首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Convergence of corticofugal impulses in reticular and intrinsic pontine nuclei during stimulation of the frontobasal cortex (proreal, posterior orbital, and basal temporal regions) and also of the dorsal hippocampus was studied in acute experiments on cats anesthesized with a mixture of pentobarbital and chloralose. Three foci of convergence of corticofugal impulses were found in these structures: one in the reticular formation and two in the intrinsic nuclei—in their medial and lateral portions. Neurons with an excitatory type of response were shown to predominate in the reticular formation and neurons with an inhibitory or mixed type of response of neurons activated antidromically by stimulation of one brain region and synaptically during stimulation of another, that the pontine nuclei play an integrative role in the functional unification of structures of the frontobasal zones of the neocortex and hippocampus.M. Gor'kii Donetsk Medical Institute. Translated from Neirofiziologiya, Vol. 12, No. 5, pp. 472–480, September–October, 1980.  相似文献   

2.
Unit responses of the nuclei pontis (NP) and reticular pontine nuclei (RPN) to stimulation of the frontobasal cortex (proreal, orbital, and basal temporal regions) and of the dorsal hippocampus were studied in cats. Stimulation of the various cortical structures was found to induce phasic and (less frequently) tonic responses in neurons of NP and RPN. The main type of unit response in RPN was primary excitation, whereas in NP it was primary inhibition. The largest number of responding neurons in the pontine nuclei was observed to stimulation of the proreal gyrus. In the cerebro-cerebellar relay system neurons of the reticular tegmental nucleus and ventromedial portion of NP showed the highest ability to respond. In the oral and caudal reticular pontine nuclei the regions of predominant influence of cortical structures were located in zones of these nuclei where neurons with rostral and (to a lesser degree) caudal projections were situated.M. Gorkii Donetsk Medical Institute. Translated from Neirofiziologiya, Vol. 12, No. 4, pp. 358–367, July–August, 1980.  相似文献   

3.
Unitary responses in the hypothalamic nuclei to stimulation of the frontobasal zones of the cortex (proreal, orbito-insular, and basal temporal regions) were studied. Cortico-thalamic connections were found to possess definite topical organization: the orbito-frontal zones of the cortex have a more marked effect on unit activity of the hypothalamic nuclei than the basal temporal cortex. Antidromic activation, during stimulation of a particular region of the cortex, of neurons excited orthodromically by stimulation of another cortical structure, enables a number of neuronal circuits functioning within the forebrain to be distinguished. The first circuit includes the orbital gyrus, preoptic zone, and proreal gyrus. The second circuit has the same cortical components as the first, but its relay in the hypothalamus takes place in the region of the mamillary bodies. The third circuit is represented by the basal temporal cortex, lateral hypothalamus, and prefrontal cortex.M. Gor'kii Donetsk Medical Institute. Translated from Neirofiziologiya, Vol. 10, No. 1, pp. 44–53, January–February, 1978.  相似文献   

4.
The reactions of 164 neurons of the orbitofrontal cortex (OFC) to stimulation of the mediodorsal nucleus of the thalamus (MD), the amygdaloid complex, and various sections of the hypothalamus, were investigated in acute experiments on cats. Stimulation of the MD led to the development in OFC neurons of reactions with a short (sometimes less than 6 msec) and stable latent period. Similar reactions were observed upon stimulation of the lateral amygdaloid nuclei. Stimulation of the basal and central nuclei of the amygdala evoked synchronization of the discharges in OFC neurons. Stable responses of OFC neurons developed from nuclei of the hypothalamus only in the lateral region. Stimulation of the other nuclei of the hypothalamus was accompanied by irregular responses or synchronization of the discharges. In an analysis of the material obtained, the functional characteristics of the connections between the structures investigated and OFC neurons were examined.State Medical Institute, Kemerovo. Translated from Neirofiziologiya, Vol. 3, No. 5, pp. 484–490, September–October, 1971.  相似文献   

5.
Spontaneous and evoked unit activity in the anterior limbic cortex in response to stimulation of the splanchnic and sciatic nerves and of the mammillary region of the hypothalamus were recorded extracellularly in acute experiments on cats. The study of heterogeneous transsynaptic influence on limbic cortical neurons showed that in the presence of effective sensory viscerosomatic convergence, weak convergence of influences from the central hypothalamic and peripheral sources took place. Short-latency responses of limbic cortical neurons to stimulation of the mammillary bodies consisted of orthodromic and antidromic responses, evidence of the existence of short two-way connections between the anterior limbic cortex and mammillary nuclei of the hypothalamus.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 11, No. 5, pp. 419–426, September–October, 1979.  相似文献   

6.
Adult cats received tritiated proline-leucine injections into the pericruciate cortex (areas 4 gamma and 3a) unilaterally and the projections to the thalamus were analyzed. Ipsilateral projections were found in the following nuclei, from rostral to caudal: ventral anterior, reticular, ventral lateral, central medial, paracentral, central lateral, ventral medial, mediodorsal, ventral posterolateral, ventral posteroinferior, centre median, parafascicular and posterior complex. In the contralateral hemithalamus sparse projections were found within the paracentral, central lateral and ventral medial nuclei.  相似文献   

7.
Responses of caudate neurons to stimulation of the anterior sigmoid and various parts of the suprasylvian gyrus were studied in acute experiments on cats. The experiments consisted of two series: on animals with an intact thalamus and on animals after preliminary destruction of the nonspecific thalamic nuclei. Stimulation of all cortical areas tested in intact animals evoked complex multicomponent responses in caudate neurons with (or without) initial excitation, followed by a phase of inhibition and late activation. The latent periods of the initial responses to stimulation of all parts of the cortex were long and averaged 14.5–25.5 msec. Quantitative and qualitative differences were established in responses of the caudate neurons to stimulation of different parts of the cortex. Considerable convergence of cortical influences on neurons of the caudate nucleus was found. After destruction of the nonspecific thalamic nuclei all components of the complex response of the caudate neurons to cortical stimulation were preserved, and only the time course of late activation was modified.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 5, pp. 464–471, September–October, 1980.  相似文献   

8.
The effects of rhythmical low- and high-frequency stimulation of specific nonsensory anterior ventral and associative mediodorsal thalamic nuclei (AV and MD, respectively) on the activity of neuronal units in the medullary ventral respiratory nucleus were studied in acute experiments on anesthetized, spontaneously breathing cats. Both inhibitory and excitatory influences on spike activity of inspiratory and expiratory neurons were found, with suppression effects being markedly predominant. Thresholds for inspiratory neuronal responses were lower as compared with those for expiratory cells. Electrical AV stimulation mainly produced an inhibitory effect on the activity of nonspecific reticular neurons (without respiratory activity), whereas during MD stimulation activating effects on these neurons dominated. Possible mechanisms underlying the realization of thalamorespiratory influences are discussed.Neirofiziologiya/Neurophysiology, Vol. 25, No. 3, pp. 218–223, May–June, 1993.  相似文献   

9.
Extracellular and intracellular unit responses of thepars principalis of the medial geniculate body to stimulation of the first (AI), second (AII), and third (AIII) auditory cortical areas were studied in cats immobilized with D-tubocurarine. In response to auditory cortical stimulation both antidromic (45–50%) and orthodromic (50–55%) responses occurred in the geniculate neurons. The latent period of the antidromic responses was 0.3–2.5 msec and of the orthodromic 2.0–18.0 msec. Late responses had a latent period of 30–200 msec. Of all neurons responding antidromically to stimulation of AII, 63% responded antidromically to stimulation of AI also, confirming the hypothesis that many of the same neurons of the medial geniculate body have projections into both auditory areas. Orthodromic responses of geniculate neurons consisted either of 1 or 2 spikes or of volleys of 8–12 spikes with a frequency of 300–600/sec. It is suggested that the volleys of spikes were discharges of inhibitory neurons. Intracellular responses were recorded in the form of antidromic spikes, EPSPs, EPSP-spike, EPSP-spike-IPSP, EPSP-IPSP, and primary IPSP. Over 50% of primary IPSP had a latent period of 2.0–4.0 msec. It is suggested that they arose through the participation of inhibitory interneurons located in the medial geniculate body.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 8, No. 1, pp. 5–12, January–February, 1976.  相似文献   

10.
Evoked potential (EPs) and responses of the medial (MPO) and lateral (LPO) preoptic region (RPO) and adjacent structures of the hypothalamus to stimulation of the prefrontal (area 8) and cingulate (area 24) cortex, piriform lobe (periamygdaloid cortex), and hippocampus (area CA3) were investigated in acute experiments on cats under ketamine anesthesia. The most pronounced EPs were observed in the RPO after stimulating the piriform and cingulate cortex. A close relation was found between neuronal responses and EP components. The majority of neurons responding to stimulation of various cortical structures were localized in the LPO, where primarily excitatory responses dominate. The MPO contained somewhat fewer neurons responding to cortical stimulation, and the dominant response here was primarily inhibitory. The ratio of inhibitory and excitatory responses in the LPO was 0.6:1 and in the MPO 5.8:1. Primarily in-inhibitory responses dominated also in the LPO zone adjacent to the bed nucleus stria terminalis (BST) and primarily excitatory in the region surrounding the supraoptic nucleus (SO) (respective ratios 4.9:1 and 0.7:1). The RPO is a broad convergence zone, where 3/4 of the neurons responded to stimuli of two and more cortical regions.A. M. Gorky Medical Institute, Ukrainian Minstry of Health, Donetsk. Translated from Neirofiziologiya, Vol. 23, No. 6, pp. 709–719, November–December, 1991.  相似文献   

11.
Neuronal responses to stimulation of vestibular motor and orbital cerebral cortex were recorded by extracellular techniques in the lateral and medial vestibular nuclei of the bulbar complex during experiments on unanesthetized, immobilized cats. Both phasic and (mostly) tonic response of predominantly inhibitory type were observed. Horseradish peroxidase was injected into the aforementioned nuclei of the vestibular complex during the course of morphological experiments. Labeled neurons were found in the anterior supra- and ectosylvian cerebral gyri, the region of the cruciform sulcus, and that of the orbital cerebral cortex. Findings are discussed from the aspect of corticovestibular interaction.Ivano-Frankovsk Medical Institute, Soviet Ministry of Health. Translated from Neirofiziologiya, Vol. 19, No. 6, pp. 802–809, November–December, 1987.  相似文献   

12.
1. Generalized convulsive seizures can be elicited by a single unilateral microinjection of the cholinergic muscarinic agonist, carbachol, into the specific sites of the thalamus including ventral posterolateral and the reticular thalamic nuclei. The implication of the thalamic specific and reticular neurons is reviewed and discussed.2. On the basis of the c-fos regional expression and well-known efferent and afferent pathways linking these regions, a neuronal network relating the limbic, thalamo–striatal–cortical, and central autonomic systems, was constructed.3. The pattern of Fos immunoreactivity associated with long-lasting isocortical vasodilatation elicited by generalized convulsive seizures in anesthetized rat following cholinergic stimulation of the thalamus can be attributed to both the electrocortical activity and the long-lasting increase in cortical blood flow. We propose that the sustained cerebral cortical blood flow response during convulsive epileptic seizures may implicate intracerebral vasodilatory and vasoconstrictory neural mechanisms. Double-labeled NADPH-d and Fos-positive neurons implicated in maintaining the sustained isocortical vasodilatory response were found in the anterior lateral hypothalamic area. Inhibition of these neurons prevented the increase in cortical blood flow despite an increased metabolic demand manifested by the ictal electrocortical activity.4. Medial temporal lobe atrophy, including hippocampus, amygdala, and parahippocampal gyrus (piriform and entorhinal cortices) are the most common pathology in man. However the origin of medial lobe atrophy remain uncertain. Our results provide evidence that the allocortical microvascular inflammation may be in origin of the neurovascular degenerative processes leading to atrophy.  相似文献   

13.
Projections of different parts of the orbito-frontal cortex, the basal temporal cortex, and the hippocampus on hypothalamic nuclei were studied by recording focal responses in acute experiments on cats anesthetized with pentobarbital and chloralose. The proreal gyrus was shown to have local projections in the latero-dorsal zones of the preoptic region, in the rostral parts of the medial forebrain bundle, and also in the region of the lateral and posterior hypothalamus with the mammillary bodies. The orbital gyrus projects mainly to the latero-dorsal portions of the forebrain bundle, the latero-ventral part of the preoptic region, and the region of the lateral and latero-dorsal hypothalamic nuclei; projections from the orbital gyrus are relatively diffuse in character. The basal temporal cortex has diffuse projections in the central part of the preoptic region, in the latero-ventral parts of the medial forebrain bundle, and in the lateral mammillary body. No marked foci of activity were found in the hypothalamic structures during hippocampal stimulation. Diffuse projections of the hippocampus were traced in the ventral part of the preoptic region and the ventral regions of the medial forebrain bundle, and also in the lateral hypothalamus and in the lateral mammillary nucleus.A. M. Gor'kii Donetsk Medical Institute. Translated from Neirofiziologiya, Vol. 8, No. 4, pp. 358–365, July–August, 1976.  相似文献   

14.
Responses of 92 neurons of the reticular (R) and 105 neurons of the ventral anterior (VA) thalamic nuclei to stimulation of the ventrobasal complex (VB) and the lateral (GL) and medial (GM) geniculate bodies were investigated in cats immobilized with D-tobocurarine. Altogether 72.2% of R neurons and 76.2% of VA neurons responded to stimulation of VB whereas only 15.0% of R neurons and 27.1% of VA neurons responded to stimulation of GM and 10.2% of R neurons and 19.6% of VA neurons responded to stimulation of GL. The response of the R and VA neurons to stimulation of the relay nuclei as a rule was expressed as excitation. A primary inhibitory response was observed for only two R and three VA neurons. Two types of excitable neurons were distinguished: The first respond to afferent stimulation by a discharge consisting of 5–15 spikes with a frequency of 250–300/sec; the second respond by single action potentials. Neurons of the first type closely resemble inhibitory interneurons in the character of the response. Antidromic responses were recorded from 2.2% of R neurons and 7.8% of VA neurons during stimulation of the relay nuclei. Among the R and VA neurons there are some which respond to stimulation not only of one, but of two or even three relay nuclei. If stimulation of one relay nucleus is accompanied by a response of a R or VA neuron, preceding stimulation of another nucleus leads to inhibition of the response to the testing stimulus if the interval between conditioning and testing stimuli is less than 30–50 msec.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 8, No. 6, pp. 597–605, November–December, 1976.  相似文献   

15.
Correlation between morphology and function in the hippocampus and hypothalamus was studied by electrophysiological and morphological techniques. Single unit responses were recorded extracellularly in the arcuate and medial preoptic nuclei of the hypothalamus to application of single stimuli to the hippocampus. Phasic responses and primary inhibition predominated in the arcuate nucleus, whereas both phasic and tonic responses were observed in the medial preoptic nucleus. In the morphological experiments horseradish peroxidase was injected into the same region of the hippocampus. Stained cells were found in the nuclei of the mammillary body, mediobasal hypothalamus, and medial preoptic nucleus. Groups of stained neurons were discovered at the periphery of the ventro- and dorsomedial and also in the lateral and mammillary nuclei of the hypothalamus. Besides fusiform and triangular neurons, reticular neurons also were found in all structures except the medial mammillary nucleus. The results are discussed from the standpoint of interaction between hypothalamus and hippocampus.A. A. Zhdanov State University, Leningrad. Translated from Neirofiziologiya, Vol. 11, No. 5, pp. 427–434, September–October, 1979.  相似文献   

16.
Stimulation of the head of the caudate nucleus in cats anesthetized with chloralose and pentobarbital evoked spike responses of the Purkinje cells and other cerebellar cortical neurons in the paramedian lobes, lobulus simplex, and the tuber of the vermis. Phasic responses in the form of simple discharges (on account of activation of the neurons through mossy fibers) appeared mainly after a latent period of 5–12 and 14–20 msec; the latent period of responses consisting of complex discharges (on account of activation of Purkinje cells through climbing fibers) was 5–6, 9–22 msec, or more. Depending on the latent period, the spike responses differed in their rhythm of generation. In response to stimulation of the caudate nucleus with a frequency of 4–6/sec recruiting responses were found. An inhibitory pause was an invariable component of the tonic responses. During stimulation of the globus pallidus responses of the same types (phasic and tonic) appeared as during stimulation of the caudate nucleus, but they differed in the distribution of the neurons by latent period of spike responses. The minimal latent period was 4 msec. Recruiting also was observed during repetitive stimulation of the globus pallidus. During stimulation of the substantia nigra Pukinje cells activated by climbing fibers responded. Evoked complex discharges appeared after a stable latent period of 8.5±0.3 msec. Arguments are put forward regarding the role of the substantia nigra, the globus pallidus, nuclei of the inferior olive, and also the thalamic nuclei in the mechanism of caudato-cerebellar oligosynaptic and polysynaptic connections.N. I. Pirogov Medical Institute, Vinnitsa. Translated from Neirofiziologiya, Vol. 10, No. 4, pp. 375–384, July–August, 1978.  相似文献   

17.
Unit responses in area 17 of the visual cortex to stimulation of the lateral geniculate body and optic tract were studied in experiments on unanesthetized cats immobilized with D-tubocurarine. Of the neurons tested, 53.6% responded to stimulation of the lateral geniculate body. In 92% of these cells the responses were orthodromic with latent periods of between 2 and 12.5 msec. Most cells responded with latent periods of 2.0–2.5, 3.0–3.5, and 4.0–4.5 msec, corresponding to latent periods of the components of the electropositive wave of the primary response. Antidromic responses to stimulation of the lateral geniculate body were given by 8% of neurons. The difference between the latent periods of responses of the same visual cortical neurons to stimulation of the optic tract and lateral geniculate body was 0.1–1.8 msec, but for most neurons (55.8%) it was 0.5–1 msec. The histograms of response latencies of visual cortical neurons to stimulation of the above-mentioned formations were found to be similar. It is concluded that the optic radiation contains three principal groups of fibers with conduction velocities of 28.5–16.6, 11.7–8.9, and 7.4–6.0 m/sec, respectively.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 7, No. 6, pp. 589–596, November–December, 1975.  相似文献   

18.
Monopolar intracortical stimulation of the auditory cortex was carried out in cats immobilized with D-tubocurarine. A macroelectrode (tip diameter 100 µ) or a microelectrode (tip diameter 10–15 µ) was used for stimulation. In both cases, besides excitatory responses, primary IPSPs with latent periods of 0.4–1.2 and 1.4–6.0 msec were recorded in cortical neurons close to the point of stimulation. The first group of IPSPs are considered to be generated in response to direct stimulation of bodies or axons of inhibitory cortical neurons, i.e., monosynaptically. The amplitude of these IPSPs varied in different neurons from 3 to 15 mV, and their duration from 4 to 150 msec. Additional later inhibitory responses were superposed on many of them. Of the IPSPs generated in auditory cortical neurons in response to stimulation of geniculocortical fibers 1.5% had a latency of 0.8–1.3 msec. They also are assumed to be monosynaptic. It is concluded that the duration of synaptic delay of IPSPs in cortical neurons and spinal motoneurons is the same, namely 0.3–0.4 msec. Axons of auditory cortical inhibitory neurons may be 1.5 mm long. The velocity of impulse conduction along these axons is 1.6–2.8 m/sec. The genesis of some special features of IPSPs of cortical neurons is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 7, No. 5, pp. 458–467, September–October, 1975.  相似文献   

19.
Extra- and intracellular responses of neurons in the primary somatosensory cortex to repetitive mechanical stimulation of the vibrissae at different frequencies were studied in unanesthetized curarized adult cats. Unlike responses to electrical stimulation of the combined afferent input (the infraorbital nerve) spike discharges of neurons in response to vibrissal stimulation can reproduce rather higher frequencies of stimulation and their initial character changes more often in the course of the repetitive series. Most cortical neurons were characterized by limitation of the area of their peripheral receptive fields with an increase in the frequency of adequate repetitive stimulation. A group of cortical neurons was distinguished by its ability to respond to high-frequency stimulation and to generate burst discharges. Comparison of the frequency characteristics of spike responses of these cells and of inhibitory synaptic action in other cortical neurons led to the conclusion that this group of cells thus distinguished may be inhibitory cortical neurons. The role of interaction between excitatory and inhibitory processes arising in cortical neurons during repetitive stimulation of different areas of their receptive fields is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 14, No. 2, pp. 164–171, March–April, 1982.  相似文献   

20.
The character and particular features of interaction between visual, auditory, and electrodermal afferent impulses on neurons of the pulvinar, posterolateral, and mediodorsal thalamic nuclei were studied in acute experiments on cats anesthetized with a mixture of pentobarbital and chloralose. Interaction discovered on cells of both groups of structures was of two types. In the first (the one most frequently found) only inhibition was observed or inhibition followed by facilitation of the response to testing stimulation; in the second type only facilitation or facilitation followed by inhibition of unit activity was found. Overall ability for interaction to take place on neurons of the mediodorsal nucleus was weaker than on cells of the pulvinar-posterolateral complex (P<0.05). Interaction was strongest on trisensory cells; it was also observed on monosensory cells or on cells which did not respond to isolated stimulation.Donetsk Medical Institute. Kemerovo Medical Institute. Translated from Neirofiziologiya, Vol. 10, No. 5, pp. 478–485, September–October, 1978.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号