首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
OAZ基因编码在进化上保守的C2H2型O/E相关锌指蛋白,参与基因转录的调控。TGF-β信号传导通路中OAZ通过与SMAD4/R-SMAD结合形成转录复合物发挥作用;Olf1/EBF作为转录因子与OAZ相互作用来调控嗅觉上皮细胞和B淋巴细胞的分化。此外,OAZ是JAK/STAT信号通路的下游候选靶基因。但是迄今为止OAZ在果蝇大脑发育的功能还没有研究。果蝇大脑视叶作为一个相对简易操作的模型为我们揭示早期神经干细胞的增殖和转化机制创造了条件,为加快理解哺乳动物早期神经发生过程以及进一步开展神经干细胞治疗提供可能。本研究通过RNA干扰来研究OAZ在果蝇大脑发育中的作用。我们的初步实验结果表明,OAZ对果蝇大脑视叶神经上皮细胞的维持可能不是必需的,OAZ对果蝇大脑视叶神经板和脑髓神经节的发育也可能不是必需的。  相似文献   

2.
YAP与干细胞及肿瘤   总被引:1,自引:0,他引:1  
YAP蛋白作为Hippo信号通路中关键成分,在控制生物器官发育和调控细胞生长中起着十分重要的作用。鉴于YAP蛋白的促细胞生长功能以及过表达YAP或YAP上游调控基因失活将引发肿瘤,YAP因此被认为是原癌蛋白。最新的研究表明YAP在维持干细胞特性、抑制干细胞分化及促进成体细胞重编程中也起着十分重要的作用。可见YAP在干细胞和肿瘤细胞中都扮演着重要角色。因此更好地了解和研究YAP蛋白及其信号通路有助于更好地理解干细胞与肿瘤的关系,有助于干细胞治疗的安全应用以及特异性靶向肿瘤治疗药物的开发。  相似文献   

3.
《生命科学研究》2019,(6):479-486
中枢神经系统由数量庞大、类型多样的神经细胞和神经胶质细胞组成,它调节生物体各种生理活动以及学习、记忆和思维等认知功能。神经细胞和神经胶质细胞由神经干细胞产生,所以对神经干细胞的研究有十分重要的意义。果蝇作为一种经典模式生物,长期被用于神经干细胞增殖、分化、凋亡等方面的研究。本文阐述了果蝇神经干细胞的最新研究进展,包括神经干细胞的类型和起源,参与神经干细胞不对称分裂的关键蛋白质,神经干细胞的静息、激活和最终的分化或凋亡,以及神经元多样性产生的机制,希望对神经生物学的基础研究有所帮助。  相似文献   

4.
南楠  闫志鹏  张亚如  秦国华  桑楠 《昆虫学报》2022,65(12):1695-1700
果蝇Drosophila作为一种模式生物,具有生长周期短、繁殖能力强和研究成本低等优点。而且果蝇有65%的基因与人类同源,特别是其遗传背景简单的特点,使其在生物生长发育研究、病理机制研究和基因表达调控等研究中发挥重要作用。目前在果蝇中已发现8种胰岛素样肽,即果蝇胰岛素样肽1-8(Drosophila insulin-like peptide 1-8, Dilp1-8),而对于果蝇胰岛素信号通路的研究主要集中在其调控机体生长发育和能量代谢的方面,这些功能主要通过Dilp1-7来发挥作用。对于Dilp8的功能及其发挥作用的分子机制知之甚少。本文总结了自Dilp8被发现以来,人们对于其功能的研究结果。Dilp8主要在幼虫成虫盘和成年雌果蝇的卵巢中表达,其主要作用是调节果蝇的组织生长和发育时间,使果蝇生长为具有相对固定体型和一定对称性的个体。当果蝇幼虫在生长过程中受到损伤时,Dilp8会通过延缓发育时间来缓解异常生长。Dilp8被激活后,在中枢神经系统与其受体富含亮氨酸重复序列的G蛋白偶联受体3(leucine-rich repeat-containing G protein-coupled ...  相似文献   

5.
陈静  龚艳芬  胡争  王玉凤 《动物学报》2006,52(2):335-341
HmgD基因编码果蝇高流动性蛋白(High mobility group proteins, HMG)的同源物,它可以参与染色质的组装。目前关于HMGD蛋白在果蝇胚胎发育过程中的作用尚无定论。我们采用UAS-Gal4系统,通过功能获得性突变的方法研究了HmgD基因过量表达对果蝇发育的影响。结果表明:HmgD过量表达对果蝇胚胎期发育的影响较弱,而对后期幼虫的发育具有很大的影响;HmgD过量表达的果蝇胚胎死亡率增高,但这种影响不是很大,因为一部分胚胎仍然能够发育至成体;但是当HmgD在广泛表达的Gal4驱动子(ActGal4)的控制下过量表达时导致子代大量死亡,特别是用4个拷贝的转基因果蝇进行杂交时,后代中的突变型在三龄幼虫末期全部死亡;部分突变型幼虫体内长有黑色素瘤,其血淋巴中的血细胞数量极显著地高于野生型。RT-PCR分析表明,突变幼虫中与血细胞增殖有关的Ras-MAPK途径和Toll途径被异常激活。这些结果显示:HmgD过量表达可能引起染色质结构疏松,激活了特定的转录因子,从而引发了三龄幼虫期异常的转录调控,并导致幼虫死亡。  相似文献   

6.
果蝇原始生殖细胞(primordial germ cells,PGCs)是生殖干细胞的前体。该群细胞在果蝇幼虫期经历特征性的发育过程,这一过程涉及程序化的细胞命运及行为改变。为系统探讨mi RNA在上述PGCs命运调控中的作用,对雌蝇幼虫发育中的性腺组织进行了mi RNA表达谱分析,发现一组mi RNA分子持续在性腺组织细胞中表达。应用GAL4/UAS遗传操作系统验证了部分候选mi RNAs的功能,获得了mi R-33和mi R-278参与调控果蝇幼虫PGCs有序分化的实验证据。该文为发育过程中功能性mi RNA研究工作的开展提供了有益的借鉴。  相似文献   

7.
视觉对于动物的生存和行为来说是非常重要的。虽然果蝇幼虫的视觉神经系统在组织结构上比成虫简单,但是也具有一定的复杂性和多样性。在最近几年中,随着对果蝇幼虫视觉系统功能的研究取得重要进展,我们对于果蝇幼虫视觉系统的认识更加丰富了。果蝇幼虫视觉系统的结构中,最初级的光感受神经元包括三类,一类是BO/BN(Bolwig's organ/Bolwig's nerve),一类是表达感光分子CRY(cryptochrome)的神经元,另外一类是Ⅳ型DA(classⅣdendriticarborization)神经元;果蝇幼虫视觉系统的次级神经元主要是光节律相关的侧神经元(lateralneurons,LN),它表达Per(period)、Tim(timeless)及Pdf(pigment dispersion factor)等节律相关的蛋白分子;而第三级神经元包括更为下游的、表达果蝇促胸腺激素且直接调控幼虫光偏好的NP394神经元。这三级神经元构成了我们现在所了解的果蝇幼虫视觉神经系统的基本框架。  相似文献   

8.
Noggin基因与中枢神经系统发育的研究进展   总被引:3,自引:0,他引:3  
Fan XT  Xu HW  Cai WQ 《生理科学进展》2006,37(2):121-124
Noggin作为一种重要的胚胎蛋白,在胚胎背腹轴模式形成、神经管发育及神经诱导方面有重要功能。干细胞研究的新进展提示,中枢神经系统发育将持续至生后及成年,包括胚胎及成体干细胞的增殖与分化,而noggin通过拮抗骨形成蛋白(BMPs)参与胚胎及成体干细胞的增殖与分化。本文就noggin基因在中枢神经系统发育中的重要功能予以阐述。  相似文献   

9.
果蝇热激蛋白的研究进展   总被引:2,自引:1,他引:1  
热休克蛋白(heat shock proteins,HSPs)是生物体受到应激刺激时诱导产生的一组保守性蛋白,普遍存在于各种生物体中。近年来,果蝇Drosophila作为生命科学与人类疾病研究的重要模式生物,其热激蛋白的研究取得了许多新的进展。文章对果蝇热激蛋白的类别、热激蛋白基因的表达调控机制、热激蛋白的分子伴侣功能、调节细胞存亡和影响发育及寿命等相关生物学功能进行综述,并对热激蛋白在神经退行性疾病治疗中的应用前景作展望。  相似文献   

10.
多细胞生物的发育是从一个受精卵分化成多种类型细胞的过程。细胞多样性形成的基础是不等分裂,不等分裂是干细胞自我更新和自我维持的关键。干细胞不等分裂有细胞内和细胞外两种调节机制。果蝇神经干细胞增殖和分化、植物胚胎发育、表皮气孔形成及根内皮层的分化,是研究不等细胞分裂调节机制最多的发育背景。本综述介绍了果蝇神经干细胞和植物胚胎发育早期、表皮气孔发生及根皮层内皮层中细胞不等分裂内在调节机制的研究进展。  相似文献   

11.
Balancing self-renewal and differentiation of stem cells is an important issue in stem cell and cancer biology. Recently, the Drosophila neuroblast (NB), neural stem cell has emerged as an excellent model for stem cell self-renewal and tumorigenesis. It is of great interest to understand how defects in the asymmetric division of neural stem cells lead to tumor formation. Here, we review recent advances in asymmetric division and the self-renewal control of Drosophila NBs. We summarize molecular mechanisms of asymmetric cell division and discuss how the defects in asymmetric division lead to tumor formation. Gain-of-function or loss-of-function of various proteins in the asymmetric machinery can drive NB overgrowth and tumor formation. These proteins control either the asymmetric protein localization or mitotic spindle orientation of NBs. We also discuss other mechanisms of brain tumor suppression that are beyond the control of asymmetric division.  相似文献   

12.
Neural stem cells: balancing self-renewal with differentiation   总被引:3,自引:0,他引:3  
Stem cells are captivating because they have the potential to make multiple cell types yet maintain their undifferentiated state. Recent studies of Drosophila and mammalian neural stem cells have shed light on how stem cells regulate self-renewal versus differentiation and have revealed the proteins, processes and pathways that all converge to regulate neural progenitor self-renewal. If we can better understand how stem cells balance self-renewal versus differentiation, we will significantly advance our knowledge of embryogenesis, cancer biology and brain evolution, as well as the use of stem cells for therapeutic purposes.  相似文献   

13.
Recent studies of Drosophila neural precursor cells have unveiled the essential roles played by asymmetric cell divisions in the determination of cell fates during neural development. Our understanding now extends to the molecular nature of the cell polarity that underlies asymmetric divisions. This polarity is conserved among neural stem cells, epithelial cells and fertilized eggs.  相似文献   

14.
15.
Extracellular matrix (ECM) and matrix receptors are intimately involved in most biological processes. The ECM plays fundamental developmental and physiological roles in health and disease, including processes underlying the development, maintenance, and regeneration of the nervous system. To understand the principles of ECM-mediated functions in the nervous system, genetic model organisms like Drosophila provide simple, malleable, and powerful experimental platforms. This article provides an overview of ECM proteins and receptors in Drosophila. It then focuses on their roles during three progressive phases of neural development: (1) neural progenitor proliferation, (2) axonal growth and pathfinding, and (3) synapse formation and function. Each section highlights known ECM and ECM-receptor components and recent studies done in mutant conditions to reveal their in vivo functions, all illustrating the enormous opportunities provided when merging work on the nervous system with systematic research into ECM-related gene functions.  相似文献   

16.
Genome instability (GI) and centrosomal alterations are common traits in human cancer [1, 2]. It is suspected that centrosome dysfunction may cause tumors by bringing about GI, but direct experimental proof is still lacking [3]. To explore the possible functional link between centrosome function and overgrowth, we have assayed the tumorigenic potential of a series of mutants that affect different centrosomal proteins in Drosophila. We have found that a significant number of such mutant conditions are tumorigenic in larval brain tissue, where self-renewing asymmetric division of neural stem cells is frequent, but not in symmetrically dividing epithelial cells. We have also found that mutations that increase GI without causing centrosome dysfunction are not tumorigenic in our assay. From these observations, we conclude that the tumors caused by centrosome dysfunction cannot be explained solely by the resulting genome instability. We propose that such tumors might be caused by impaired asymmetric division of neural stem cells [4]. These results show that centrosome loss, far from being innocuous, is a potentially dangerous condition in flies.  相似文献   

17.
18.
Dcr-1 maintains Drosophila ovarian stem cells   总被引:1,自引:0,他引:1  
Jin Z  Xie T 《Current biology : CB》2007,17(6):539-544
MicroRNAs (miRNAs) regulate gene expression by controlling the turnover, translation, or both of specific mRNAs. In Drosophila, Dicer-1 (Dcr-1) is essential for generating mature miRNAs from their corresponding precursors. Because miRNAs are known to modulate developmental events, such as cell fate determination and maintenance in many species, we investigated whether a lack of Dcr-1 would affect the maintenance of stem cells (germline stem cells, GSCs; somatic stem cells, SSCs) in the Drosophila ovary by specifically removing its function from the stem cells. Our results show that dcr-1 mutant GSCs cannot be maintained and are lost rapidly from the niche without discernable features of cell death, indicating that Dcr-1 controls GSC self-renewal but not survival. bag of marbles (bam), the gene that encodes an important differentiating factor in the Drosophila germline, however, is not upregulated in dcr-1 mutant GSCs, and its removal does not slow down dcr-1 mutant GSC loss, suggesting that Dcr-1 controls GSC self-renewal by repressing a Bam-independent differentiation pathway. Furthermore, Dcr-1 is also essential for the maintenance of SSCs in the Drosophila ovary. Our data suggest that miRNAs produced by Dcr-1 are required for maintaining two types of stem cells in the Drosophila ovary.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号