首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Eisenreich W  Bacher A 《Phytochemistry》2007,68(22-24):2799-2815
Rapid progress in instrumentation and software made nuclear magnetic resonance spectroscopy (NMR) one of the most powerful analytical methods in biological sciences. Whereas the development of multidimensional NMR pulse sequences is an ongoing process, a small subset of two-dimensional NMR experiments is typically sufficient for the rapid structure determination of small metabolites. The use of sophisticated three- and four-dimensional NMR experiments enables the determination of the three-dimensional structures of proteins with a molecular weight up to 100 kDa, and solution structures of more than 100 plant proteins have been established by NMR spectroscopy. NMR has also been introduced to the emerging field of metabolomics where it can provide unbiased information about metabolite profiles of plant extracts. In recent times, high-resolution NMR has become a key technology for the elucidation of biosynthetic pathways and metabolite flux via quantitative assessment of multiple isotopologues. This review summarizes some of the recent advances of high-resolution NMR spectroscopy in the field of plant sciences.  相似文献   

2.
High-resolution solid-state NMR spectroscopy can provide structural information of proteins that cannot be studied by X-ray crystallography or solution NMR spectroscopy. Here we demonstrate that it is possible to determine a protein structure by solid-state NMR to a resolution comparable to that by solution NMR. Using an iterative assignment and structure calculation protocol, a large number of distance restraints was extracted from (1)H/(1)H mixing experiments recorded on a single uniformly labeled sample under magic angle spinning conditions. The calculated structure has a coordinate precision of 0.6 A and 1.3 A for the backbone and side chain heavy atoms, respectively, and deviates from the structure observed in solution. The approach is expected to be applicable to larger systems enabling the determination of high-resolution structures of amyloid or membrane proteins.  相似文献   

3.
RNA aptamers are used in a wide range of biotechnological or biomedical applications. In many cases the high resolution structures of these aptamers in their ligand-complexes have revealed fundamental aspects of RNA folding and RNA small molecule interactions. Fluorescent RNA-ligand complexes in particular find applications as optical sensors or as endogenous fluorescent tags for RNA tracking in vivo. Structures of RNA aptamers and aptamer ligand complexes constitute the starting point for rational function directed optimization approaches. Here, we present the NMR resonance assignment of an RNA aptamer binding to the fluorescent ligand tetramethylrhodamine (TMR) in complex with the ligand 5-carboxy-tetramethylrhodamine (5-TAMRA) as a starting point for a high-resolution structure determination using NMR spectroscopy in solution.  相似文献   

4.
《Nucleic acids research》2020,48(22):12415
The current pandemic situation caused by the Betacoronavirus SARS-CoV-2 (SCoV2) highlights the need for coordinated research to combat COVID-19. A particularly important aspect is the development of medication. In addition to viral proteins, structured RNA elements represent a potent alternative as drug targets. The search for drugs that target RNA requires their high-resolution structural characterization. Using nuclear magnetic resonance (NMR) spectroscopy, a worldwide consortium of NMR researchers aims to characterize potential RNA drug targets of SCoV2. Here, we report the characterization of 15 conserved RNA elements located at the 5′ end, the ribosomal frameshift segment and the 3′-untranslated region (3′-UTR) of the SCoV2 genome, their large-scale production and NMR-based secondary structure determination. The NMR data are corroborated with secondary structure probing by DMS footprinting experiments. The close agreement of NMR secondary structure determination of isolated RNA elements with DMS footprinting and NMR performed on larger RNA regions shows that the secondary structure elements fold independently. The NMR data reported here provide the basis for NMR investigations of RNA function, RNA interactions with viral and host proteins and screening campaigns to identify potential RNA binders for pharmaceutical intervention.  相似文献   

5.
We present a high-resolution nuclear magnetic resonance (NMR) solution structure of a 14-mer RNA hairpin capped by cUUCGg tetraloop. This short and very stable RNA presents an important model system for the study of RNA structure and dynamics using NMR spectroscopy, molecular dynamics (MD) simulations and RNA force-field development. The extraordinary high precision of the structure (root mean square deviation of 0.3 Å) could be achieved by measuring and incorporating all currently accessible NMR parameters, including distances derived from nuclear Overhauser effect (NOE) intensities, torsion-angle dependent homonuclear and heteronuclear scalar coupling constants, projection-angle-dependent cross-correlated relaxation rates and residual dipolar couplings. The structure calculations were performed with the program CNS using the ARIA setup and protocols. The structure quality was further improved by a final refinement in explicit water using OPLS force field parameters for non-bonded interactions and charges. In addition, the 2′-hydroxyl groups have been assigned and their conformation has been analyzed based on NOE contacts. The structure currently defines a benchmark for the precision and accuracy amenable to RNA structure determination by NMR spectroscopy. Here, we discuss the impact of various NMR restraints on structure quality and discuss in detail the dynamics of this system as previously determined.  相似文献   

6.
Xu Y  Zheng Y  Fan JS  Yang D 《Nature methods》2006,3(11):931-937
So far high-resolution structure determination by nuclear magnetic resonance (NMR) spectroscopy has been limited to proteins <30 kDa, although global fold determination is possible for substantially larger proteins. Here we present a strategy for assigning backbone and side-chain resonances of large proteins without deuteration, with which one can obtain high-resolution structures from (1)H-(1)H distance restraints. The strategy uses information from through-bond correlation experiments to filter intraresidue and sequential correlations from through-space correlation experiments, and then matches the filtered correlations to obtain sequential assignment. We demonstrate this strategy on three proteins ranging from 24 to 65 kDa for resonance assignment and on maltose binding protein (42 kDa) and hemoglobin (65 kDa) for high-resolution structure determination. The strategy extends the size limit for structure determination by NMR spectroscopy to 42 kDa for monomeric proteins and to 65 kDa for differentially labeled multimeric proteins without the need for deuteration or selective labeling.  相似文献   

7.
8.
We present two NMR experiments, (3,2)D HNHA and (3,2)D HNHB, for rapid and accurate measurement of 3J(H N-H alpha) and 3J(N-H beta) coupling constants in polypeptides based on the principle of G-matrix Fourier transform NMR spectroscopy and quantitative J-correlation. These experiments, which facilitate fast acquisition of three-dimensional data with high spectral/digital resolution and chemical shift dispersion, will provide renewed opportunities to utilize them for sequence specific resonance assignments, estimation/characterization of secondary structure with/without prior knowledge of resonance assignments, stereospecific assignment of prochiral groups and 3D structure determination, refinement and validation. Taken together, these experiments have a wide range of applications from structural genomics projects to studying structure and folding in polypeptides.  相似文献   

9.
Long-range structural information derived from paramagnetic relaxation enhancement observed in the presence of a paramagnetic nitroxide radical is highly useful for structural characterization of globular, modular and intrinsically disordered proteins, as well as protein–protein and protein-DNA complexes. Here we characterized the conformation of a spin-label attached to the homodimeric protein CylR2 using a combination of X-ray crystallography, electron paramagnetic resonance (EPR) and NMR spectroscopy. Close agreement was found between the conformation of the spin label observed in the crystal structure with interspin distances measured by EPR and signal broadening in NMR spectra, suggesting that the conformation seen in the crystal structure is also preferred in solution. In contrast, conformations of the spin label observed in crystal structures of T4 lysozyme are not in agreement with the paramagnetic relaxation enhancement observed for spin-labeled CylR2 in solution. Our data demonstrate that accurate positioning of the paramagnetic center is essential for high-resolution structure determination.  相似文献   

10.
More than 40% of the RNA structures have been determined using nuclear magnetic resonance (NMR) technique. NMR mainly provides local structural information of protons and works most effectively on relatively small biomacromolecules. Hence structural characterization of large RNAs can be difficult for NMR alone. Electron microscopy (EM) provides global shape information of macromolecules at nanometer resolution, which should be complementary to NMR for RNA structure determination. Here we developed a new energy term in Xplor-NIH against the density map obtained by EM. We conjointly used NMR and map restraints for the structure refinement of three RNA systems — U2/U6 small-nuclear RNA, genome-packing motif (ΨCD)2 from Moloney murine leukemia virus, and ribosome-binding element from turnip crinkle virus. In all three systems, we showed that the incorporation of a map restraint, either experimental or generated from known PDB structure, greatly improves structural precision and accuracy. Importantly, our method does not rely on an initial model assembled from RNA duplexes, and allows full torsional freedom for each nucleotide in the torsion angle simulated annealing refinement. As increasing number of macromolecules can be characterized by both NMR and EM, the marriage between the two techniques would enable better characterization of RNA three-dimensional structures.  相似文献   

11.
Protein structure determination using nuclear magnetic resonance (NMR) spectroscopy can be both time-consuming and labor intensive. Here we demonstrate how chemical shift threading can permit rapid, robust, and accurate protein structure determination using only chemical shift data. Threading is a relatively old bioinformatics technique that uses a combination of sequence information and predicted (or experimentally acquired) low-resolution structural data to generate high-resolution 3D protein structures. The key motivations behind using NMR chemical shifts for protein threading lie in the fact that they are easy to measure, they are available prior to 3D structure determination, and they contain vital structural information. The method we have developed uses not only sequence and chemical shift similarity but also chemical shift-derived secondary structure, shift-derived super-secondary structure, and shift-derived accessible surface area to generate a high quality protein structure regardless of the sequence similarity (or lack thereof) to a known structure already in the PDB. The method (called E-Thrifty) was found to be very fast (often?<?10 min/structure) and to significantly outperform other shift-based or threading-based structure determination methods (in terms of top template model accuracy)—with an average TM-score performance of 0.68 (vs. 0.50–0.62 for other methods). Coupled with recent developments in chemical shift refinement, these results suggest that protein structure determination, using only NMR chemical shifts, is becoming increasingly practical and reliable. E-Thrifty is available as a web server at http://ethrifty.ca.  相似文献   

12.
核磁共振波谱应用于结构生物学的研究进展   总被引:1,自引:0,他引:1  
综述了核磁共振波谱在结构生物学研究中的进展。在溶液中测定生物大分子的结构,分子大小的限制正被减少,尽管新结构的测定仍然需要付出比较大的努力。核磁共振是一个有效的手段,可用于研究在许多细胞过程中存在的弱的或者瞬态的蛋白质-蛋白质相互作用。结构的柔性在蛋白质分子功能中起了中心作用。由于最近方法学的发展,使NMR可以表征蛋白质的动力学,从而可以对分子机制有新的认识。核磁共振波谱可以在原子分辨率下表征无序的蛋白质系统,可以研究折叠路径。跨膜蛋白在细胞中起了关键作用,这使它们成为药物的靶标。应用液体和固体核磁共振技术已经成功测定了跨膜蛋白质的结构。  相似文献   

13.
The low sensitivity inherent to both the static and magic angle spinning techniques of solid-state NMR (ssNMR) spectroscopy has thus far limited the routine application of multidimensional experiments to determine the structure of membrane proteins in lipid bilayers. Here, we demonstrate the advantage of using a recently developed class of experiments, polarization optimized experiments, for both static and MAS spectroscopy to achieve higher sensitivity and substantial time-savings for 2D and 3D experiments. We used sarcolipin, a single pass membrane protein, reconstituted in oriented bicelles (for oriented ssNMR) and multilamellar vesicles (for MAS ssNMR) as a benchmark. The restraints derived by these experiments are then combined into a hybrid energy function to allow simultaneous determination of structure and topology. The resulting structural ensemble converged to a helical conformation with a backbone RMSD ~0.44 Å, a tilt angle of 24° ± 1°, and an azimuthal angle of 55° ± 6°. This work represents a crucial first step toward obtaining high-resolution structures of large membrane proteins using combined multidimensional oriented solid-state NMR and magic angle spinning solid-state NMR.  相似文献   

14.
15.
Great strides in understanding the molecular underpinnings of RNA catalysis have been achieved with advances in RNA structure determination by NMR spectroscopy and X-ray crystallography. Despite these successes the functional relevance of a given structure can only be assessed upon comparison with biochemical studies performed on functioning RNA molecules. The hairpin ribozyme presents an excellent case study for such a comparison. The active site is comprised of two stems each with an internal loop that forms a series of non-canonical base pairs. These loops dock into each other to create an active site for catalysis. Recently, three independent structures have been determined for this catalytic RNA, including two NMR structures of the isolated loop A and loop B stems and a high-resolution crystal structure of both loops in a docked conformation. These structures differ significantly both in their tertiary fold and the nature of the non-canonical base pairs formed within each loop. Several of the chemical groups required to achieve a functioning hairpin ribozyme have been determined by nucleotide analog interference mapping (NAIM). Here we compare the three hairpin structures with previously published NAIM data to assess the convergence between the structural and functional data. While there is significant disparity between the interference data and the individual NMR loop structures, there is almost complete congruity with the X-ray structure. The only significant differences cluster around an occluded pocket adjacent to the scissile phosphate. These local differences may suggest a role for these atoms in the transition state, either directly in chemistry or via a local structural rearrangement.  相似文献   

16.
The divide-and-conquer strategy is commonly used for protein structure determination, but its applications to high-resolution structure determination of RNAs have been limited. Here, we introduce an integrative approach based on the divide-and-conquer strategy that was undertaken to determine the solution structure of an RNA model system, the Neurospora VS ribozyme. NMR and SAXS studies were conducted on a minimal trans VS ribozyme as well as several isolated subdomains. A multi-step procedure was used for structure determination that first involved pairing refined NMR structures with SAXS data to obtain structural subensembles of the various subdomains. These subdomain structures were then assembled to build a large set of structural models of the ribozyme, which was subsequently filtered using SAXS data. The resulting NMR-SAXS structural ensemble shares several similarities with the reported crystal structures of the VS ribozyme. However, a local structural difference is observed that affects the global fold by shifting the relative orientation of the two three-way junctions. Thus, this finding highlights a global conformational change associated with substrate binding in the VS ribozyme that is likely critical for its enzymatic activity. Structural studies of other large RNAs should benefit from similar integrative approaches that allow conformational sampling of assembled fragments.  相似文献   

17.
Ribonucleic acid structure determination by NMR spectroscopy relies primarily on local structural restraints provided by 1H 1H NOEs and J-couplings. When employed loosely, these restraints are broadly compatible with A- and B-like helical geometries and give rise to calculated structures that are highly sensitive to the force fields employed during refinement. A survey of recently reported NMR structures reveals significant variations in helical parameters, particularly the major groove width. Although helical parameters observed in high-resolution X-ray crystal structures of isolated A-form RNA helices are sensitive to crystal packing effects, variations among the published X-ray structures are significantly smaller than those observed in NMR structures. Here we show that restraints derived from aromatic 1H 13C residual dipolar couplings (RDCs) and residual chemical shift anisotropies (RCSAs) can overcome NMR restraint and force field deficiencies and afford structures with helical properties similar to those observed in high-resolution X-ray structures.  相似文献   

18.
To understand the RNA-folding problem, we must know the extent to which RNA structure formation is hierarchical (tertiary folding of preformed secondary structure). Recently, nuclear magnetic resonance (NMR) spectroscopy was used to show that Mg2+-dependent tertiary interactions force secondary structure rearrangement in the 56-nt tP5abc RNA, a truncated subdomain of the Tetrahymena group I intron. Here we combine mutagenesis with folding computations, nondenaturing gel electrophoresis, high-resolution NMR spectroscopy, and chemical-modification experiments to probe further the energetic interplay of tertiary and secondary interactions in tP5abc. Point mutations predicted to destabilize the secondary structure of folded tP5abc greatly disrupt its Mg2+-dependent folding, as monitored by nondenaturing gels. Imino proton assignments and sequential NOE walks of the two-dimensional NMR spectrum of one of the tP5abc mutants confirm the predicted secondary structure, which does not change in the presence of Mg2+. In contrast to these data on tP5abc, the same point mutations in the context of the P4-P6 domain (of which P5abc is a subdomain) shift the Mg2+ dependence of P4-P6 folding only moderately, and dimethyl sulfate (DMS) modification experiments demonstrate that Mg2+ does cause secondary structure rearrangement of the P4-P6 mutants' P5abc subdomains. Our data provide experimental support for two simple conclusions: (1) Even single point mutations at bases involved only in secondary structure can be enough to tip the balance between RNA tertiary and secondary interactions. (2) Domain context must be considered in evaluating the relative importance of tertiary and secondary contributions. This tertiary/secondary interplay is likely relevant to the folding of many large RNA and to bimolecular snRNA-snRNA and snRNA-intron RNA interactions.  相似文献   

19.
One bottleneck in NMR structure determination lies in the laborious and time-consuming process of side-chain resonance and NOE assignments. Compared to the well-studied backbone resonance assignment problem, automated side-chain resonance and NOE assignments are relatively less explored. Most NOE assignment algorithms require nearly complete side-chain resonance assignments from a series of through-bond experiments such as HCCH-TOCSY or HCCCONH. Unfortunately, these TOCSY experiments perform poorly on large proteins. To overcome this deficiency, we present a novel algorithm, called Nasca (NOE Assignment and Side-Chain Assignment), to automate both side-chain resonance and NOE assignments and to perform high-resolution protein structure determination in the absence of any explicit through-bond experiment to facilitate side-chain resonance assignment, such as HCCH-TOCSY. After casting the assignment problem into a Markov Random Field (MRF), Nasca extends and applies combinatorial protein design algorithms to compute optimal assignments that best interpret the NMR data. The MRF captures the contact map information of the protein derived from NOESY spectra, exploits the backbone structural information determined by RDCs, and considers all possible side-chain rotamers. The complexity of the combinatorial search is reduced by using a dead-end elimination (DEE) algorithm, which prunes side-chain resonance assignments that are provably not part of the optimal solution. Then an A* search algorithm is employed to find a set of optimal side-chain resonance assignments that best fit the NMR data. These side-chain resonance assignments are then used to resolve the NOE assignment ambiguity and compute high-resolution protein structures. Tests on five proteins show that Nasca assigns resonances for more than 90% of side-chain protons, and achieves about 80% correct assignments. The final structures computed using the NOE distance restraints assigned by Nasca have backbone RMSD 0.8–1.5 Å from the reference structures determined by traditional NMR approaches.  相似文献   

20.
Heteronuclear high-resolution NMR spectroscopy was employed to determine the solution structure of the excisionase protein (Xis) from the lambda-like bacteriophage HK022 and to study its sequence-specific DNA interaction. As wild-type Xis was previously characterized as a generally unstable protein, a biologically active HK022 Xis mutant with a single amino acid substitution Cys28-->Ser was used in this work. This substitution has been shown to diminish the irreversibility of Xis denaturation and subsequent degradation, but does not affect the structural or thermodynamic properties of the protein, as evidenced by NMR and differential scanning calorimetry. The solution structure of HK022 Xis forms a compact, highly ordered protein core with two well-defined alpha-helices (residues 5-11 and 18-27) and five beta-strands (residues 2-4, 30-31, 35-36, 41-44 and 48-49). These data correlate well with 1H2O-2H2O exchange experiments and imply a different organization of the HK022 Xis secondary structure elements in comparison with the previously determined structure of the bacteriophage lambda excisionase. Superposition of both Xis structures indicates a better correspondence of the full-length HK022 Xis to the typical 'winged-helix' DNA-binding motif, as found, for example, in the DNA-binding domain of the Mu-phage repressor. Residues 51-72, which were not resolved in the lambda Xis, do not show any regular structure in HK022 Xis and thus appear to be completely disordered in solution. The resonance assignments have shown, however, that an unusual connectivity exists between residues Asn66 and Gly67 owing to asparagine-isoaspartyl isomerization. Such an isomerization has been previously observed and characterized only in eukaryotic proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号