithelialization in a wound-like environment. Transgenic K16 explants exhibit a significant reduction of keratinocyte outgrowth in this setting. This delay is transgene dose-dependent, and is more severe when K16 is expressed in mitotic compared with post-mitotic keratinocytes. Various lines of evidence suggest that the mechanism(s) involved is complex and not strictly cell autonomous. These findings have important implications for the function of K16 in vivo.  相似文献   

6.
7.
8.
Keratin polypeptide 8 (K8) associates noncovalently with its partners K18 and/or K19 to form the intermediate filament cytoskeleton of hepatocytes and other simple-type epithelial cells. Human K8, K18, and K19 variants predispose to liver disease, whereas site-specific keratin phosphorylation confers hepatoprotection. Because stress-induced protein phosphorylation regulates sumoylation, we hypothesized that keratins are sumoylated in an injury-dependent manner and that keratin sumoylation is an important regulatory modification. We demonstrate that K8/K18/K19, epidermal keratins, and vimentin are sumoylated in vitro. Upon transfection, K8, K18, and K19 are modified by poly-SUMO-2/3 chains on Lys-285/Lys-364 (K8), Lys-207/Lys-372 (K18), and Lys-208 (K19). Sumoylation affects filament organization and stimulus-induced keratin solubility and is partially inhibited upon mutation of one of three known K8 phosphorylation sites. Extensive sumoylation occurs in cells transfected with individual K8, K18, or K19 but is limited upon heterodimerization (K8/K18 or K8/K19) in the absence of stress. In contrast, keratin sumoylation is significantly augmented in cells and tissues during apoptosis, oxidative stress, and phosphatase inhibition. Poly-SUMO-2/3 conjugates are present in chronically injured but not normal, human, and mouse livers along with polyubiquitinated and large insoluble keratin-containing complexes. Notably, common human K8 liver disease-associated variants trigger keratin hypersumoylation with consequent diminished solubility. In contrast, modest sumoylation of wild type K8 promotes solubility. Hence, conformational changes induced by keratin natural mutations and extensive tissue injury result in K8/K18/K19 hypersumoylation, which retains keratins in an insoluble compartment, thereby limiting their cytoprotective function.  相似文献   

9.
To generate a mouse model of spontaneous epidermal depigmentation, parental h3TA2 mice, expressing both a human‐derived, tyrosinase‐reactive T‐cell receptor on T cells and the matching HLA‐A2 transgene, were crossed to keratin 14‐promoter driven, stem cell factor transgenic (K14‐SCF) mice with intra‐epidermal melanocytes. In resulting Vitesse mice, spontaneous skin depigmentation precedes symmetrical and sharply demarcated patches of graying hair. Whereas the SCF transgene alone dictates a greater retinoic acid receptor‐related orphan receptor gamma (RORγt)+ T‐cell compartment, these cells displayed markedly increased IL‐17 expression within Vitesse mice. Similar to patient skin, regulatory T cells were less abundant compared with K14‐SCF mice, with the exception of gradually appearing patches of repigmenting skin. The subtle repigmentation observed likely reflects resilient melanocytes that coexist with skin‐infiltrating, melanocyte‐reactive T cells. Similar repigmenting lesions were found in a different TCR transgenic model of vitiligo developed on an SCF transgenic background, supporting a role for SCF in repigmentation.  相似文献   

10.
N-Acetylglucosaminyltransferase (GnT)-III catalyzes the attachment of an N-acetylglucosamine (GlcNAc) residue to mannose in beta(1-4) configuration in the region of N-glycans and forms a bisecting GlcNAc. To investigate the pathophysiological role of dysregulated glycosylation mediated by aberrantly expressed GnT-III, we generated transgenic mice hyperexpressing the human GnT-III in the liver by introducing human GnT-III cDNA under the control of mouse albumin enhancer/promoter. Total five transgenic founder mice (pGnTSVTpA-10, -14, -20, -25, and -51) expressed the human GnT-III in their livers and were characterized by molecular genetic means. The copy number of transgene integrated into the genome of these mice ranged between 1 and 3 copies per haploid genome. Northern and Western blot analyses showed that the transgene is specifically expressed in the liver but not in any other tissues tested. The triglyceride level in GnT-III transgenic mice was significantly decreased, however, no significant differences in the levels of glucose, cholesterol, or albumin were observed between transgenic and nontransgenic mice. Although glutamate oxaloacetic transaminase and glutamic pyruvic transaminase activities of transgenic mice were also higher than those of nontransgenic mice, no differences in total bililubin and total protein were observed between the two animal lines. Large amounts of apolipoprotein (Apo) A-I and Apo B were specifically detected in the intracellular liver of transgenic mice. The accumulation of Apo A-I in hepatocytes may be due to aberrant glycosylation, since glycosylated Apo A-I was not observed in transgenic mice. However, the accumulated Apo B was severely glycosylated. Therefore, it is suggested that highly expressed transgenic GnT-III allowed unknown target proteins to be glycosylated in large amounts, and the resulting target protein(s) disrupted in assembly formation of Apo A-I in the hepatocytes and cause a decrease in the release of lipoproteins and accumulations of Apo A-I and Apo B in the liver. The transgenic mice showed aberrant glycosylation by GnT-III, resulting in numerous lipid droplets in liver tissues and the obesity. These mice showed microvesicular fatty changes with abnormal lipid accumulation in the hepatocytes. Our study provides the basis for future analysis of the role of glycosylation in hepatic pathogenesis. In the transgenic mice, Apo A-I and Apo B were significantly increased compared with levels in nontransgenic liver tissues.  相似文献   

11.
We describe here a mouse line bearing a bovine keratin K5Cre recombinase transgene. These mice showed a dual pattern of Cre-mediated recombination, depending on the parent transmitting the transgene. In paternal transmission, recombination occurred specifically in the skin and stratified epithelia-as expected according to the expression of endogenous keratin K5. However, constitutive recombination between loxP sites transmitted by the sperm took place when the mother possessed the K5Cre transgene, even when the transgene was absent in the progeny. Cre expression in late-stage oocytes, with the Cre protein persisting into the developing embryo, leads to the constitutive recombination observed. Thus, this transgenic line allows for both tissue-specific and generalized recombination, depending on the breeding scheme.  相似文献   

12.
Keratin 8 (K8) is a type II keratin that is associated with the type I keratins K18 or K19 in single layered epithelia. We generated a bacterial artificial chromosome (BAC) transgenic mouse line that expresses the tamoxifen inducible CreER(T2) inserted into the endogenous murine K8 gene. The transgenic mouse line contains two copies of the BAC transgene. To determine the expression specificity and inducibility of CreER(T2), the K8-CreER(T2) mice were bred with a Gt(ROSA 26)( ACTB-tdTomato-EGFP ) fluorescent protein-based reporter transgenic mouse line. We demonstrated that CreER(T2) and the endogenous K8 gene share the same patterns of expression and that the enzymatic activity of CreER(T2) can be efficiently induced by tamoxifen in all K8-expressing tissues. This mouse line will be useful for studying gene function in development and homeostasis of simple epithelia, and investigating both tissue lineage hierarchy and the identity of the cells of origin for epithelial cancers.  相似文献   

13.
角质细胞特异性表达Cre重组酶转基因小鼠的建立   总被引:9,自引:2,他引:9  
构建了含有角质细胞特异性角质素5启动子、Cre重组酶基因和人生长激素基因plyA的转基因载体pK5-Cre-hGH。以显微注射的方法将4.2kb的转基因片段K5-Cre-hGH引入小鼠基因组,共注射720枚受精卵,其中龄5枚移植至29只假孕母鼠的输卵管中发育,获得子代小鼠48只,经基因型鉴定有12只小鼠在其基因组上整合有Cre基因,整合率为25%。将带有cre重组酶基因的小鼠与基因组上携带loxP位点的smad4条件基因打靶小鼠杂交以检测Cre重组酶组织特异性表达情况以及介导重组的功能。结果表明,K5-Cre转基因小鼠只在皮肤组织中表达Cre重组酶并能在体内成功地介导loxP位点的重组。  相似文献   

14.
In this study we used a dominant-negative FGF receptor mutant to block FGF function in a specific tissue of transgenic mice. The mutant receptor, which is known to block signal transduction in cells when co-expressed with wild-type receptors, was targeted to suprabasal keratinocytes using a keratin 10 promoter. The transgene was expressed specifically in the skin and highest expression levels were found in the tail. Expression of the mutant receptor disrupted the organization of epidermal keratinocytes, induced epidermal hyperthickening and resulted in an aberrant expression of keratin 6. This suggests that FGF is essential for the morphogenesis of suprabasal keratinocytes and for the establishment of the normal program of keratinocyte differentiation. Our study demonstrates that dominant-negative growth factor receptors can be used to block selectively the action of a growth factor in specific tissues of transgenic mice.  相似文献   

15.
Previously we demonstrated that transgenic mice expressing a mutant keratin in the basal layer of their stratified squamous epithelia exhibited a phenotype bearing resemblance to a subclass (Dowling Meara) of a heterogeneous group of human skin disorders known as epidermolysis bullosa simplex (EBS) (Vassar, R., P. A. Coulombe, L. Degenstein, K. Albers, E. Fuchs. 1991. Cell. 64:365-380.). The extent to which subtypes of EBS diseases might be genetically related is unknown, although they all exhibit skin blistering as a consequence of basal cell cytolysis. We have now examined transgenic mice expressing a range of keratin mutants which perturb keratin filament assembly to varying degrees. We have generated phenotypes which include most subtypes of EBS, demonstrating for the first time that at least in mice, these diseases can be generated by different mutations within a single gene. A strong correlation existed between the severity of the disease and the extent to which the keratin filament network was disrupted, implicating perturbations in keratin networks as an essential component of these diseases. Some keratin mutants elicited subtle perturbations, with no signs of the tonofilament clumping typical of Dowling-Meara EBS and our previous transgenic mice. Importantly, basal cell cytolysis still occurred, thereby uncoupling cytolysis from the generation of large, insoluble cytoplasmic protein aggregates. Moreover, cell rupture occurred in a narrowly defined subnuclear zone, and seemed to involve three factors: (a) filament perturbation, (b) the columnar shape of the basal cell, and (c) physical trauma. This work provides the best evidence to date for a structural function of a cytoplasmic intermediate filament network, namely to impart mechanical integrity to the cell in the context of its tissue.  相似文献   

16.
P A Coulombe  M E Hutton  A Letai  A Hebert  A S Paller  E Fuchs 《Cell》1991,66(6):1301-1311
Previously we demonstrated that transgenic mice expressing mutant basal epidermal keratin genes exhibited a phenotype resembling a group of autosomal dominant human skin disorders known as epidermolysis bullosa simplex (EBS). EBS diseases affect approximately 1: 50,000 and are of unknown etiology, although all subtypes exhibit blistering arising from basal cell cytolysis. We now demonstrate that two patients with spontaneous cases of Dowling-Meara EBS have point mutations in a critical region in one (K14) of two basal keratin genes. To demonstrate function, we engineered one of these point mutations in a cloned human K14 cDNA, and showed that a K14 with an Arg-125----Cys mutation disrupted keratin network formation in transfected keratinocytes and perturbed filament assembly in vitro. Since we had previously shown that keratin network perturbation is an essential component of EBS diseases, these data suggest that the basis for the phenotype in this patient resides in this point mutation.  相似文献   

17.
Previous studies have demonstrated that keratin K10 plays an important role in mediating cell signaling processes, since the ectopic expression of this keratin induces cell cycle arrest in proliferating cells in vitro and in vivo. However, apart from its well known function of providing epithelial cells with resilience to mechanical trauma, little is known about its possible roles in nondividing cells. To investigate what these might be, transgenic mice were generated in which the expression of K10 was driven by bovine K6beta gene control elements (bK6(beta)hK10). The transgenic mice displayed severe abnormalities in the tongue and palate but not in other K6-expressing cells such as those of the esophagus, nails, and hair follicles. The lesions in the tongue and palate included the cytolysis of epithelial suprabasal cells associated with an acute inflammatory response and lymphocyte infiltration. The alterations in the oral mucosa caused the death of transgenic pups soon after birth, probably because suckling was impaired. These anomalies, together with others found in the teeth, are reminiscent of the lesions observed in some patients with pachyonychia congenita, an inherited epithelial fragility associated with mutations in keratins K6 and K16. Although no epithelial fragility was observed in the bK6(beta)hK10 oral epithelia of the experimental mice, necrotic processes were seen. Collectively, these data show that the carefully regulated tissue- and differentiation-specific patterns displayed by the keratin genes have dramatic consequences on the biological behavior of epithelial cells and that changes in the specific composition of the keratin intermediate filament cytoskeleton can affect their physiology, in particular those of the oral mucosa.  相似文献   

18.
Epiplakin, a giant epithelial protein of >700 kDa, belongs to the plakin family of cytolinker proteins. It represents an atypical family member, however, as it consists entirely of plakin repeat domains but lacks any of the other domains commonly shared by plakins. Hence, its putative function as a cytolinker protein remains to be shown. To investigate epiplakin's biological role, we generated epiplakin-deficient mice by gene targeting in embryonic stem cells. Epiplakin-deficient mice were viable and fertile, without developing any discernible phenotype. Ultrastructurally, their epidermis revealed no differences compared to wild-type littermates, and cornified envelopes isolated from skin showed no alterations in shape or stability. Furthermore, neither embryonal formation nor later function of the epithelial barrier was affected. In primary cultures of epiplakin-deficient keratinocytes, the organization of actin filaments, microtubules, and keratin networks was found to be normal. Similarly, no alterations in keratin network organization were observed in simple epithelia of small intestine and liver or in primary hepatocytes. We conclude that, despite epiplakin's abundant and highly specific expression in stratified and simple epithelia, its absence in mice does not lead to severe skin dysfunctions, nor has it detectable consequences for keratin filament organization and cytoarchitecture of cells.  相似文献   

19.
To explore the relationship between keratin gene mutations and genetic disease, we made transgenic mice expressing a mutant keratin in the basal layer of their stratified squamous epithelia. These mice exhibited abnormalities in epidermal architecture and often died prematurely. Blistering occurred easily, and basal cell cytolysis was evidence at the light and electron microscopy levels. Keratin filament formation was markedly altered, with keratin aggregates in basal cells. In contrast, terminally differentiating cells made keratin filaments and formed a stratum corneum. Recovery of outer layer cells was attributed to down-regulation of mutant keratin expression and concomitant induction of differentiation-specific keratins as cells terminally differentiate, and the fact that these cells arose from basal cells developing at a time when keratin expression was relatively low. Collectively, the pathobiology and biochemistry of the transgenic mice and their cultured keratinocytes bore a resemblance to a group of genetic disorders known as epidermolysis bullosa simplex.  相似文献   

20.
We previously demonstrated that expression of an albumin-urokinase-type plasminogen activator (Alb-uPA) fusion construct in transgenic mice resulted in elevated plasma uPA concentration, hypofibrinogenemia, and neonatal hemorrhaging. Two lines of Alb-uPA mice were established in which only one half of the transgenic pups died at birth; surprisingly, plasma uPA concentrations in survivors gradually returned to normal by 2 months of age. The basis for this phenomenon is DNA rearrangement within hepatocytes that affects the transgene tandem array and abolishes transgene expression. Transgene-deficient cells selectively proliferate relative to surrounding liver, and this process culminates in replacement of the entire liver by clonal hepatic nodules derived from transgene-deficient progenitor cells. In some cases as few as two nodules can reconstitute over 90% of liver mass, highlighting the remarkable regenerative capacity of individual liver cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号