首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present work describes the changes that take place in phytohormone contents in germinating chickpea (Cicer arietinum cv. Aziziye-94) seeds in response to heavy metal stress. For this aim, endogenous abscisic acid (ABA), gibberellic acid (GA3), zeatin (Z) and zeatin riboside (ZR) contents were followed for 24, 48 and 72 h in chickpea seeds germinating at the concentrations of 0.1, 1.0 and 5.0 mM Pb or 0.1, 1.0 and 10 mM Zn. The results showed that Pb and Zn significantly delayed and impeded the germination of chickpea seeds. The negative effect of Pb on germination was higher than that of Zn. Further, Pb increased ABA and Z contents while decreased GA3 content in the germinating seeds. The high concentrations of Zn (1.0 and 10 mM) decreased contents of Z, ZR and GA3 while 0.1 mM Zn increased the content of the same hormones. The ABA content was enhanced by Zn in all concentrations used.  相似文献   

2.
Little is known about the control exerted by hormones in specific tissues during germination and post‐germinative development in monocot seeds, whose embryos have complex structures and can remain dormant for long periods of time. Here the tissue‐specific hormonal profile of macaw palm (Acrocomia aculeata) seeds overcoming dormancy and seedling during initial development was examined. Endogenous hormonal concentrations were determined in the cotyledonary petiole, haustorium, operculum, endosperm adjacent to the embryo and peripheral endosperm of dry dormant seeds, imbibed seeds trapped in phase I of germination, and germinating (phase 2 and phase 3) seeds 2, 5, 10 and 15 days after sowing. Evaluations were performed on seeds treated for overcoming dormancy by removal of the operculum and by immersion in a gibberellic acid (GA3) solution. Removal of the operculum effectively helped in overcoming dormancy, which was associated with the synthesis of active gibberellins (GAs) and cytokinins (CKs), as well as reductions of abscisic acid (ABA) in the cotyledonary petiole. In imbibed seeds trapped in phase I of germination, exogenous GA3 caused an increase in active GAs in the cotyledonary petiole and operculum and reduction in ABA in the operculum. Initial seedling development was associated with increases in the CK/auxin ratio in the haustorium and GA levels in the endosperm which is possibly related to the mobilization of metabolic reserves. Increases in salicylic acid (SA) and jasmonic acid (JA) concentrations were associated with the development of the vegetative axis. Hormones play a crucial tissue‐specific role in the control of dormancy, germination and initial development of seedlings in macaw palm, including a central role not only for GAs and ABA, but also for CKs and other hormones.  相似文献   

3.
Involvement of cytokinins (CKs) in axillary bud growth of miniature rose was studied. Variation in root formation and axillary bud growth was induced by two indole 3-butyric acid (IBA) pretreatments in two cutting sizes. At six physiological developmental stages around the onset of axillary bud growth, concentrations of CKs were determined in both root and axillary bud tissue by liquid chromatography combined with electrospray tandem mass spectrometry (LC-ESP-MS/MS). Chronological early onset of axillary bud growth occurred in long cuttings pretreated at low IBA concentration, whereas physiological early root formation was associated with long cuttings and high IBA concentration. The CKs zeatin (Z), isopentenyl adenine (iP), zeatin riboside (ZR), dihydrozeatin riboside (DHZR), isopentenyl adenosine (iPA), zeatin O-glucoside (ZOG), zeatin riboside O-glucoside (ZROG), zeatin riboside 5-monophosphate (ZRMP), and isopentenyl adenosine 5-monophosphate (iPAMP) were detected. Concentrations of CKs in axillary bud tissue far exceeded those in root tissue. Indole 3-butyric acid pretreatment influenced the concentration of CKs in axillary bud tissue more than did cutting size, whereas pretreatments only slightly affected CKs in root tissue. The dominant CKs found were iPAMP and ZR. An early and large increase in iPAMP indicated rapid CK biosynthesis in rootless cuttings, suggesting that green parts, including the axillary bud, can synthesize CKs. At the onset of axillary bud growth an increase in concentration of Z, ZR, ZRMP, ZOG, and ZROG was largely coincident with a decrease in iPAMP, iPA, iP, and DHZR. After the onset of axillary bud growth, CK content largely decreased. These results strongly indicate a positive role for CKs in axillary bud growth, and presumably ZRMP, ZR, and Z are active in miniature rose.  相似文献   

4.
Endopeptidase activity in cotyledons of 5-day seedlings of Pisum sativum increased rapidly during germination. However, the increase of the activity in detached cotyledons was depressed. We examined whether a growth regulator can be substituted for the embryonic axis on the development of endopeptidase activity. As monitored by an assay with azoalbumin, the development of endopeptidase activity from crude extracts of detached cotyledons appeared to be slightly accelerated by incubation with 10–5 M GA3. However, the pattern after gelatin-polyacrylamide gel suggested that the activity induced in detached cotyledons during a 5-d incubation at 10–7 M GA3 was the same as that in attached ones during germination for 5 days and an even greater increase in activity was obtained with 10–5 M GA3. These results suggest that GA3 from the embryonic axis induces endopeptidase activity in attached cotyledons at the first stage of germination.Abbreviations ABA abscisic acid - IAA indole-3-acetic acid - GA gibberellic acid  相似文献   

5.
S. P. C. Groot  C. M. Karssen 《Planta》1987,171(4):525-531
The germination of seeds of tomato [Lycopersicon esculentum (L.) Mill.] cv. Moneymaker has been compared with that of seeds of the gibberellin-deficient dwarf-mutant line ga-1, induced in the same genetic background. Germination of tomato seeds was absolutely dependent on the presence of either endogenous or exogenous gibberellins (GAs). Gibberellin A4+7 was 1000-fold more active than commercial gibberellic acid in inducing germination of the ga-1 seeds. Red light, a preincubation at 2°C, and ethylene did not stimulate germination of ga-1 seeds in the absence of GA4+7; however, fusicoccin did stimulate germination independently. Removal of the endosperm and testa layers opposite the radicle tip caused germination of ga-1 seeds in water. The seedlings and plants that develop from the detipped ga-1 seeds exhibited the extreme dwarfy phenotype that is normal to this genotype. Measurements of the mechanical resistance of the surrounding layers showed that the major action of GAs was directed to the weakening of the endosperm cells around the radicle tip. In wild-type seeds this weakening occurred in water before radicle protrusion. In ga-1 seeds a similar event was dependent on GA4+7, while fusicoccin also had some activity. Simultaneous incubation of de-embryonated endosperms and isolated axes showed that wild-type embryos contain and endosperm-weakening factor that is absent in ga-1 axes and is probably a GA. Thus, an endogenous GA facilitates germination in tomato seeds by weakening the mechanical restraint of the endosperm cells to permit radicle protrusion.Abbreviations GA(s) gibberellin(s) - GA3 gibberellic acid  相似文献   

6.
关于中国沙棘克隆生长调节研究目前局限于外在机制,旨在探讨其克隆生长对灌水强度的响应规律及其激素调控的内在机制。结果表明:随着灌水强度的增大,分株生长、克隆繁殖、克隆扩散能力先升后降,IAA(吲哚-3-乙酸)、ZR(玉米素核苷)、GA_3(赤霉酸)含量及其与ABA(脱落酸)的比值先升后降而ABA含量先降后升。同时,分株生长、克隆繁殖、克隆扩散能力与IAA、ZR、GA_3含量以及IAA/ABA、ZR/ABA、GA_3/ABA呈极显著或显著正相关,与ABA含量呈极显著负相关。灌水强度过小或过大,IAA、ZR、GA_3含量以及IAA/ABA、ZR/ABA、GA_3/ABA低而ABA含量高,克隆生长潜力受到抑制,种群以分株小、数量少(分布稀疏)、扩散(水平根延伸和分枝)能力弱为特征,克隆生长格局倾向于"游击型"、种群早衰概率高;灌水强度适宜,IAA、ZR、GA_3含量以及IAA/ABA、ZR/ABA、GA_3/ABA高而ABA含量低,克隆生长潜力得以充分发挥,种群以分株大、数量多(分布密集)、扩散能力强为特征,克隆生长格局倾向于"聚集型"、种群稳定性高。随着灌水强度过小-适宜-过大的连续变化,中国沙棘通过改变激素状况调控克隆生长,从而形成与灌水强度相适应的克隆生长格局连续体"游击型-聚集型-游击型",种群稳定性呈"低-高-低"的连续变化过程。由此可见:灌水强度诱导内源激素发生改变,激素特征调控克隆生长格局,克隆生长格局决定种群稳定性。  相似文献   

7.
The contents of indole-3-acetic acid (IAA), gibberellins (GAs), abscisic acid (ABA), and cytokinins were determined in ovules of normal cotton (Tm-1) and a kind of fiber differentiation mutant (Xin) before and after flowering by enzyme-linked immunosorbent assays. It was found that 24 h before flowering, a peak of IAA content was observed in ovules of Tm-1, whereas in ovules of Xin, a low level of IAA was determined. From –1 day (1 day before flowering) to +3 days (3 days after flowering), GA1+3 levels in ovules of Xin were 40–70% lower than those of Tm-1; GA4+7 levels were very low, and there was no visible difference in GA4+7 content between normal and mutant cotton. The ABA content in ovule of Tm-1 decreased by 70% 3 days after flowering, whereas that of Xin only decreased by 20%. The levels of cytokinins in ovules of Tm-1 decreased after flowering, and those of Xin kept up a steady increase.Abbreviations IAA indole-3-acetic acid - GA gibberellin - ABA abscisic acid - ELISA enzyme-linked immunosorbent assay - FW fresh weight - PBS phosphate-buffered saline - iPA isopentenyladenosine - ZR zeatin riboside - DHZR dihydrozeatin riboside - CTK cytokinin  相似文献   

8.
The germination of seeds of celery (Apium graveolens L.) becomes progressively thermoinhibited on incubation in the dark at high temperatures, the inhibitory temperature being dependent on the cultivar used. In two high-dormancy cultivars of celery, the production of germination inhibitors in seeds incubated in the dark at 26°C gradually increased over a 7-day period. Inhibitor production was measured by incubating seeds of the low-dormancy cultivar Florida 683 in homogenates of the thermoinhibited seeds of the high-dormancy cultivars and recording germination either in the light or with the gibberellins A4 and A7 (GA4/7) in the dark. Most Florida 683 seeds which failed to germinate in the homogenates after 15 days were induced to germinate by addition of N6-benzyladenine (BA). The presence of BA in addition to GA4/7 throughout incubation in the dark completely overcame the inhibitory effects of homogenates. This indicates that thermoinhibition of celery seeds is associated with the accumulation of a germination inhibitor which interacts with cytokinins. This does not appear to be abscisic acid (ABA) since ABA levels in thermoinhibited seeds were lower than in untreated seeds and did not increase with duration of high temperature treatment.Abbreviations ABA Abscisic acid - BA N6-benzyladenine - GA4/7 a mixture of the gibberellins A4 and A7 - HTP high-temperature pretreatment  相似文献   

9.
T. L. Wang  R. Horgan 《Planta》1978,140(2):151-153
Dihydrozeatin riboside has been identified in the leaves of decapitated bean plants by Sephadex LH20 chromatography and combined gas chromatography-mass spectrometry. The relationship between the cytokinins isolated and identified from this system and those previously reported in Phaseolus is discussed.Abbreviations DHZ dihydrozeatin - DHZOG dihydrozeatin-O--D-glucoside - DHZR dihydrozeatin riboside - GCMS combined gas chromatography-mass spectrometry - GLC gas-liquid chromatography - TIC total ion current - TMS trimethylsilyl - Z zeatin - ZR zeatin riboside  相似文献   

10.
The role of gibberellins (GAs) during germination and early seedling growth is examined by following the metabolism and transport of radiolabeled GAs in cotyledon, shoot, and root tissues of pea (Pisum sativum L.) using an aseptic culture system. Mature pea seeds have significant endogenous GA20 levels that fall during germination and early seedling growth, a period when the seedling develops the capacity to transport GA20 from the cotyledon to the shoot and root of the seedling. Even though cotyledons at 0–2 days after imbibition have appreciable amounts of GA20, the cotyledons retain the ability to metabolize labeled GA19 to GA20 and express significant levels of PsGA20ox2 message (which encodes a GA biosynthesis enzyme, GA 20-oxidase). The large pool of cotyledonary GA20 likely provides substrate for GA1 synthesis in the cotyledons during germination, as well as for shoots and roots during early seedling growth. The shoots and roots express GA metabolism genes (PsGA3ox genes which encode GA 3-oxidases for synthesis of bioactive GA1, and PsGA2ox genes which encode GA 2-oxidases for deactivation of GAs to GA29 and GA8), and they develop the capacity to metabolize GAs as necessary for seedling establishment. Auxins also show an interesting pattern during early seedling growth, with higher levels of 4-chloro-indole-3-acetic acid (4-Cl-IAA) in mature seeds and higher levels of indole-3-acetic acid (IAA) in young root and shoot tissues. This suggests a changing role for auxins during early seedling development.  相似文献   

11.
Eight cytokinins detected in germinated chick-pea (Cicer arietinum L. var. Castellana) seeds were first present in the embryonic axes but appeared in the cotyledons after 12h of germination. The cytokinins detected in the cotyledons originate in the embryonic axes, but no passage of these substances from the cotyledons to the axes was detected, except when the seeds were treated with red light.It is concluded that the role played by the embryonic axis in mobilizating the main reserves of the cotyledons is mainly effected through these cytokinins. Both natural and synthetic cytokinins exert an important regulatory role in the hydrolysis of reserve proteins and calcium could be involved as an intermediate.Abbreviations BA benzyladenine - cot. cotyledon - (diH)Z dihydrozeatin - (diH)ZR dihydrozeatin riboside - GZR glycosyl zeatin riboside - 2iP 277-1 - iPA 277-2 riboside - Kin kinetin - Z zeatin - ZG zeatin glucoside - ZR zeatin riboside  相似文献   

12.
The “Havana 425” cultivar of Nicotiana tabacum L. is photodormant. Gibberellins (e.g. 10?5 M GA4 or GA7) can substitute for light in releasing dormancy. Measurements of β-1,3-glucanase activity, mRNA accumulation and the activity of the class I β-1,3-glucanase B promoter indicated that class I β-1,3-glucanases are induced by GA4 in the dark in association with germination. As in the light, this induction occurred prior to endosperm rupture and was localized exclusively in the micropylar region of the endosperm where the radicle will penetrate. Abscisic acid (ABA, 10?5 M) did not appreciably affect GA-induced release of photodormancy or seed-coat rupture, but it delayed endosperm rupture and inhibited the rate of class I β-1,3-glucanase accumulation. Seeds imbibed in the light in the presence of osmotica, e.g. 0.04 M polyethylene glycol 6000, showed delayed seed-coat and endosperm rupture, delayed onset of β-1,3-glucanase induction, and decreased rates of β-1,3-glucanase accumulation. These delays were shortened by GA4 treatment. Our results suggest that GAs and ABA act at two distinct sites during germination and that expansive growth of the embryo acts in two ways by triggering β-1,3-glucanase induction and by providing force for endosperm penetration. This provides further support for our working hypothesis that class I β-1,3-glucanases promote endosperm weakening and facilitate radicle penetration.  相似文献   

13.
以紫斑牡丹种子为试验材料,研究不同浓度的赤霉素(GA_3)处理对种子生根以及生根过程中营养物质、酶活性和内源激素水平变化的影响,为探讨紫斑牡丹种子萌发机制提供依据。结果表明:(1)GA_3处理能够促进种子生根,并以300 mg/L GA_3处理对种子生根效果最好,与对照相比可提前14.67 d生根,生根率可达71.00%。(2)与对照相比,GA_3处理可以在0~15 d时促进种子淀粉水解和可溶性糖的积累,并加速可溶性蛋白的消耗,在0~30 d促进过氧化物酶(POD)活性的提高,从而促进种子萌发生根。(3)在种子沙藏生根过程中,种子脱落酸(ABA)含量呈下降趋势,赤霉素(GA)、玉米素核苷(ZR)和吲哚乙酸(IAA)含量均表现出先上升后下降的趋势,与对照相比,GA_3处理可使种子GA、ZR和IAA的含量在沙藏前期明显上升,以解除种子休眠。研究发现,外源GA_3处理可以调控紫斑牡丹种子内源激素含量和POD活性的变化,促进营养物质转化,从而提前解除种子休眠使其萌发。  相似文献   

14.
Kinetin at 10 mg l–1 increased the number of flowers produced on Rosa damascena plants while GA3 inhibited flowering. In the leaves of non-flowering plants GA-like activity was high while specific cytokinin activity (fraction-II) was significantly higher in flowering plants. A novel compound 10- methyldihydrozeatin riboside and isopentenyl-adenine were identified from TLC fraction-II while TLC fraction-I yielded zeatin and 2-hydroxy-6-methylaminopurine.Abbreviations TLC thin layer chromatography - BA N6-benzyladenine - GA3 gibberellic acid CIMAP communication No. 92-40J  相似文献   

15.
Grain filling is usually not adequate in later-flowering inferior spikelets in japonica/indica (J/I) hybrid rice (Oryza sativa) although it shows stronger hybrid vigor than indica/indica (I/I) hybrid. This study investigated the potential causes by examining changes in zeatin (Z) + zeatin riboside (ZR), indole-3-acetic acid (IAA), gibberellins (GAs, GA1 + GA4), and abscisic acid (ABA) in spikelets and roots during the grain filling period. The inferior spikelets of J/I hybrid exhibited low rate of endosperm cell division and slow grain filling. During the early grain filing period, they had less Z + ZR, IAA, and ABA, but more GAs, than the earlier-flowering superior spikelets. If compared to the inferior spikelets of the I/I hybrid, the J/I inferior spikelets also had less Z + ZR, IAA, and ABA. Rates of endosperm cell division and grain filling were positively and significantly correlated with Z + ZR and ABA contents in both grains and roots or IAA in grains, whereas not significantly correlated with GAs either in grains or roots or IAA in roots. Applications of kinetin, IAA, or ABA to spikelets, or kinetin and ABA to roots, enhanced cell division and grain filling in the inferior spikelets. Results suggest that low contents of cytokinins and ABA in both grains and roots and low contents of IAA in grains may result in the poor filling of inferior spikelets in the J/I hybrid.  相似文献   

16.
Fei H  Zhang R  Pharis RP  Sawhney VK 《Planta》2004,219(4):649-660
Earlier, we reported that mutation in the Male Sterile33 (MS33) locus in Arabidopsis thaliana causes inhibition of stamen filament growth and a defect in the maturation of pollen grains [Fei and Sawhney (1999) Physiol Plant 105:165–170; Fei and Sawhney (2001) Can J Bot 79:118–129]. Here we report that the ms33 mutant has other pleiotropic effects, including aberrant growth of all floral organs and a delay in seed germination and in flowering time. These defects could be partially or completely restored by low temperature or by exogenous gibberellin A4 (GA4), which in all cases was more effective than GA3 Analysis of endogenous GAs showed that in wild type (WT) mature flowers GA4 was the major GA, and that relative to WT the ms33 flowers had low levels of the growth active GAs, GA1 and GA4, and very reduced levels of GA9, GA24 and GA15, precursors of GA4. This suggests that mutation in the MS33 gene may suppress the GA biosynthetic pathway that leads to GA4 via GA9 and the early 13-H C20 GAs. WT flowers also possessed a much higher level of indole-3-acetic acid (IAA), and a lower level of abscisic acid (ABA), relative to ms33 flowers. Low temperature induced partial restoration of male fertility in the ms33 flowers and this was associated with partial increase in GA4. In contrast, in WT flowers GA1 and GA4 were very much reduced by low temperature. Low temperature also had little effect on IAA or ABA levels of ms33 flowers, but did reduce (>2-fold) IAA levels in WT flowers. The double mutants, ms33 aba1-1 (an ABA-deficient mutant), and ms33 spy-3 (a GA signal transduction mutant) had flower phenotypes similar to ms33. Together, the data suggest that the developmental defects in the ms33 mutant are unrelated to ABA levels, but may be causally associated with reduced levels of IAA, GA1 and GA4, compared to WT flowers.Abbreviations ABA Abscisic acid - GA Gibberellin - GC-MS-SIM Gas chromatography-mass spectrometry-selected ion monitoring - IAA Indole-3-acetic acid - ms33 Male sterile33 mutant - PP333 Paclobutrazol - WT Wild type  相似文献   

17.
Accumulation of protein and starch in grain is a key process determining grain yield and quality in wheat. Under drought or waterlogging, endogenous plant hormone levels will change and may have an impact on the yield and quality of wheat. In a greenhouse experiment, four winter wheat (Triticum aestivum L.) varieties differing in grain protein content, Heimai 76, Wanmai 38, Yangmai 10 and Yangmai 9, were subjected to drought (SRWC = 4550%, DR), waterlogging (WL) and moderate water supply (SRWC = 7580%, CK), beginning from 4 days post-anthesis (DPA) to maturity. On the 10 (grain enlargement stage) and 20 (grain filling stage) DPA, endogenous abscisic acid (ABA), gibberellins (GA1+3), indole-3-acetic acid (IAA) and zeatin riboside (ZR) were determined in sink and source organs of wheat plants by enzyme linked immunosorbent assay (ELISA). The patterns of hormonal changes were similar in four varieties. The ABA levels were much higher under DR and WL than under CK. Compared with CK, GA1+3 levels in whole-plant under DR and WL changed a little at 10 DPA, but markedly decreased under DR and WL at 20 DPA. Changes of endogenous IAA level under DR and WL exhibited a complicated pattern, depending on organs and growth stages. Particularly at the 20 DPA, the mean levels of IAA in roots, leaves and grains decreased significantly under DR and WL. In comparison with CK, ZR levels in all organs significantly decreased under DR and WL at both stages. The correlation analyses between yields and contents of starch and protein in grains and levels and ratios of four hormones in source and sink organs indicated that the changes in yield and content of grain starch and protein under DR and WL were associated with the reduced IAA, ZR and GA1+3 levels and elevated ABA level in plants, especially in grains. It was proposed that the changed levels of endogenous hormones under post-anthesis DR and WL might indirectly affect protein and starch accumulation in grains by influencing the regulatory enzymes and processes.  相似文献   

18.
Ethephon (Eth), gibberellin A3, A4 + 7 (GA3, GA4 + 7), and 6-benzyladenine (BA) removed secondary dormancy of Amaranthus caudatus seeds. The GAs and BA potentiated the effect of ethephon or 1-aminocyclopropane-1-carboxylic acid (ACC), an ethylene biosynthesis precursor, in terms of the rate or final percent of germination. Aminoethoxyvinylglycine (AVG), an ACC synthase activity inhibitor, was observed to simultaneously inhibit the release from dormancy effected by GA3 or BA as well as the ethylene production stimulated by these regulators. Breaking of secondary dormancy by GA3, GA4 + 7 or BA was prevented by 2,5-norbornadiene (NBD), an inhibitor of ethylene binding. Ethylene completely or markedly reversed the inhibitory effect of NBD. We thus conclude that the removal of secondary dormancy in Amaranthus caudatus seeds by gibberellin or benzyladenine involves ethylene biosynthesis and action.  相似文献   

19.
Gibberellin A4 (GA4) can substitute for light in the germination of Grand Rapids lettuce seeds. Seeds imbibed in [3H]GA4 do not convert this to other GAs prior to, or immediately following, visible germination: thus GA4 alone can promote radicle expansion. Abscisic acid inhibited [3H]GA4-induced germination, but did not significantly affect [3H]GA4 uptake or metabolism during germination. 6N-benzyladenine overcame the inhibitory effect of abscisic acid and increased [3H]GA4 uptake, although radicle emergence was delayed somewhat.  相似文献   

20.
Oat seeds are susceptible to high temperature dormancy. Dormant grainsdo not germinate at 30 °C unless afterripened, dry, for severalweeks. Isolated embryos of dormant grains do germinate, especially ifGA3 is added to the germination medium. ABA inhibits germinationproportionally to the concentration applied and GA3 can overcome theABA inhibitory effect. Measurements of endogenous ABA and several GAs revealedthat the initial levels of ABA in dormant and non-dormant grains were quitesimilar. But, endogenous ABA in non-dormant seeds almost disappeared within thefirst 16 h of imbibition, while the amount in dormant grains haddecreased by less than 24%. The level of GA19 in non-dormant seedswas higher, and GA19 appears to be converted to GA20 within the first 16h. The GA20 was converted to GA1 at leastduring the first 48 h of the germination process. Bothphytohormones thus appear to be involved in the germination process ofnon-dormant seeds. ABA first declines, while GA1 is producedduring the first 16 h of imbibition to allow proper germination.Indormant grains the level of ABA remained high enough to prevent germinationduring at least a week and precursor GAs were not converted to GA1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号