首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytochrome P450s constitute a superfamily of enzymes that catalyze the oxidation of a vast number of structurally and chemically diverse hydrophobic substrates. Herein, we describe the crystal structure of a complex between the bacterial P450BM-3 and the novel substrate N-palmitoylglycine at a resolution of 1.65 A, which reveals previously unrecognizable features of active site reorganization upon substrate binding. N-palmitoylglycine binds with higher affinity than any other known substrate and reacts with a higher turnover number than palmitic acid but with unaltered regiospecificity along the fatty acid moiety. Substrate binding induces conformational changes in distinct regions of the enzyme including part of the I-helix adjacent to the active site. These changes cause the displacement by about 1 A of the pivotal water molecule that ligands the heme iron, resulting in the low-spin to high-spin conversion of the iron. The water molecule is trapped close to the heme group, which allows it to partition between the iron and the new binding site. This partitioning explains the existence of a high-spin-low-spin equilibrium after substrate binding. The close proximity of the water molecule to the heme iron indicates that it may also participate in the proton-transfer cascade that leads to heterolytic bond scission of oxygen in P450BM-3.  相似文献   

2.
Cytochrome P450 enzymes require the delivery of two electrons to the heme protein for their enzymatic function. NADPH or NADH are usually used as reduction equivalents. In the absence of a substrate, NADPH may inactivate P450 enzymes. Furthermore, it is expensive, making it unsuitable for the preparative synthesis of fine chemicals. Approaches for replacing NADPH with an electrochemically generated reduction by using platinum-electrodes and different mediators are known. In the present study, NADPH was substituted by the mediator cobalt(III)sepulchrate and zinc dust that serves as an electron source. The mutated fatty acid hydroxylase P450 BM-3 F87A from Bacillus megaterium was chosen as a catalyst, since it shows a three-fold higher sensitivity and a nearly five-fold higher activity for p-nitrophenoxydodecanoic acid (12-pNCA) than the wild-type enzyme. The formation of p-nitrophenolate can easily be monitored using a photometer at 410 nm. The turnover rate of the zinc/cobalt(III)sepulchrate system reaches 20% of the NADPH activity. Compared to the electrochemical approaches the activity is at least 77% higher (turnover 125 eq min-1). The presented alternative cofactor system can be used instead of NADPH or expensive electrochemical devices (platinum electrodes) for fine chemical synthesis.  相似文献   

3.
以来自于巨大芽孢杆菌的细胞色素P450BM-3为研究对象,采用随机突变和饱和定点突变定向进化技术对P450BM-3进行改造,通过突变体催化靛蓝显色的特性采用活性琼脂平板分析和96微孔板相结合的高通量筛选成功获得了几个具有更高催化性能的突变体。  相似文献   

4.
After investigating two anion-exchange resins, the purification factor and activity yields of P450 BM-3 were higher with Resource Q than with DEAE-Sepharose FF. Screening of HIC media showed that Source 15ISO was the most suitable for purification of P450 BM-3. An effective isolation and purification procedure of P450 BM-3 was developed and included three steps: 35%-70% saturation (NH(4))(2)SO(4) precipitation, Source 15ISO hydrophobic interaction chromatograph and Sephacryl S-200 gel filtration chromatography. Using this protocol, the purification factor and P450 BM-3 activity recovery was 13.5 and 13.7%, respectively.  相似文献   

5.
Q S Li  J Ogawa  R D Schmid  S Shimizu 《FEBS letters》2001,508(2):249-252
We report here oxidation of propylbenzene and 3-chlorostyrene by wild-type cytochrome P450 BM-3 with high turnover (479 nmol 1-phenyl-1-propanol/min/nmol P450 and 300 nmol 3-chlorostyrene oxide/min/nmol P450). Furthermore, the residue size at position 87 of P450 BM-3 was found to play critical roles in determining stereoselectivity in oxidation of propylbenzene and 3-chlorostyrene. Replacement of Phe87 with Val, Ala and Gly resulted in decreases in optical purity of produced (R)-(+)-1-phenyl-1-propanol from 90.0 to 37.4, 26.0 and -15.6% e.e., respectively, and in increases in those of produced (R)-(+)-3-chlorostyrene oxide from -61.0 to -38.0, 67.0 and 94.6% e.e., respectively.  相似文献   

6.
Cytochromes P450 typically catalyze the monooxygenation of hydrophobic compounds resulting in the insertion of one atom of dioxygen into the organic substrate and the reduction of the other oxygen atom to water. The two electrons required for the reaction are normally provided by another redox active protein, for example cytochrome P450 reductase (CPR) in mammalian endoplasmic reticulum membranes. P450BM-3 from Bacillus megaterium is a widely studied P450 cytochrome in which the P450 is fused naturally to a diflavin reductase homologous to CPR. From the original characterization of the enzyme by Fulco's laboratory, the enzyme was shown to have a nonlinear dependence of reaction rate on enzyme concentration. In recent experiments we observed enzyme inactivation upon dilution, and the presence of substrate can diminish this inactivation. We therefore carried out enzyme kinetics, cross-linking experiments, and molecular weight determinations that establish that the enzyme is capable of dimerizing in solution. The dimer is the predominant form at higher concentrations under most conditions and is the only form with significant activity. Further experiments selectively knocking out the activity of individual domains with site-directed mutagenesis and measuring enzyme activity in heterologous dimers establish that the electron-transfer pathway in P450BM-3 passes through both protein molecules in the dimer during a single turnover, traversing from the FAD domain of one molecule into the FMN domain of the other molecule before passing to the heme domain. Analysis of our results combined with other analyses in the literature suggests that the heme domain of either monomer may accept electrons from the reduced FMN domain.  相似文献   

7.
In vitro biocatalysis with cytochrome P450 BM-3 was investigated aiming for the substitution of the expensive natural cofactor NADPH by electrochemistry. The monooxygenase was immobilized on electrodes by entrapment in polypyrrole as a conductive polymer for electrochemically wiring the enzyme. Electropolymerization of pyrrole proved to be a useful means of immobilising an active cytochrome P450 BM-3 mutein on platinum and glassy carbon electrodes without denaturation. Repeatedly sweeping the electric potential between −600 and +600 mV versus Ag/AgCl led to enzymatically-catalysed product formation while in the absence of the enzyme no product formed under otherwise identical conditions.  相似文献   

8.
Here we describe for the first time the formation of a complex of reduced CYP102 (cytochrome P450 BM-3) heme domain with molecular oxygen. To stabilize the oxycomplex, the experiments had to be done under argon atmosphere at cryogenic temperatures (-25 degrees C) in the presence of 50% glycerol. The spectral properties of this species were different from those of another P450-type autosuffisant enzyme, i.e., the neuronal nitric oxide synthase. On the contrary, the oxyferrous complex of CYP102 possesses spectral properties similar to those of complexes of microsomal cytochromes P450, e.g., CYP2B4.  相似文献   

9.
Cytochrome P450BM-3 catalyzed the reduction of lipophilic aldehydes to alcohols efficiently. A k(cat) of ~25 min(-1) was obtained for the reduction of methoxy benzaldehyde with wild type P450BM-3 protein which was higher than in the isolated reductase domain (BMR) alone and increased in specific P450-domain variants. The reduction was caused by a direct hydride transfer from preferentially R-NADP(2)H to the carbonyl moiety of the substrate. Weak substrate-P450-binding of the aldehyde, turnover with the reductase domain alone, a deuterium incorporation in the product from NADP(2)H but not D(2)O, and no inhibition by imidazole suggests the reductase domain of P450BM-3 as the potential catalytic site. However, increased aldehyde reduction by P450 domain variants (P450BM-3 F87A T268A) may involve allosteric or redox mechanistic interactions between heme and reductase domains. This is a novel reduction of aldehydes by P450BM-3 involving a direct hydride transfer and could have implications for the metabolism of endogenous substrates or xenobiotics.  相似文献   

10.
Cytochrome P450 BM-3, a self-sufficient P450 enzyme from Bacillus megaterium that catalyzes the subterminal hydroxylation of long-chain fatty acids, has been engineered into a catalyst for the oxidation of polycyclic aromatic hydrocarbons. The activities of a triplet mutant (A74G/F87V/L188Q) towards naphthalene, fluorene, acenaphthene, acenaphthylene, and 9-methylanthracene were 160, 53, 109, 287, and 22/min, respectively. Compared with the activities of the wild type towards these polycyclic aromatic hydrocarbons, those of the mutant were improved by up to 4 orders of magnitude. The coupling efficiencies of the mutant towards naphthalene, fluorene, acenaphthene, acenaphthylene, and 9-methylanthracene were 11, 26, 5.4, 15, and 3.2%, respectively, which were also improved several to hundreds fold. The high activities of the mutant towards polycyclic aromatic hydrocarbons indicate the potential of engineering P450 BM-3 for the biodegradation of these compounds in the environment.  相似文献   

11.
Rishavy MA  Cleland WW 《Biochemistry》2000,39(25):7546-7551
Heavy atom isotope effects at C-2, C-3, and the amino nitrogen of aspartate were determined for the reaction of porcine heart cytosolic aspartate aminotransferase and the tyrosine-225 to phenylalanine mutant of Escherichia coli aspartate aminotransferase. The effects of deuteration at C-2 of aspartate and of D(2)O on the observed heavy atom isotope effects were determined. The multiple isotope effects support the contribution of C(alpha)-H cleavage, ketimine hydrolysis, and oxaloacetate dissociation to the rate limitation with the wild-type enzyme. The existence of a quinonoid intermediate could not be determined due to the kinetic complexity of the enzyme. For the tyrosine-225 to phenylalanine mutant, we are able to conclude that ketimine hydrolysis is the major rate-determining step.  相似文献   

12.
Testosterone 6beta-hydroxylation is a prototypic reaction of cytochrome P450 (P450) 3A4, the major human P450. Biomimetic reactions produced a variety of testosterone oxidation products with 6beta-hydroxylation being only a minor reaction, indicating that P450 3A4 has considerable control over the course of steroid hydroxylation because 6beta-hydroxylation is not dominant in a thermodynamically controlled oxidation of the substrate. Several isotopically labeled testosterone substrates were prepared and used to probe the catalytic mechanism of P450 3A4: (i) 2,2,4,6,6-(2)H(5); (ii) 6,6-(2)H(2); (iii) 6alpha-(2)H; (iv) 6beta-(2)H; and (v) 6beta-(3)H testosterone. Only the 6beta-hydrogen was removed by P450 3A4 and not the 6alpha, indicating that P450 3A4 abstracts hydrogen and rebounds oxygen only at the beta face. Analysis of the rates of hydroxylation of 6beta-(1)H-, 6beta-(2)H-, and 6beta-(3)H-labeled testosterone and application of the Northrop method yielded an apparent intrinsic kinetic deuterium isotope effect ((D)k) of 15. The deuterium isotope effects on k(cat) and k(cat)/K(m) in non-competitive reactions were only 2-3. Some "switching" to other hydroxylations occurred because of 6beta-(2)H substitution. The high (D)k value is consistent with an initial hydrogen atom abstraction reaction. Attenuation of the high (D)k in the non-competitive experiments implies that C-H bond breaking is not a dominant rate-limiting step. Considerable attenuation of a high (D)k value was also seen with a slower P450 3A4 reaction, the O-dealkylation of 7-benzyloxyquinoline. Thus P450 3A4 is an enzyme with regioselective flexibility but also considerable regioselectivity and stereoselectivity in product formation, not necessarily dominated by the ease of C-H bond breaking.  相似文献   

13.
Cytochrome P450 BM-3 from Bacillus megaterium is a fatty acid hydroxylase exhibiting selectivity for long-chain substrates (12–20 carbons). Replacement of Phe87 in P450 BM-3 by Val (F87V) greatly increased its activity towards a variety of aromatic and phenolic compounds. The apparent initial reaction rates of F87V as to benzothiophene, indan, 2,6-dichlorophenol, and 2-(benzyloxy)phenol were 227, 204, 129, and 385 nmol min–1 nmol–1 P450, which are 220-, 66-, 99-, and 963-fold those of the wild type, respectively. These results indicate that Phe87 plays a critical role in the control of the substrate specificity of P450 BM-3. Furthermore, F87V catalyzed regioselective hydroxylation at the para position of various phenolic compounds. In particular, F87V showed high activity as to the hydroxylation of 2-(benzyloxy)phenol to 2-(benzyloxy)hydroquinone. With F87V as the catalyst, 0.71 mg ml–1 2-(benzyloxy)hydroquinone was produced from 1.0 mg ml–1 2-(benzyloxy)phenol in 4 h, with a molar yield of 66%.  相似文献   

14.
The reactions of cytochromes P450101 (P450cam), P450108 (P450terp), and P450102 (P450BM-3) with phenyldiazene result in the formation of phenyl-iron complexes with absorption maxima at 474-478 nm. Treatment of the cytochrome P450 complexes with K3Fe(CN)6 decreases the 474-478 nm absorbance and shifts the phenyl group from the iron to the porphyrin nitrogens. Acidification and extraction of the prosthetic group from each of the ferricyanide-treated enzymes yields a different mixture of the four possible N-phenylprotoporphyrin IX regioisomers. The ratios of the regioisomers with the phenyl ring on pyrrole rings B, A, C, and D (in order of elution from the high performance liquid chromatography column) are, respectively: cytochrome P450cam, 0:0:1:4; P450terp, 0:0:0:1; and P450BM-3, 2:10:2:1. The isomer ratio for recombinant cytochrome P450BM-3 without the cytochrome P450 reductase domain (2:9:2:1) shows that the reductase domain does not detectably perturb the active site topology of cytochrome P450BM-3. Potassium ions modulate the intensity of the spectrum of the phenyl-iron complex of cytochrome P450cam, but do not alter the N-phenyl isomer ratio. Computer graphics analysis of the crystal structure of the cytochrome P450cam phenyl-iron complex indicates that the active site of cytochrome P450cam is open above pyrrole ring D and, to a small extent, pyrrole ring C, in complete agreement with the observed N-phenylprotoporphyrin IX regioisomer pattern. The regioisomer ratios indicate that the active site of cytochrome P450terp is only open above pyrrole ring D, whereas that of cytochrome P450BM-3 is open to some extent above all the pyrrole rings but particularly above pyrrole ring A. The bacterial enzymes thus have topologies distinct from each other and from those of the mammalian enzymes so far investigated, which have active sites that are open to a comparable extent above pyrrole rings A and D.  相似文献   

15.
Cytochrome P450 BM-3 from Bacillus megaterium catalyzes the subterminal hydroxylation of medium- and long-chain fatty acids at the positions omega-1, omega-2, and omega-3. A rapid and continuous spectrophotometric activity assay for cytochrome P450 BM-3 based on the conversion of p-nitrophenoxycarboxylic acids (pNCA) to omega-oxycarboxylic acids and the chromophore p-nitrophenolate was developed. In contrast to the commonly used activity assays for this enzyme, relying on the consumption of oxygen or NADPH or the use of 14C-labeled carboxylic acids, the pNCA assay can even be used with crude extracts of the recombinant enzyme from lysed Escherichia coli cells. The kinetics of p-nitrophenolate formation are directly measured at a wavelength of 410 nm using a spectrophotometer or microtiter plate reader. Sensitivity of the assay is greatly enhanced if p-nitrophenoxydodecanoic or p-nitrophenoxypentadecanoic acid are used with the F87A mutant instead of the wild-type P450 BM-3 enzyme.  相似文献   

16.
Replacement of phenylalanine 87 with alanine or glycine (mutant F87A or F87G) greatly increased the H2O2-supported substrate hydroxylation activity of cytochrome P450BM-3, whose original H2O2-supported activity is hardly detectable. On the other hand, replacement of phenylalanine 87 with valine (mutant F87V) did not. In the oxidation of p-nitrophenoxydodecanoic acid (12-pNCA), the turnover numbers of the mutant F87A in the presence of NADPH and O2, or H2O2 were 493 and 162 nmol/min/nmol, respectively. The H2O2-supported F87A hydroxylation activity was further confirmed with free fatty acids as substrates. Moreover, the stability of F87A in H2O2 solutions also largely increased. The order of the stability of the wild type (WT), F87A, and their substrate (12-pNCA)-binding complexes in H2O2 solutions listed from high to low was F87A, WT, F87A substrate-binding complex, and WT substrate-binding complex. We propose that the free space size in the vicinity of the heme iron significantly influences P450BM-3 H2O2-supported activity and H2O2 inactivation.  相似文献   

17.
Cytochrome P450 BM-3, a self-sufficient P450 enzyme from Bacillus megaterium that catalyzes the subterminal hydroxylation of long-chain fatty acids, has been engineered into a catalyst for the oxidation of polycyclic aromatic hydrocarbons. The activities of a triplet mutant (A74G/F87V/L188Q) towards naphthalene, fluorene, acenaphthene, acenaphthylene, and 9-methylanthracene were 160, 53, 109, 287, and 22/min, respectively. Compared with the activities of the wild type towards these polycyclic aromatic hydrocarbons, those of the mutant were improved by up to 4 orders of magnitude. The coupling efficiencies of the mutant towards naphthalene, fluorene, acenaphthene, acenaphthylene, and 9-methylanthracene were 11, 26, 5.4, 15, and 3.2%, respectively, which were also improved several to hundreds fold. The high activities of the mutant towards polycyclic aromatic hydrocarbons indicate the potential of engineering P450 BM-3 for the biodegradation of these compounds in the environment.  相似文献   

18.
19.
The flexibility of the structure and compressibility of the respective active site of cytochromes P450 3A4 (CYP3A4) and BM-3 (CYP102) were studied using absorption spectroscopy in the ultraviolet and visual regions. Conformational changes in the overall protein structures of both CYP3A4 and CYP102 due to the effects of temperature and pressure are reversible. However, the enzymes differ in the properties of their active sites. The CYP3A4 enzyme denatures to the inactive P420 form relatively easy, at 3000 bar over half is converted to P420. The compressibility of its active site is lower than that of CYP102 and is greater with the substrate bound, which is in line with the observed lack of a stabilizing effect of the substrate on its conformation under pressure. In contrast, CYP102, although having the most compressible active site among the P450s, possesses a structure that does not denature easily to the inactive (P420) form under pressure. In this respect, it resembles the P450 isolated from acidothermophilic archaebacteria [McLean, M.A., Maves, S.A., Weiss, K.E., Krepich, S. & Sligar, S.G. (1998) Biochem. Biophys. Res. Commun. 252, 166-172].  相似文献   

20.
BackgroundCytochrome P450 (P450) BM3, from Bacillus megaterium, catalyzes a wide range of chemical reactions and is routinely used as a model system to study mammalian P450 reactions and structure.MethodsThe metabolism of 2,6-di-tert-butyl-4-hydroperoxy-4-methyl-2,5-cyclohexadienone (BHTOOH) and 2-tert-butyl-4-hydroperoxy-4-methyl-2,5-cyclohexadien-1-one (BMPOOH) was examined with P450 BM3 and with the conserved T268 and F87 residues mutated to investigate their effects on organic hydroperoxide metabolism. To determine the effects of the mutations on the active site volume and architecture, the X-ray crystal structure of the F87A/T268A P450 BM3 heme domain (BMP) was determined and compared to previous structures. To investigate the interactions of the substrates with the F87 and T268 residues, BHTOOH and BMPOOH were docked into the BMP X-ray crystal structures.ResultsLower metabolism of BHTOOH and BMPOOH was observed in the WT P450 BM3 and the T268A P450 BM3 mutant than in the F87A and F87A/T268A P450 BM3 mutants. Large differences were found in the F–G loop regions and active site cavity volumes for the F87A mutated structures.ConclusionsAnalysis of the metabolism, X-ray crystal structures, and molecular docking simulations suggests that P450 BM3 activity toward BHTOOH and BMPOOH is mediated through substrate recognition by T268 and F87, and the active site cavity volume. Based on this information, a simplified representation is presented with the relative orientation of organic hydroperoxides in the P450 BM3 active site.General significanceThe metabolism results and structural analysis of this model P450 allowed us to rationalize the structural factors that influence organic hydroperoxide metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号