共查询到20条相似文献,搜索用时 15 毫秒
1.
In rat olfactory bulb homogenate, carbachol stimulated adenylate cyclase activity in a concentration-dependent manner (EC50 = 1.1 microM). The carbachol stimulation occurred fully in membranes that had been prepared in the presence of 1 mM EGTA and incubated in a Ca2(+)-free enzyme reaction medium. Under these conditions, exogenous calmodulin (1 microM) failed to stimulate adenylate cyclase activity. In miniprisms of olfactory bulb, carbachol (1 mM) increased accumulation of inositol phosphates, but this response was markedly reduced in a Ca2(+)-free medium. Moreover, the carbachol stimulation of adenylate cyclase activity was not affected by staurosporine at a concentration (1 microM) that completely blocked the stimulatory effect of phorbol 12-myristate 13-acetate, an activator of Ca2+/phospholipid-dependent protein kinase. Quinacrine, a nonselective phospholipase A2 inhibitor, reduced the carbachol stimulation of adenylate cyclase activity, but this inhibition appeared to be competitive with a Ki of 0.2 microM. Nordihydroguaiaretic acid and indomethacin, two inhibitors of arachidonic acid metabolism, failed to affect the carbachol response. These results indicate that in rat olfactory bulb, muscarinic receptors stimulate adenylate cyclase activity through a mechanism that is independent of Ca2+ and phospholipid hydrolysis. 相似文献
2.
Ethanol increases the activity of "basal," guanine nucleotide- and dopamine-stimulated adenylate cyclase in mouse striatum. In contrast, ethanol, in vitro, did not modify the inhibition of striatal adenylate cyclase activity by opiates (morphine or [D-Ala2,D-Leu5] enkephalin). Following chronic in vivo ethanol treatment of mice, there was also no change in the character of opiate inhibition of striatal adenylate cyclase activity. Since ethanol, in vitro, does decrease striatal opiate receptor binding, the results suggest that the changes in affinity detected by ligand binding studies are not relevant for receptor-coupled adenylate cyclase activity, or that opiate receptor binding and opiate regulation of adenylate cyclase can be modulated independently. The selective effects of ethanol on systems that modulate adenylate cyclase activity may produce imbalances in neuronal function during in vivo ethanol exposure. 相似文献
3.
Abstract: In rat olfactory bulb, muscarinic and opioid receptor agonists stimulate basal adenylyl cyclase activity in a GTP-dependent and pertussis toxin-sensitive manner. However, in the present study, we show that in the same brain area activation of these receptors causes inhibition of adenylyl cyclase activity stimulated by Ca2+ and calmodulin (CaM) and by forskolin (FSK), two direct activators of the catalytic unit of the enzyme. The opioid and muscarinic inhibitions consist of a decrease of the maximal stimulation elicited by either CaM or FSK, without a change in the potency of these agents. [Leu5 ]Enkephalin and selective δ- and μ-, but not κ-, opioid receptors agonists inhibit the FSK stimulation of adenylyl cyclase activity with the same potencies displayed in stimulating basal enzyme activity. Similarly, the muscarinic inhibition of FSK-stimulated adenylyl cyclase activity shows agonist and antagonist sensitivities similar to those characterizing the muscarinic stimulation of basal enzyme activity. Fluoride stimulation of adenylyl cyclase is not affected by either carbachol or [Leu5 ]enkephalin. In vivo treatment of olfactory bulb with pertussis toxin prevents both opioid and muscarinic inhibition of Ca2+ /CaM- and FSK-stimulated enzyme activities. These results indicate that in rat olfactory bulb δ- and μ-opioid receptors and muscarinic receptors, likely of the M4 subtype, can exert a dual effect on cyclic AMP formation by interacting with pertussis toxin-sensitive GTP-binding protein(s) and possibly by affecting different molecular forms of adenylyl cyclase. 相似文献
4.
Effect of Monovalent Cations on Na+ /Ca2+ Exchange and ATP-Dependent Ca2+ Transport in Synaptic Plasma Membranes 总被引:1,自引:0,他引:1
Two Ca2+ transport systems were investigated in plasma membrane vesicles isolated from sheep brain cortex synaptosomes by hypotonic lysis and partial purification. Synaptic plasma membrane vesicles loaded with Na+ (Na+i) accumulate Ca2+ in exchange for Na+, provided that a Na+ gradient (in leads to out) is present. Agents that dissipate the Na+ gradient (monensin) prevent the Na+/Ca2+ exchange completely. Ca2+ accumulated by Na+/Ca2+ exchange can be released by A 23187, indicating that Ca2+ is accumulated intravesicularly. In the absence of any Na+ gradient (K+i-loaded vesicles), the membrane vesicles also accumulate Ca2+ owing to ATP hydrolysis. Monovalent cations stimulate Na+/Ca2+ exchange as well as the ATP-dependent Ca2+ uptake activity. Taking the value for Na+/Ca2+ exchange in the presence of choline chloride (external cation) as reference, other monovalent cations in the external media have the following effects: K+ or NH4+ stimulates Na+/Ca2+ exchange; Li+ or Cs+ inhibits Na+/Ca2+ exchange. The ATP-dependent Ca2+ transport system is stimulated by increasing K+ concentrations in the external medium (Km for K+ is 15 mM). Replacing K+ by Na+ in the external medium inhibits the ATP-dependent Ca2+ uptake, and this effect is due more to the reduction of K+ than to the elevation of Na+. The results suggest that synaptic membrane vesicles isolated from sheep brain cortex synaptosomes possess mechanisms for Na+/Ca2+ exchange and ATP-dependent Ca2+ uptake, whose activity may be regulated by monovalent cations, specifically K+, at physiological concentrations. 相似文献
5.
Effects of Ca2+ Channel Blockers on Ca2+ Translocation Across Synaptosomal Membranes 总被引:2,自引:0,他引:2
The binding of [3H]nimodipine to purified synaptic plasma membranes (SPM) isolated from sheep brain cortex was characterized, and the effects of nimodipine, nifedipine, and (+)-verapamil on the [3H]nimodipine binding were compared to the effects on 45Ca2+ translocation under conditions that separate 45Ca2+ fluxes through Ca2+ channels from 45Ca2+ uptake via Na+/Ca2+ exchange. [3H]Nimodipine labels a single class of sites in SPM, with a KD of 0.64 +/- 0.1 nM, a Bmax of 161 +/- 27 fmol X mg-1 protein, and a Hill slope of 1.07, at 25 degrees C. Competition of [3H]nimodipine binding to purified SPM with unlabelled Ca2+ channel blockers shows that: nifedipine and nimodipine are potent competitors, with IC50 values of 4.7 nM and 5.9 nM, respectively; verapamil and (-)-D 600 are partial competitors, with biphasic competition behavior. Thus, (+)-verapamil shows an IC50 of 708 nM for the higher affinity component and the maximal inhibition is 50% of the specific binding, whereas for (-)-verapamil the IC50 is 120 nM, and the maximal inhibition is 30%; (-)-D 600 is even less potent than verapamil in inhibiting [3H]nimodipine binding (IC50 = 430 nM). However, (+)-verapamil, nifedipine, and nimodipine are less potent in inhibiting depolarization-induced 45Ca2+ influx into synaptosomes in the absence of Na+/Ca2+ exchange than in competing for [3H]nimodipine binding. Thus, (+)-verapamil inhibits Ca2+ influx by 50% at about 500 microM, whereas it inhibits 50% of the binding at concentrations 200-fold lower, and the discrepancy is even larger for the dihydropyridines. The Na+/Ca2+ exchange and the ATP-dependent Ca2+ uptake by SPM vesicles are also inhibited by the Ca2+ channel blockers verapamil, nifedipine, and d-cis-diltiazem, with similar IC50 values and in the same concentration range (10(-5)-10(-3) M) at which they inhibit Ca2+ influx through Ca2+ channels. We conclude that high-affinity binding of the Ca2+ blockers by SPM is not correlated with inhibition of the Ca2+ fluxes through channels in synaptosomes under conditions of minimal Na+/Ca2+ exchange. Furthermore, the relatively high concentrations of blockers required to block the channels also inhibit Ca2+ translocation through the Ca2+-ATPase and the Na+/Ca2+ exchanger. In this study, clear differentiation is made of the effects of the Ca2+ channel blockers on these three mechanisms of moving Ca2+ across the synaptosomal membrane, and particular care is taken to separate the contribution of the Na+/Ca2+ exchange from that of the Ca2+ channels under conditions of K+ depolarization. 相似文献
6.
C. Bezamahouta J. P. Zanetta M. O. Revel J. Zwiller A. Meyer A. N. Malviya G. Vincendon 《Journal of neurochemistry》1987,49(2):584-591
Using sequential extraction procedure of proteins from adult rat forebrain, a protein of Mr 52,000, insoluble in neutral detergents, capable of binding calmodulin in the presence of Ca2+, was isolated. Antibodies to this antigen had the capacity to inhibit the Ca2+/calmodulin-dependent kinase activity associated with this protein. This protein (52K) (in many respects identical to the major protein of postsynaptic densities) shares by itself the Ca2+/calmodulin-dependent kinase activity, thus differing from soluble Ca2+/calmodulin-dependent kinases isolated by others. Despite its insolubility in most detergents, the 52K protein is not particularly rich in hydrophobic amino acids. Its richness in cysteine and proline residues suggests that the active conformation of the enzyme is sustained by numerous disulfide bridges. 相似文献
7.
We report here characterization of calmodulin-stimulated Ca2+ transport activities in synaptic plasma membranes (SPM). The calcium transport activity consists of a Ca2+-stimulated, Mg2+-dependent ATP hydrolysis coupled with ATP-dependent Ca2+ uptake into membraneous sacs on the cytosolic face of the synaptosomal membrane. These transport activities have been found in synaptosomal subfractions to be located primarily in SPM-1 and SPM-2. Both Ca2+-ATPase and ATP-dependent Ca2+ uptake require calmodulin for maximal activity (KCm for ATPase = 60 nM; KCm for uptake = 50 nM). In the reconstituted membrane system, KCa was found to be 0.8 microM for Ca2+-ATPase and 0.4 microM for Ca2+ uptake. These results demonstrate for the first time the calmodulin requirements for the Ca2+ pump in SPM when Ca2+ ATPase and Ca2+ uptake are assayed under functionally coupled conditions. They suggest that calmodulin association with the membrane calcium pump is regulated by the level of free Ca2+ in the cytoplasm. The activation by calmodulin, in turn, regulates the cytosolic Ca2+ levels in a feedback process. These studies expand the calmodulin hypothesis of synaptic transmission to include activation of a high-affinity Ca2+ + Mg2+ ATPase as a regulator for cytosolic Ca2+. 相似文献
8.
Opiate Receptor-Mediated Inhibition of Adenylate Cyclase in Rat Striatal Plasma Membranes 总被引:4,自引:12,他引:4
Dermot M. F. Cooper Constantine Londos Donald L. Gill Martin Rodbell 《Journal of neurochemistry》1982,38(4):1164-1167
Abstract: Plasma membranes from rat striatum contain adenylate cyclase activity that is subject to dual regulation by GTP. Low concentrations (up to 30 nM) of the nucleotide increase activity whereas higher concentrations evoke a steady decline in activity; such behavior characterizes dually regulated adenylate cyclase systems. The opiates, morphine sulfate and D-Ala-Met-enkephalin, produce naloxone-reversible inhibition of the enzyme that is dependent on "inhibitory concentrations" of GTP (above 50 nM). In the absence of GTP no inhibition is observed. Sodium ions decrease the inhibition of activity promoted by GTP alone, but amplify the degree of inhibition seen in the presence of the opiates and GTP. The potencies of the opiates in mediating these effects mirror their affinities for 8 opiate receptors in striatum. It is suggested that this action of the opiates may represent their primary action in striatum. 相似文献
9.
Pertussis Toxin Attenuates D2 Inhibition and Enhances D1 Stimulation of Adenylate Cyclase by Dopamine in Rat Striatum 总被引:1,自引:1,他引:1
The response of adenylate cyclase to GTP and to dopamine (DA) was investigated in synaptic plasma membranes isolated from rat striatum injected with pertussis toxin, which inactivates the inhibitory guanine nucleotide-binding regulatory protein (Ni) of adenylate cyclase. Pertussis toxin treatment reverted the inhibitory effects on the enzyme activity elicited by micromolar concentrations of GTP and reduced by 50% the DA inhibition of cyclase activity via D2 receptors. The toxin treatment enhanced the net stimulation of enzyme activity by DA in the presence of micromolar concentrations of GTP. However, the stimulatory effect of the selective D1 receptor agonist SKF 38393 was not significantly affected. The data indicate that Ni mediates D2 inhibition of striatal adenylate cyclase and participates in the modulation of D1 stimulation of the enzyme activity by DA. 相似文献
10.
Ischemia-Induced Inhibition of Calcium Uptake into Rat Brain Microsomes Mediated by Mg2+ /Ca2+ ATPase
Abstract: It is well established that ischemia is associated with prolonged increases in neuronal intracellular free calcium levels. Recent data suggest that regulation of calcium uptake and release from the endoplasmic reticulum is important in maintaining calcium homeostasis. The endoplasmic reticulum Mg2+ /Ca2+ ATPase is the major mechanism for sequestering calcium in this organelle. Inhibition of this enzyme may play a causal role in the loss of calcium homeostasis. In order to investigate the effect of ischemia on calcium sequestration into the endoplasmic reticulum, microsomes were isolated from control and ischemic whole brain homogenates by differential centrifugation. Calcium uptake was measured by radioactive calcium (45 Ca2+ ) accumulation in the microsomes mediated by Mg2+ /Ca2+ ATPase. Ischemia caused a statistically significant inhibition of presteady-state and steady-state calcium uptake. Duration of ischemia was directly proportional to the degree of inhibition. Decreased calcium uptake was shown not to be the result of increased calcium release from ischemic compared with control microsomes nor the result of selective isolation of ischemic microsomes from the homogenate with a decreased capacity for calcium uptake. The data demonstrate that ischemia inhibits the ability of brain microsomes to sequester calcium and suggest that loss of calcium homeostasis is due, in part, to ischemia-induced inhibition of endoplasmic reticulum Mg2+ /Ca2+ ATPase. 相似文献
11.
The inhibition of forskolin-stimulated adenylate cyclase activity by 5-hydroxytryptamine (5-HT) receptor agonists was measured in rat hippocampal membranes isolated from animals treated with vehicle or islet-activating protein (IAP; pertussis toxin). In vehicle-treated animals, 5-HT, 8-hydroxy-2-(di-n-propylamino)tetralin, buspirone, and gepirone were potent in inhibiting forskolin-stimulated adenylate cyclase activity with EC50 values of 60, 76, 376, and 530 nM, respectively. IAP treatment reduced by 30-55% the 5-HT1A agonist inhibition of adenylate cyclase activity via 5-HT1A receptors. The data indicate that the inhibitory guanine nucleotide-binding protein or Go (a similar GTP-binding protein of unknown function purified from brain) mediates the 5-HT1A agonist inhibition of hippocampal adenylate cyclase. 相似文献
12.
Immunohistochemical Localization of Ca2+ /Calmodulin-Dependent Protein Kinase II in Rat Brain and Various Tissues 总被引:6,自引:0,他引:6
Polyclonal antibodies against Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) of rat brain were prepared by immunizing rabbits and then purified by antigen-affinity column. The antibodies which recognized both subunits of the enzyme with Mrs 49K and 60K were used for the study on the distribution of CaM kinase II in formalin-fixed, paraffin-embedded tissues. In the brain, a light-microscopic study demonstrated strong immunoreactivity in neuronal somata and dendrites and weak immunoreactivity in nuclei. The densely stained regions included cerebral cortex, hippocampal formation, striatum, substantia nigra, and cerebellar cortex. In substantia nigra, neurites were stained, but not neuronal somata. Electron microscopy revealed that the immunoreactive product was highly concentrated at the postsynaptic densities. In addition to neurons, weak immunoreactivity was also demonstrated in glial cells, such as astrocytes and ependymal cells of ventricles and epithelial cells of choroid plexus. In other tissues, strong immunoreactivity was observed in the islet of pancreas and moderate immunoreactivity in skeletal muscle and kidney tubules. Immunoreactivity was demonstrated in all of the tissues tested. The results suggest that CaM kinase II is widely distributed in the tissues. 相似文献
13.
The effect of a single administration of morphine sulfate (15 mg/kg, s.c. or 30 mg/kg, i.p., 30 min) on Ca2+-stimulated Mg2+-dependent ATPase activity was investigated in synaptosomal plasma membranes (SPM) prepared from rat cortex. Morphine produced a significant decrease in Ca2+,Mg2+-ATPase activity in synaptosomal fractions (SPM 1 + 2) known to contain a high density of opiate receptors and calmodulin-dependent Ca2+,Mg2+-ATPase. However, in another subpopulation (SPM 3) that contains fewer opiate receptors and less enzyme activity, no such decrease in the enzyme activity was observed after the opiate administration. The decrease in Ca2+,Mg2+-ATPase activity seen in SPM 1 + 2 was specifically antagonized by the opiate antagonist naloxone hydrochloride (2 mg/kg, s.c.) when given 15 min before morphine administration. Mg2+-ATPase was not altered either by morphine or by a naloxone-morphine combination. These findings give further evidence for the role of intracellular Ca2+ in mediating many of the acute effects of opiates. 相似文献
14.
Abstract: The role of the Na+ /Ca2+ exchanger and intracellular nonmitochondrial Ca2+ pool in the regulation of cytosolic free calcium concentration ([Ca2+ ]i ) during catecholamine secretion was investigated. Catecholamine secretion and [Ca2+ ]i were simultaneously monitored in a single chromaffin cell. After high-K+ stimulation, control cells and cells in which the Na+ /Ca2+ exchange activity was inhibited showed similar rates of [Ca2+ ]i elevation. However, the recovery of [Ca2+ ]i to resting levels was slower in the inhibited cells. Inhibition of the exchanger increased the total catecholamine secretion by prolonging the secretion. Inhibition of the Ca2+ pump of the intracellular Ca2+ pool with thapsigargin caused a significant delay in the recovery of [Ca2+ ]i and greatly enhanced the secretory events. These data suggest that both the Na+ /Ca2+ exchanger and the thapsigargin-sensitive Ca2+ pool are important in the regulation of [Ca2+ ]i and, by modulating the time course of secretion, are important in determining the extent of secretion. 相似文献
15.
Abstract: The Na+ /Ca2+ exchanger is an important element in the maintenance of calcium homeostasis in bovine chromaffin cells. The Na+ /Ca2+ exchanger from other cell types has been extensively studied, but little is known about its regulation in the cell. We have investigated the role of reversible protein phosphorylation in the activity of the Na+ /Ca2+ exchanger of these cells. Cells treated with 1 m M dibutyryl cyclic AMP (dbcAMP), 1 µ M phorbol 12,13-dibutyrate, 1 µ M okadaic acid, or 100 n M calyculin A showed lowered Na+ /Ca2+ exchange activity and prolonged cytosolic Ca2+ transients caused by depolarization. A combination of 10 n M okadaic acid and 1 µ M dbcAMP synergistically inhibited Na+ /Ca2+ exchange activity. Conversely, 50 µ M 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine, a protein kinase inhibitor, enhanced Na+ /Ca2+ exchange activity. Moreover, we used cyclic AMP-dependent protein kinase and calcium phospholipid-dependent protein kinase catalytic subunits to phosphorylate isolated membrane vesicles and found that the Na+ /Ca2+ exchange activity was inhibited by this treatment. These results indicate that reversible protein phosphorylation modulates the activity of the Na+ /Ca2+ exchanger and suggest that modulation of the exchanger may play a role in the regulation of secretion. 相似文献
16.
Mireille Ehret Christopher D. Cash Michel Hamon Michel Maitre 《Journal of neurochemistry》1989,52(6):1886-1891
Tryptophan hydroxylase is activated in a crude extract by addition of ATP and Mg2+. This activation is reversible and requires in addition both Ca2+ and calmodulin. Thus, phosphorylation by an endogenous calmodulin-dependent protein kinase has long been suspected. Now that we have prepared a specific polyclonal antibody to rat brain tryptophan hydroxylase, we have been able to prove that this hypothesis is correct. After incubation of purified tryptophan hydroxylase with Ca2+/calmodulin-dependent protein kinase together with [gamma-32P]ATP, Mg2+, Ca2+, and calmodulin, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and blotting of the enzymes onto nitrocellulose sheets, we could label the band of tryptophan hydroxylase by the antiserum and the peroxidase technique and show by autoradiography that 32P was incorporated into this band. By measuring the radioactivity, we calculated that about 1 mol of phosphate was incorporated per 8 mol of subunits of the enzyme (2 mol of native enzyme). Because the concentration of ATP which we employed (50 microM) gives about half-maximal activation in crude extract compared to saturating ATP conditions (about 1 mM), this result indicates that the incorporation of at least 1 mol of phosphate/mol of tetramer of native tryptophan hydroxylase is required for maximal activation. 相似文献
17.
Abstract: Rat hippocampal slices were exposed to conditions that simulate an ischemic insult, and the subcellular distribution and the enzymatic activity of Ca2+ /calmodulin-dependent protein kinase II (CaM kinase) were monitored. Semiquantitative western blots using a monoclonal antibody to the 50-kDa α subunit showed that there was a significant redistribution of the enzyme from a supernatant to a pellet fraction after 10 min of an anoxic/aglycemic insult. No significant change in the total amount of CaM kinase enzyme was detected in the homogenates for up to 20 min of exposure to the insult. Ca2+ /CaM-dependent enzyme activity did not significantly change in the pellet during the 20-min insult. Supernatant activity decreased throughout the insult. The persistence of Ca2+ /CaM-dependent CaM kinase activity in the pellet fraction and the detected movement of enzyme from the supernatant to the pellet indicate that redistribution may be an important mechanism in regulating the cellular location of CaM kinase activity. 相似文献
18.
A high-affinity Mg2+-independent Ca2+-ATPase (Ca2+-ATPase) has been differentiated from the Mg2+-dependent, Ca2+-stimulated ATPase (Ca2+,Mg2+-ATPase) in rat brain synaptosomal membranes. Using ATP as a substrate, the K0.5 of Ca2+ for Ca2+-ATPase was found to be 1.33 microM with a Km for ATP of 19 microM and a Vmax of 33 nmol/mg/min. Using Ca-ATP as a substrate, the Km for Ca-ATP was found to be 0.22 microM. Unlike Ca2+,Mg2+-ATPase, Ca2+-ATPase was not inhibited by N-ethylmaleimide, trifluoperazine, lanthanum, zinc, or vanadate. La3+ and Zn2+, in contrast, stimulated the enzyme activity. Unlike Ca2+, Mg2+-ATPase activity, ATP-dependent Ca2+ uptake was negligible in the absence of added Mg2+, indicating that the Ca2+ transport into synaptosomal endoplasmic reticulum may not be a function of the Ca2+-ATPase described. Ca2+-ATPase activity was not stimulated by the monovalent cations Na+ or K+. Ca2+, Mg2+-ATPase demonstrated a substrate preference for ATP and ADP, but not GTP, whereas Ca2+-ATPase hydrolyzed ATP and GTP, and to a lesser extent ADP. The results presented here suggest the high-affinity Mg2+-independent Ca2+-ATPase may be a separate form from Ca2+,Mg2+-ATPase. The capacity of Mg2+-independent Ca2+-ATPase to hydrolyze GTP suggests this protein may be involved in GTP-dependent activities within the cell. 相似文献
19.
Histamine Increases Phospholipid Methylation and H2 -Receptor-Adenylate Cyclase Coupling in Rat Brain 总被引:2,自引:2,他引:0
Histamine stimulated the enzymatic synthesis of phosphatidylcholine from phosphatidylethanolamine in crude synaptic membranes of rat brain containing the methyl donor S-adenosyl-L-methionine (SAM). In the presence of, but not in the absence of SAM, histamine increased cyclic AMP accumulation at the concentrations that stimulate phospholipid methylation. S-Adenosyl-L-homocysteine, an inhibitor of phospholipid methyltransferases, inhibited histamine-stimulated phospholipid methylation and histamine-induced cyclic AMP accumulation in the presence of SAM in a concentration-dependent manner. Histamine-induced [3H]methyl incorporation into phospholipids exhibited a marked regional heterogeneity in rat brain in the order of cortex greater than medulla oblongata greater than hippocampus greater than striatum greater than midbrain greater than hypothalamus. The regional distribution of histamine-induced cyclic AMP accumulation exactly paralleled histamine-stimulated [3H]methyl incorporation in rat brain. Histamine-induced cyclic AMP accumulation was inhibited by the addition of cimetidine or famotidine, but not by mepyramine or diphenhydramine. The accumulation of cyclic AMP in the presence of SAM was observed by the addition of impromidine or dimaprit, but not by 2-pyridylethylamine. These results indicate that phospholipid methylation is induced by histamine and may participate in H2-receptor-mediated stimulation of adenylate cyclase in rat brain. 相似文献
20.
Steven R. Childers 《Journal of neurochemistry》1988,50(2):543-553
Opiate agonists inhibit adenylate cyclase in brain membranes, but under normal conditions the maximal inhibition is small (10-15%). When rat brain membranes were preincubated at pH 4.5, washed, and then assayed for adenylate cyclase at pH 7.4, stimulation of activity by agents (fluoride, guanylyl-5'-imidodiphosphate, cholera toxin) that act through the stimulatory GTP-binding coupling protein (Gs) protein was lost. At the same time, inhibition of basal adenylate cyclase by opiate agonists was increased to a maximum of 30-40%. Opiate inhibition was maximal at low magnesium concentrations (less than 5 mM), required guanine nucleotides, and decreased the Vmax, not Km, of the enzyme. Incubation of membranes with pertussis toxin lowered the apparent affinity for agonists in inhibiting activity. The delta opioid agonists were more potent than mu agonists, and the Ke values for naloxone in blocking agonist inhibition were similar for both mu and delta agonists (50-90 nM). These results suggest that inhibition of adenylate cyclase in brain is not mediated by mu opiate receptors, but whether classic high-affinity delta and kappa receptors are involved with this enzyme cannot be confirmed by these experiments. 相似文献