首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Substance P (SP) is a neuropeptide closely associated with basal ganglia dopaminergic neurons. Because some neuropeptide systems in the basal ganglia (i.e. neurotensin and metenkephalin) are differentially affected by treatment with low or high doses of methamphetamine, we determined if basal ganglia SP pathways were also differentially influenced in a dose-dependent manner by this psychostimulant. Employing in vivo microdialysis, it was observed that the low dose (0.5 mg/kg) of methamphetamine increased the extracellular concentration of SP in the substantia nigra, but not in globus pallidus or striatum. In contrast, the high dose (10 mg/kg) of methamphetamine did not increase extracellular SP content in any of these structures. The effect of the low-dose methamphetamine treatment on nigral extracellular SP levels was blocked by pre-treatment with either a D1 or D2 antagonist. In addition, 12 h after similar methamphetamine treatments, a dose-dependent differential response in SP tissue levels occurred in some of the regions examined. When these changes occurred, the low dose of methamphetamine usually reduced, whereas the high dose increased, SP tissue content. This study demonstrated opposite responses of the basal ganglia SP system to low and high doses of methamphetamine and suggested that a combination of dopamine D1 and D2 receptor activity contributed to these effects.  相似文献   

2.
By means of radioimmunoassay measurements of regional neurotensin (NT) levels in the forebrain of the male rat it was shown that selective D2 DA receptor antagonists, such as haloperidol and sulpiride, and unselective D1 and D2 antagonists such as thioridazine, flupenthixol clozapine and fluperlapine, can acutely increase NT levels in the striatum and the nucleus accumbens without affecting NT levels in the amygdaloid or anteromedial frontal cortex. Conversely, acute treatment with the D1 DA receptor antagonist Schering 23390 (SCH 23390) produced a selective reduction of striatal NT levels. After long-term treatment clozapine, fluperlapine or SCH 23390, tolerance developed with regard to their ability to modulate striatal and accumbens levels. No tolerance occurred after chronic haloperidol, chlorpromazine and sulpiride. The results indicate that the acute administration of D1 and D2 DA receptor antagonists differentially modifies NT levels in the striatum and nuc. accumbens, and that antipsychotic drugs showing a relative lack of extrapyramidal side effects may be characterised by a failure to maintain increased NT levels in the basal ganglia upon long-term treatment.  相似文献   

3.
Mephedrone (4‐methylmethcathinone) is a synthetic cathinone designer drug that alters pre‐synaptic dopamine (DA) activity like many psychostimulants. However, little is known about the post‐synaptic dopaminergic impacts of mephedrone. The neuropeptide neurotensin (NT) provides inhibitory feedback for basal ganglia and limbic DA pathways, and post‐synaptic D1‐like and D2‐like receptor activity affects NT tissue levels. This study evaluated how mephedrone alters basal ganglia and limbic system NT content and the role of NT receptor activation in drug consumption behavior. Four 25 mg/kg injections of mephedrone increased NT content in basal ganglia (striatum, substantia nigra and globus pallidus) and the limbic regions (nucleus accumbens core), while a lower dosage (5 mg/kg/injection) only increased striatal NT content. Mephedrone‐induced increases in basal ganglia NT levels were mediated by D1‐like receptors in the striatum and the substantia nigra by both D1‐like and D2‐like receptors in the globus pallidus. Mephedrone increased substance P content, another neuropeptide, in the globus pallidus, but not in the dorsal striatum or substantia nigra. Finally, the NT receptor agonist PD149163 blocked mephedrone self‐administration, suggesting reduced NT release, as indicated by increased tissue levels, likely contributing to patterns of mephedrone consumption.

  相似文献   


4.
The influence of methamphetamine (METH) on basal ganglia met-enkephalin (Menk) was studied by determining levels of this peptide in striatal, pallidal and nigral regions after administering a single low (0.5 mg/kg) or high (10 mg/kg) dose of this stimulant. The Menk levels in the striatal and pallidal areas were reduced and increased after the low- and high-dose METH treatments, respectively, 12 h after drug administration in all striatal and pallidal regions examined. The low-dose effect appeared to be principally influenced by increased activation of the dopamine D2-like receptor, while the high-dose effect seemed to result from dominance of D1-like receptor activation. However, both effects required coactivation of D1- and D2-like receptors. For the most part, both low- and high-dose METH-induced changes in Menk tissue content were fully recovered by 24 h. The Menk levels were not significantly altered in the substantia nigra 3-24 h after either METH treatment. Results reported herein indicated that striatal and pallidal Menk pathways respond differently after acute treatment with low or high doses of METH.  相似文献   

5.
The effect of lesions of the catecholamine nerve terminals in the medial prefrontal cortex of the rat on neurotransmitter mechanisms within the basal ganglia has been investigated. Bilateral 6-hydroxydopamine lesions were stereotaxically placed in the dopamine-rich (DA) area of th frontal cortex. Animals were pretreated with desmethylimipramine to block the uptake of neurotoxin into noradrenergic (NA) terminals and to make it more selective for DA terminals. The lesion produced a selective reduction of both NA and DA from the medial prefrontal cortex, a result related to falls in tyrosine hydroxylase activity at this site. Lesioned animals showed enhanced DA turnover and utilisation in striatal and limbic regions. There was no change in subcortical tyrosine hydroxylase activity. In addition there were significant falls in other putative neurotransmitters within basal sites, including 5-hydroxytryptamine and GABA. Decreased activity of the neurotransmitter-synthesizing enzyme glutamate decarboxylase and choline acetyltransferase was also recorded in certain regions of the basal ganglia. The results suggest that frontal cortical catecholamine systems may serve to regulate various neurotransmitter mechanisms in the basal ganglia.  相似文献   

6.
The levels of dopamine (DA) was determined by intracerebral microdialysis in vivo in KM rats selected for high audiogenic epilepsy, and in Wistar rats selected for nonsusceptibility to loud sound. The basal level of dopamine was 25% higher in the KM rats (P < 0.05). A single amphetamine injection (1 mg/kg body weight, intraperitoneously) caused a significant increase in the DA basal level up to 250-260% in animals of both genotypes. However, in Wistar rats, the level of DA reached maximum as soon as 20 min after amphetamine administration, whereas in KM rats, this happened only after 120 min. After a single injection of the D2/D3 dopamine receptor antagonist raclopride (1.2 mg/kg of body weight, intraperitoneously), an increase in the level of DA was similar in amplitude in rats of both genotypes (up to about 210%); however, this occurred 20-30 and 100 min after raclopride administration to Wistar and KM rats, respectively. This evidence suggests that the genetic defect of KM rats, namely, the high level of audiogenic epilepsy, is caused by abnormalities of the neurotransmitter brain systems and presumably accompanied by the regulatory gene dysfunction.  相似文献   

7.
Kappa-opioid receptor agonists prevent alterations in dopamine neurotransmission that occur in response to repeated cocaine administration. The present microdialysis study examined whether administration of the selective kappa-opioid receptor agonist U69593 with methamphetamine prevents alterations in dopamine levels produced by neurotoxic doses of methamphetamine. Swiss Webster mice were injected intraperitoneally with methamphetamine (10.0 mg/kg) or saline, four times in 1 day, at 2-h intervals. Prior to the first and third injection, they received U69593 (0.32 mg/kg s.c.) or vehicle. Microdialysis was conducted 3, 7, or 21 days later. Basal and K+-evoked (60 and 100 mM) dopamine overflow were reduced 3 days after methamphetamine administration. These effects were long-lasting in that they were still apparent 7 and 21 days after methamphetamine treatment. Intrastriatal (5.0 and 50 microM) or systemic (1.0-10.0 mg/kg) administration of methamphetamine increased dopamine concentrations in control animals. In mice preexposed to methamphetamine, methamphetamine-evoked dopamine overflow was reduced. In animals that had received methamphetamine with U69593, basal dopamine levels did not differ from those of vehicle-treated controls. U69593 treatment attenuated the decrease in K+-evoked dopamine produced by prior methamphetamine exposure. The reduction in methamphetamine-evoked dopamine levels was also attenuated. The administration of U69593 alone did not modify basal or stimulus-evoked dopamine levels. These data demonstrate that repeated methamphetamine administration reduces presynaptic dopamine neuronal function in mouse striatum and that co-administration of a selective kappa-opioid receptor agonist with methamphetamine attenuates these effects. U69593 treatment did not modify the hyperthermic effects of methamphetamine, indicating that this kappa-opioid receptor agonist selectively attenuates methamphetamine-induced alterations in dopamine neurotransmission.  相似文献   

8.
Hiroshi Watanabe 《Life sciences》1985,37(24):2319-2325
To investigate mechanisms of behavioral enhancement produced by repeated doses of amphetamines, the effects of apomorphine on 3,4-dihydroxyphenylacetic acid (DOPAC) and dopamine (DA) levels were examined in various brain regions of the rat on the 4th day of withdrawal after repeated administration of saline or methamphetamine (3 mg/kg, s.c.) twice daily for 14 days. Apomorphine (0.1 and 1.0 mg/kg, i.p.) produced a dose-dependent decrease in DOPAC levels and no effect on DA levels in the olfactory tubercle, nucleus accumbens, striatum, frontal and cingulate cortices of saline-treated animals. A decrease in DOPAC levels produced by a low dose of apomorphine was attenuated selectively in the olfactory tubercle and nucleus accumbens of methamphetamine-treated animals. A high dose of apomorphine produced a significant decrease in DOPAC levels in both regions. No such attenuation was obtained in the striatum and the frontal and cingulate cortices.These results suggest that subchronic methamphetamine may induce development of hyposensitivity of presynaptic DA receptors in the mesolimbic regions, which contribute to the behavioral enhancement produced by the drug.  相似文献   

9.
Neurotensin (NT) is a regulatory peptide involved in the control of gastrointestinal function. We have used the chronically cannulated ovine fetus to examine the ontogeny of circulating NT-like immunoreactivity (NTLI) in the fetus and neonatal lamb. In addition the placental transfer and clearance of NT has been determined. NTLI in the ovine fetus circulates at adult concentrations during the third trimester of pregnancy and is of fetal origin. NTLI is present in the fetal ileum, the richest source of NT, at adult concentrations and in the same molecular profile as in the adult. There is a transient increase in circulating NTLI at birth, and a small NT response to feeding in the lamb. While fetal concentrations of plasma NTLI are generally the same as in the adult and originate from the fetus, the fetus clears infused NT(1-13) twice as rapidly as the nonpregnant adult indicating a higher fetal production of NT. Thus it appears that the mechanisms involved in the production and processing of NT are mature some weeks before birth.  相似文献   

10.
The levels of dopamine (DA) was determined by intracerebral microdialysis in vivo in KM rats selected for high audiogenic epilepsy, and in Wistar rats selected for nonsusceptibility to loud sound. The basal level of dopamine was 25% higher in the KM rats (P < 0.05). A single amphetamine injection (1 mg/kg body weight, intraperitoneously) caused a significant increase in the DA basal level up to 250-260% in animals of both genotypes. However, in Wistar rats, the level of DA reached maximum as soon as 20 min after amphetamine administration, whereas in KM rats, this happened only after 120 min. After a single injection of the antagonist of D2 and D3 dopamine receptors raclopride (1.2 mg/kg of body weight, intraperitoneously), an increase in the level of DA was similar in amplitude in rats of both genotypes (up to about 210%); however, this occurred 20-30 and 100 min after raclopride administration to Wistar and KM rats, respectively. This evidence suggests that the genetic defect of KM rats, namely, the high level of audiogenic epilepsy, is caused by abnormalities of the neuromediator brain systems and presumably accompanied by the regulatory gene dysfunction.  相似文献   

11.
Microinjection of neurotensin (NT; 2 and 5 μg) into the substantia nigra zona compacta caused an increase in dopamine (DA) and DA metabolites in the rodent globus pallidus and striatum which persisted for at least 20 hours after peptide administration. Similar NT treatments given unilaterally into the nigra caused circling away from the injected side in amphetamine-pretreated rats, but were without effect when microinjected into saline-pretreated animals. Circling also occurred when the animals were given amphetamine 20 hours after intranigral NT administration. Contralateral rotation was observed with unilateral intranigral injections of gamma-hydroxybutyric acid (GHB; 400 μg) or with lower intranigral GHB doses (250 μg) in amphetamine-pretreated animals. The effects of GHB and NT differed in the manner in which the animals rotated as well as in the profile of DA and DA metabolite changes induced by these drugs. These studies indicated that: (1) dopaminergic functions of the globus pallidus are influenced, like the striatum, by manipulations of the substantia nigra; (2) NT and GHB likely act via different mechanisms to effect nigral dopamine-containing cells; and (3) NT was capable of inducing changes in dopamine neurons which had long term consequences.  相似文献   

12.
Drugs of abuse, such as phencyclidine (PCP), methamphetamine (METH), and cocaine (COC) are known to affect several behaviors in rats, such as motor activity, stereotypy, and circling. In this study, we evaluated whether these drugs produce circling preferences in the presence or absence of unilateral 6-hydroxydopamine (6-OHDA)-induced lesions of the caudate nucleus. Adult male CD rats were lesioned with 10 μg 6-OHDA/site. Animals were dosed with PCP (15 mg/kg, ip), its congener, (+) MK-801 (0.15 mg/kg, ip), METH (2 mg/kg, ip), COC (60 mg/kg, ip), or apomorphine (0.2 mg/kg, ip). circling preference was recorded in control and lesioned rats for 2 h before animals were sacrificed to determine monoamine levels by HPLC/EC. In control animals, administration of these drugs produced 60–70% left circling. In, lesioned animals, these drugs produced 78–90% ipsilateral (toward the lesion) circling, except apomorphine, which produced 60–80% contralateral (away from the lesion) circling. Dopamine (DA) and its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) concentrations significantly decreased ipsilaterally in lesioned caudate nucleus (CN) and substantia nigra (SN). However, no significant changes were observed in nucleus accumbens (NA) and olfactory tubercles (OT). These data demonstrate that drugs of abuse like PCP, its congener (+) MK-801, METH, and COC produce a greater preference to turn toward the left than the right, a finding similar to that found in human psychosis. Since 6-OHDA lesions enhanced the circling bias and depleted DA and its metabolites DOPAC and HVA, it also suggests that the dopaminergic system may be involved in the circling behavior.  相似文献   

13.
Multiple administrations of high doses of methamphetamine (METH) previously have been shown to significantly elevate the concentrations of substance P-like immunoreactivity in CNS regions associated with the basal ganglia. Recently, another tachykinin, neurokinin A (NKA), has been found to be closely associated with substance P (SP). While both neuropeptides exert comparable effects when locally injected, there are significant differences in their potencies apparently based on the relative concentrations of their unique receptors. Due to the controversy which has arisen as to their respective roles within the basal ganglia, we have evaluated and compared the responses of the striatal and nigral SP and NKA systems to METH treatment. We observed that multiple high doses of this stimulant increased the nigral and striatal concentrations of both neuropeptides in an identical fashion. Our observation that METH treatment did not alter the relative concentrations of SP and NKA suggests that responses of both transmitter systems, associated with the basal ganglia, parallel each other and are sensitive to the same regulatory mechanisms.  相似文献   

14.
Direct intrastriatal injection of N-methyl-D-aspartate (NMDA; 100 micrograms/rat) increased striatal dopamine (DA) release in vivo. However, parenteral administration of (+/-)-3-(2-carboxypiperizin-4-yl)propyl-1-phosphonic acid (CPP) and cis-4-phosphonomethyl-2-piperidine carboxylic acid (CGS-19755) did not alter DA metabolism and release in several brain regions in the rat and mouse. Intracerebroventricular administration of the competitive NMDA antagonists CPP, CGS-19755, 2-amino-5-phosphonopentanoate, and 2-amino-7-phosphonoheptanoate did not alter rat striatal DA metabolism and release but profoundly reduced cerebellar cyclic GMP (cGMP) levels in the same animals. CPP and CGS-19755 decreased basal cerebellar cGMP levels in the mouse with ED50 values of 6 and 1 mg/kg, i.p., respectively. CPP antagonized the harmaline-induced increases in cGMP levels with an ED50 value of 5.0 mg/kg, i.p. CPP (25 mg/kg, i.p.) also decreased basal cGMP levels in mouse cerebellum for up to 3 h, a result suggesting brain bioavailability and a long duration of NMDA receptor antagonism in vivo. These contrasting patterns suggest that NMDA receptors exert a tonic excitatory tone on the guanine nucleotide signal transduction pathway in the cerebellum while exerting a phasic control over nigrostriatal dopaminergic neurotransmission. These results also indicate that competitive NMDA antagonists, unlike phencyclidine receptor agonists, may not mediate biochemical and behavioral effects via dopaminergic mechanisms.  相似文献   

15.
Intact neurotensin (NT) in human plasma: response to oral feeding   总被引:1,自引:0,他引:1  
Neurotensin-like immunoreactivity (NTLI) increases in human plasma postprandially. Intact neurotensin (NT) however, has been found to be a minor component of NTLI, the major components being the N-terminal fragments 1-11 and 1-8. Intact NT is the only known biologically-active form. A radioimmunoassay (RIA) has been developed which employs an antiserum unreactive to 1-11 or smaller N-terminal NT fragments. Using this RIA, intact NT response to a mixed meal has been assessed in 10 healthy humans. Intact NT levels were significantly elevated over basal 15 min after ingestion of the meal and remained so for the duration of the experiment (120 min). The suggestion that intact NT is a circulating hormone has been substantiated. Due to the rapidity of the rise in plasma NT after feeding it is proposed that the initial NT response is mediated by neural or hormonal means, rather than by direct luminal stimulation of the N cell-rich jejunoileum.  相似文献   

16.
The present studies were undertaken to determine whether a 24 h rhythm occurs in neurotensin (NT) levels in the small intestine of the rat and if so, whether the rhythm depends upon the 24 h cycles of light or feeding. A total of 145 male rats were sacrificed at 4 h intervals and the levels of neurotensin-like immunoreactivity (NTLI) in the middle 30 cm of small intestine were determined by radioimmunoassay with region specific antisera. There was a significant (P less than 0.05) 24 h rhythm in the levels of NTLI in groups of rats maintained under constant illumination or a 12:12 light:dark cycle and fasted for either 24 h or provided food ad libitum. Levels of NTLI ranged from 50 to 140 pm/g and were highest during the early morning (0400-0800 h) and lowest during the afternoon (1200-1600 h). The NTLI from samples taken at 0400 and 1600 h was subjected to high-performance liquid chromatography. The levels of chromatographically and immunochemically characterized NT were consistent with the levels of NTLI, evidence that the 24 h variation in NTLI most likely reflects changes in the intestinal content of NT and not other substances with similar immunochemical properties.  相似文献   

17.
The distribution patterns of M1 and M2 muscarinic receptor subtypes following TMT and JO 1784 administration in the male Sprague-Dawley rat were investigated. In the present study, JO 1784 was injected in doses of 1, 4 and 16 mg/kg i.p. for one week prior to the single injection of TMT (8 mg/kg i.p.) and subsequently for 33 days. The effects of JO 1784 on the density of muscarinic receptor sub-types (M1 and M2) in the control and trimethyltin (TMT) treated rats were then evaluated. The topographic distribution and changes in muscarinic (M1 and M2) receptor densities were determined by means of autoradiography using [3H]quinuclidinylbenzilate (QNB). Both sub-types of muscarinic receptors contributed to the observed decrease in total muscarinic receptor binding in TMT-treated rats. In control rats, JO 1784 alone decreased M1 receptor density in the amygdaloid nuclei, basal ganglia, cortex and hippocampus and decreased M2 receptor density in the amygdaloid nuclei, basal ganglia, cortex, hippocampus, hypothalamus and septal regions. In TMT treated rats, chronic JO 1784 administration has a “neuroprotective effect” on both M1 and M2 receptors subtypes. Thus, following chronic administration of JO 1784 to TMT treated rats, both increases and decreases in M1 receptor density were observed relative to TMT animals. A significant increase in M1 receptor density was found in the cortex, olfactory regions, septum, thalamus and basal forebrain nuclei. In the hippocampus (CA2 and CA3), a significant decrease in M1 receptor density was observed. In TMT-treated rats, JO 1784 produced a significant increase in M2 receptor density in several brain regions with the most marked effects occurring in the amygdaloid nuclei, basal ganglia, cortex, hippocampus and hypothalamus. The ability of the selective sigma ligand, JO 1784, to attenuate the loss of muscarinic receptors in TMT treated rats could be of importance in the development of novel neuroprotective drugs.  相似文献   

18.
The peptide neurotensin (NT) is known to exert a potent excitatory effect on the dopaminergic system by inhibiting D2 dopamine (DA) receptor (D2R) function. This regulation is dependent on activation of PKC, a well known effector of the type 1 NT receptor (NTR1). Because PKC phosphorylation of the D2R has recently been shown to induce its internalization, we hypothesized that NT acts to reduce D2R function through heterologous desensitization of the D2R. In the present study, we first used HEK-293 cells to demonstrate that NT induces PKC-dependent D2R internalization. Furthermore, internalization displayed faster kinetics in cells expressing the D2R short isoform, known to act as an autoreceptor in DA neurons, than in cells expressing the long isoform, known to act as a postsynaptic D2R. In patch clamp experiments on cultured DA neurons, overexpression of a mutant D2S lacking three key PKC phosphorylation sites abrogated the ability of NT to reduce D2R-mediated cell firing inhibition. Short interfering RNA-mediated inhibition of β-arrestin1 and dynamin2, proteins important for receptor desensitization, reduced agonist-induced desensitization of D2R function, but only the inhibition of β-arrestin1 reduced the effect of NT on D2R function. Taken together, our data suggest that NT acutely regulates D2 autoreceptor function and DA neuron excitability through PKC-mediated phosphorylation of the D2R, leading to heterologous receptor desensitization.  相似文献   

19.
D Read  A Shulkes  R Fernley  R Simpson 《Peptides》1991,12(4):887-892
Neurotensin(6-13) has been isolated and sequenced as the major form of neurotensin-like immunoreactivity (NTLI) in a human hepatic fibrolamellar carcinoma. Circulating NTLI in the patient, especially C-terminal, was very high. In additional studies, NT(6-13) was synthesized and compared with the purified tumor NTLI by HPLC analysis and by testing stability in plasma in vitro. These methods confirmed that the tumor NTLI was identical to NT(6-13). Since the metabolic clearance rate of synthetic NT(6-13) in sheep was 30-fold higher than NT(1-13), it suggests that the elevated plasma levels are the result of impaired clearance and/or markedly elevated production.  相似文献   

20.
Multiple administrations of methamphetamine (METH) rapidly decreased serotonin (5HT) transporter (SERT) function in rat striatum and hippocampus. The purpose of this study was to identify the mechanisms/ factors contributing to this METH-induced decrease in SERT function. Multiple high-dose METH injections rapidly decreased 5HT uptake without altering binding of the 5HT transporter ligand paroxetine. Hyperthermia contributed to this deficit in transporter function in striatum and hippocampus, as prevention of METH-induced hyperthermia attenuated this decrease. A role for dopamine (DA) was suggested by findings that pretreatment with the tyrosine hydroxylase inhibitor alpha-methyl-p-tyrosine, the D1 antagonist SCH-23390, or the D2 antagonist eticlopride attenuated the METH-induced decrease in striatal, but not hippocampal, SERT activity. These effects were independent of the ability of these DA-antagonizing drugs to prevent METH-induced hyperthermia. These results suggest that DA contributes to the decrease in SERT function caused by multiple METH injections in the striatum, but not hippocampus, and that hyperthermia facilitates these deficits in SERT function in both brain regions. In contrast, the response of SERT to a single administration of METH was DA and hyperthermia independent. These findings suggest that the mechanisms/ factors involved in decreasing SERT activity after a single administration of METH are distinct from that caused by multiple administrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号